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Problem 1. Clustering

a) What are the possible outcomes of greedy initialization? Explain briefly.

b) What are the final outputs of K-means under this initialization strategy? Describe the 
location of centers and the assignments of each point, and explain briefly.

c) What is the final value for the K-means objective in this case?

Consider running K-means with 𝐾 = 2 on the following dataset:



Problem 1. Clustering

a) What are the possible outcomes of greedy initialization? Explain briefly.
{A, C} or {B, C}.
Reason: If 𝜇1 = 𝐴 or 𝐵, then 𝜇2 = 𝑥2𝑚+1 = 𝐶 since 𝑥2𝑚+1 is the (only) farthest point 
from both 𝐴 and 𝐵. If 𝜇1 = 𝐶, then 𝜇2 ∈ {𝐴, 𝐵}.

b) What are the final outputs of K-means under this initialization strategy? Describe the 
location of centers and the assignments of each point, and explain briefly.

c) What is the final value for the K-means objective in this case?

Consider running K-means with 𝐾 = 2 on the following dataset:



Problem 1. Clustering

a) What are the possible outcomes of greedy initialization? Explain briefly.
{A, C} or {B, C}.
Reason: If 𝜇1 = 𝐴 or 𝐵, then 𝜇2 = 𝑥2𝑚+1 = 𝐶 since 𝑥2𝑚+1 is the (only) farthest point 
from both 𝐴 and 𝐵. If 𝜇1 = 𝐶, then 𝜇2 ∈ {𝐴, 𝐵}.

b) What are the final outputs of K-means under this initialization strategy? Describe the 
location of centers and the assignments of each point, and explain briefly.

Final centers: {C, D}     
Assignments: Only 𝑥2𝑚+1 assigned to 𝐶; all others assigned to 𝐷
Reason: 
• Suppose the init. centers are {𝐴, 𝐶}. At the first iter., all points at 𝐴 and 𝐵 will be 

assigned to the same cluster, while 𝑥2𝑚+1 will be assigned to the other. 
• By averaging the points in each cluster, we obtain new centers D and C.
• By symmetry, the same holds when the init. centers are {B, C}

Consider running K-means with 𝐾 = 2 on the following dataset:
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Problem 1. Clustering

a) What are the possible outcomes of greedy initialization? Explain briefly.
{A, C} or {B, C}. Reason: (previous page)

b) What are the final outputs of K-means under this initialization strategy? Describe the 
location of centers and the assignments of each point, and explain briefly.

Final centers: {C, D}     
Assignments: Only 𝑥2𝑚+1 assigned to 𝐶; all others assigned to 𝐷
Reason: (previous page)

c) What is the final value for “sum of squared distances” objective in this case?
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Consider running K-means with 𝐾 = 2 on the following dataset:
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Problem 1. Clustering

1.2 Next consider running K-means++

a) What is the probability for each pair of the initial centers {𝐴, 𝐵}, {𝐴, 𝐶}, {𝐵, 𝐶}? 
Slightly abusing notation: let 𝐴i, 𝐵𝑖, 𝐶𝑖  denote the events that the 𝑖th center is 
initialized to 𝐴, 𝐵, or 𝐶 (respectively). Notice that

ℙ 𝐴1 =
𝑚

2𝑚 + 1 = ℙ 𝐵1 , ℙ 𝐶1 =
1

2𝑚 + 1
𝐵 − 𝐴 2

2 = 4, 𝐶 − 𝐴 2
2 = 10 = 𝐶 − 𝐵 2

2

Therefore, we have 

ℙ 𝐴2 𝐵1 = ℙ 𝐵2 𝐴1 =
4𝑚

4𝑚 + 10 =
2𝑚

2𝑚 + 5
⇒ ℙ init. to {A, B} = ℙ 𝐴1𝐵2 + ℙ 𝐴2𝐵1 = 2 ⋅

𝑚
2𝑚 + 1 ⋅

2𝑚
2𝑚 + 5

Moreover, 

ℙ 𝐶2 𝐴1 = ℙ 𝐶2 𝐵1 =
10

4𝑚 + 10 , ℙ 𝐴2 𝐶1 = ℙ 𝐵2 𝐶1 =
1
2

ℙ init. to {A, C} = ℙ init. to {B, C} =
1
2 ⋅

1
2𝑚 + 1 +

𝑚
2𝑚 + 1 ⋅

5
2𝑚 + 5

Consider running K-means with 𝐾 = 2 on the following dataset:



Problem 1. Clustering

1.2. b)

Consider running K-means with 𝐾 = 2 on the following dataset:



Problem 1. Clustering

1.2. C)

Consider running K