HW3 Review

CSCI 567 @ Fall 2025



(location of x1, ..., xy)

Problem 1. Clustering

Consider running K-means with K = 2 on the following dataset:
——————————————————— @ (location of x2,,+1)

B/(location of x; 11, - .., X2m)

1.1 First, consider running the greedy initialization method, where the first center is selected uniformly at
random from the training set, and then the point farthest away from the first center is selected as the second
center (tie broken arbitrarily).

a) What are the possible outcomes of greedy initialization? Explain briefly.

b) What are the final outputs of K-means under this initialization strategy? Describe the
location of centers and the assignments of each point, and explain briefly.

c) What is the final value for the K-means objective in this case?



A (location of x1, ..., x)

Problem 1. Clustering T

Consider running K-means with K = 2 on the following dataset:
L e L T o ( (location of x;,+1)

B (location of x;, 11, ..., X2mm)

1.1 First, consider running the greedy initialization method, where the first center is selected uniformly at
random from the training set, and then the point farthest away from the first center is selected as the second
center (tie broken arbitrarily).
a) What are the possible outcomes of greedy initialization? Explain briefly.
{A, C}or{B, C}.
Reason: If uy; = A or B, then y, = x5,,41 = C since x,,,41 is the (only) farthest point
from both Aand B. If u; = C, then u, € {4, B}.

b) What are the final outputs of K-means under this initialization strategy? Describe the
location of centers and the assignments of each point, and explain briefly.

c) What is the final value for the K-means objective in this case?



Problem 1. Clustering

Consider running K-means with K = 2 on the following dataset:

(lgcation of xy;41, - - -, X2m)

1.1 First, consider running the greedy initialization method, where the first center is selected uniformly at
random from the training set, and then the point farthest away from the first center is selected as the second
center (tie broken arbitrarily).
a) What are the possible outcomes of greedy initialization? Explain briefly.
{A, C}or{B, C}.
Reason: If uy; = A or B, then y, = x5,,41 = C since x,,,41 is the (only) farthest point
from both Aand B. If u; = C, then u, € {4, B}.

b) What are the final outputs of K-means under this initialization strategy? Describe the
location of centers and the assignments of each point, and explain briefly.

Final centers: {C, D}

Assignments: Only x,,,+1 assigned to C; all others assigned to D

Reason:

* Suppose the init. centers are {4, C}. At the first iter., all points at A and B will be

assigned to the same cluster, while x,,,,1 Will be assigned to the other.
* By averaging the points in each cluster, we obtain new centers D and C.
* By symmetry, the same holds when the init. centers are {B, C}



A (location of x1, ..., x)

Problem 1. Clustering T

Consider running K-means with K = 2 on the following dataset:
L e L T o ( (location of x;,+1)

B (location of x;, 11, ..., X2mm)

1.1 First, consider running the greedy initialization method, where the first center is selected uniformly at
random from the training set, and then the point farthest away from the first center is selected as the second

center (tie broken arbitrarily).
a) What are the possible outcomes of greedy initialization? Explain briefly.
{A, C} or {B, C} Reason: (previous page)
b) What are the final outputs of K-means under this initialization strategy? Describe the
location of centers and the assignments of each point, and explain briefly.
Final centers: {C, D}
Assignments: Only x,,,+1 assigned to C; all others assigned to D

Reason: (previous page)

c) What is the final value for “sum of squared distances” objective in this case?
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Problem 1. Clustering et )

Consider running K-means with K = 2 on the following dataset:

1.2 Next consider running K-means++

a) Whatis the probability for each pair of the initial centers {4, B}, {4, C}, {B, C}?
Slightly abusing notation: let 4;, B;, C; denote the events that the ith centeris
initialized to A, B, or C (respectively). Notice that

P(Al) = m+ 1 = P(B1); ]P(C1) = om + 1
=4,

1B — All3 IC — All% =10 = ||C — BI|3

Therefore, we have

dm 2m
[P(A2|B1) = [P(Bz|A1) =

Am+10 2m+5
= P(init. to {A, B)) = P(4,B,) + P(4,B,) = 2

2m
2m+1 2m+5

Moreover,
1
IP)(C2|A1) = IP(C2|B1) = IP)(1‘12|C1) = P(Bz|c1) = E
m 5

om+1 2m+1 Zm+s

4m + 10’ )
P(init. to {A, C}) = P(init. to {B, C}) = 7




Consider running K-means with K = 2 on the following dataset:

Problem 1. Clustering g 4 focation ofitr-—., )

L e L T o ( (location of x;,+1)

B (location of x;, 11, ..., X2mm)

1.2.b) When the initial centers happen to be at A and B, the outlier x,,,,1 will eventually be clustered to-
gether with either the points at A or the points at B (depending on how you break tie). For simplicity,
we assume that m is very large such that the final centers of the two cluster can be approximately
treated as A and B. Under this assumption, calculate the final K-means objective value in this case. (1
point)

Clearly, only the distance between x;,,,1 and its center is nonzero. The square of this distance is
exactly 10, which is also the final K-means objective value.



Problem 1. Clustering g 4 focation ofitr-—., )

Consider running K-means with K = 2 on the following dataset: 'D
® C (location of x3,,4+1)

1.2.C) * B (location of Xp,41,. .., X2m)

Combining your solutions from all previous questions, write down the expected final K-means objec-
tive value when running K-means++, and calculate its limit when m goes to infinity. (3 points)

Based on previous questions, the expected final K-means objective value is
P(init. to {A, B}) X E[Value|final centers = {4, B}|
2m 5 )
X 2m.

2 X 21 x 10 4 + X
2m+1  2m+5 2m+1  2m+4+1 2m+5
P(init. to {A, C} or {B,C};) X [E[Valuelfinal centers = {D, C}]

2 2 2 2 10
= X E x 10 + -+ X = |,
24 244 24+ 2+ 2+ -

Writing this as

1
m

we see that the limit when m — oo is clearly 10 4 (1 4 5) = 16.



Problem 1. Clustering g 4 focation ofitr-—., )

Consider running K-means with K = 2 on the following dataset:
L e L T o ( (location of x;,+1)

B (location of x;, 11, ..., X2mm)

1.3 Based on Q1.1 and Q1.2, explain briefly why K-means++
is better than greedy initialization in this dataset.

For greedy, the objective value = 2m - coasm — o
For K-means++, the objective value is always bounded.
= K-means++ is better



Problem 2. EM

Known:
e dataxy,..,xy €RP
e noisescaleg >0

Unknown:
e Latentzy,..,zy ER
e Parameter v € R%

Model:
p(2) o« exp (—%22)

1
pCx 1z v) o exp (— 55 llx — zvll3 )

-1
5 o’ lvll3
b* == (1 —
a? + |v|l5 o

xTv xI'v

= = . b2
o2 +|[v[3 " o

an

z? —2a,z = (z — a,)? —a?

2.1 E-step 1: fixing the parameter v, prove that the posterior distribution g, (z) £ p(zn =z | xy;0) is also a
one-dimensional Gaussian distribution. More specifically, show that -

Gn(z) o exp <—217(z - @)2> ,

T . 2 .
where the mean a,, = ‘Tz—iL”vT”Z and the variance b? = 02f||v|| . (6 points)
2 2

p(zn =2z | xy;0) aw
< = p(2)p(xy | z;v) })y C hat'a Yule

o exp (—%zz) - exp (—;7||xn —zv||§) P@//’)) ~Leg)

2 2 T X .
= exp —l<22 + x| + ”Z#Zz _ ZEnY Z)) P(Axgj Pag)

o2

1
2b?

(Z - an)z)



Problem 2. EM

Known:
e dataxy,..,xy €RP
e noisescaleg >0

Unknown:
e Latentzy,..,zy ER
e Parameter v € R%

Model:
p(2) o« exp (—%ZZ)

1
pCx 1z v) o exp (— 55 llx — zvll3 )

qn(2) = p(2n = z| xp; V)
 exp (— ﬁ (z— an)z)

Var(X) = E[X?] — E[X]?

),"‘d mom m‘é

2.2 E-step 2: write down the expected complete log-likelihood Q(v). Express it in terms of v, o, x,,, a,, and
b? (forn = 1,...,N), and feel free to drop any terms independent of v. You can solve this using conclu-
sions from E-step 1, even if you have not solved it yet. (Note that in the lecture, we write Q in terms of
the parameter, which is v here, and also its previous value; here, the previous value of v is already used in
defining a, and b?, which is why you do not need to write Q using the previous value of v explicitly.) (5
points)

First, we have

b\/ Chain YM{Q
N N
v) = Z E:,~qn [In p(xn, zn;0)] = Z E:, ~qn [ly@n) +Inp(xn | zu;0)]. (1 point)

n=1 n=1

Plugging in the probabilistic model and dropping all terms independent of v, we have

2 .
2(72 2 Ez,~qull2n — zno|2]. (1 point)

> n=

Expanding the square and dropping the terms independent of v agam giv, (f
dmped [l

Z IE~H~‘]M [2121 ||v||% - 22;1x;_v:| . (1 pOlnt)
n=

Finally, we use the facts

IEZHNqII [Z”] = dn, ]EZH"’qn [lel] = b2 + (]EZann [Z”])z (1 pOint)
to arrive at

N 1 N T ‘
Z ( (b* +ap)l0|l3 — 2a,,x,Tv) = 552 ((2(b2+arl lo]l3 - 2 AnXn - (I'point)



Problem 2. EM

Known:

« dataxy,..,xy € RP . N N T
* noisescaledg >0 Q(v) oc—F ((2(1724‘”'21)) lo]|3 — 2 (Z a,,x,l) ’0)

n=1 n=1

Unknown:
e Latentzy,..,zy ER
e Parameter v € R%

2.3 M-step: Find the maximizer of Q(v) by setting its gradient to 0. Express it in terms of x,, a,, and b?
(forn=1,...,N). (3 points)

Simply setting the gradient to zero gives
Model:

_1,2 N
P(z)xexp( -z )1 (Z(bz+a ) (Zanxn)z
p(x |z;v) o exp (- llx — zv13 )

Solving for v gives

o ZnNzl AnXn
= =K .
anl(bz + a%)

Rubrics: 2 points for the correct gradient and 1 point for the correct final answer.

Final note: in case you are wondering why this model is useful, it is in fact a greatly simplified version
of something called “probabilistic PCA”.



Problem 3. PCA

If F(xq, o) Xn) = X fi(X0),

then min, F = ); min f;

win (x A
(7‘/\/)&7()(% {Y'/)

:VV\)I;V\ VV\;'/VI 70(’9‘/)

3.1 Specifically, suppose we have a dataset xy,...,xy € RP with zero mean, and we would like to com-
press it into a one-dimensional dataset c1,...,cy € R. To reconstruct the dataset (approximately), we
also keep a direction vector v € RP with umt norm (ie. |[v|2 = 1) so that the reconstructed dataset is
C1V,...,CNV € RP.

The way we find ¢y,...,cy and v is to minimize the reconstruction error in terms of the squared L2

distance, that is, we solve ‘
arg min E [1%n — c,,v||§.7 (1)

LN Vi|V]2=1 n=

Prove that the solution of (1) is exacﬂyt/he following

1{ cn = x}vforeachn=1,...,N; (3 points)
- - - ) (N ; .
2) v is the first principal component of the dataset, that is, arg max,,,—1 V' (X,=1XuXy | v. (3 points)

Hint: first prove 1) by fixing v, then prove 2) using the conclusion of 1).

For any fixed v (with unit norm), clearly we can optimize over each ¢, independently: (1 point)

arg min [[x, — cuv|[3 = argmin (3[|v[3 — (2xFv)en + [xul3)

Cn Cn

= arg min (C,Z, - (ZX?;V)C,,) (Iv]3 =1)
— o2

= arg min (c,, — Xy v) (1 point)

= xIv. (1 point)

Next, plugging ¢, = x] v back into the objective, we see that v is the solution of

N N

argmin ) [|x, — (xIv)v|3 = arg min ) (|| A3 —2(xkv)? + (xIv)ﬂ%) (1 point)
vi||vlp=1 n=1 vi||v]p=1 n=1
N

=argmin ) (—(xgv)2> (|[xn|3 is irrelevant and ||v||3 = 1, 1 point)

vi|v|,=1 n=1 — —_—

falar )T

=argmin — E vix,xlv (V'")(’f
vi||v|=1 n=1

N
= argmax v! (E x,,x,f) V. (1 point)
n=1

vi[v[2=1



Problem 3. PCA

3.2 Next, you are asked to generalize the same idea to an arbitrary compression dimension|p < D/| Specifi-
cally, we would like to compress the same zero-mean dataset into a p-dimensional dataset c7,...,cy € RP.
To reconstruct the dataset (approximately), we also keep p|orthogonal|direction vectors v,...,v, € RP
with[unit norm| For notational convenience, we stack these vectors together as a matrix V € RP*? whose
j-th column is v;.

1) Write down the reconstructed dataset using cy,...,cy and V (note: this is a set of points in RP). Then
write down the analogue of (1), that is, the optimization problem (with variables ¢4, ..., ¢y and V) that
minimizes the reconstruction error in terms of the squared L2 distance| Make sure to include the correct
constraints in this optimization problem. No reasoning needed. (3 points)

The reconstructed dataset is Vcy, ..., Vey € RP. Thus the optimization problem is
.

Reconstruct X, = ¢ V1 + -+ CppVp = Vey N
- 2
arg min Y Ixn — Veullz,

C1,...,CNE]RP n=1

VERDP*P: vIv=l
I/\J

where I is the p x p identity matrix.



Problem 3. PCA

3.2. 2) Find the optimal solution of ¢y, ..., ¢y while fixing V.
Similarly, the optimization can be done independently for each c;:
argmin ||x, — Ve, |3 = arg min <||xn||% —2x, Ve, + CIVTVCH)
Cy Cn

= arg min <c;cn — ZXIVcn) .
Cn

For the last step, simply setting the gradient 2¢;, — 2V 'x, to 0 gives the solution ¢, = V'x,.

———

Rubrics: The breakdown of points is only for reference.



Problem 3. PCA °*”?

V = [Ul vp]
Coljisv; € RP*!

Plug the solution of the previous question into the optimization problem and conclude that the optimal

solution of V is (5 points)
4 - N -
Y Z V] Z X”X” V] .
VeRPxp: vViv=l j=1 n=1

argmax

(This means that vy, ..., v, are exactly the top p eigenvectors of YN | x,x, , that is, the top p principal
components. You do not need to prove this fact though.)

After plugging ¢, = V' x,, the problem becomes

[ —
N N
argmin ) [|xy — VV'x,|3 = argmin Z (||x,,||% —2x, VV ' x,, + x,TVVTVVTx,,) (1 point)
V:Viv=l n=1 V:VIv=l n=
N
= argmin Z (—ZXIVVTX,, + xTVVTx,,)
V vViv=l n=1

(|[xx |3 is irrelevant and V'V = I, 1 point)
-

\/ = arg max x,TVVTx,, (1 point)
T — % V‘\er V:%/TV:I n;l( ) P
\/ \/ T oxu Y _ ST (T .
[ 1 = arg max Z X, ZVJ'V/' Xp (1 point)
\/| V:VIv=l n=1 j=1 '
\ P N
VLR - e £ 4 (1) ()
V, ) V., . gl V:VTV=1 n=1j=1
Vo N P .
{ : ° = ; n n‘ ]
Cock woti lfp) o L (/) (e
= arg max i (v (Z XX ”> ) : (1 point)
V:Viv=I j=1



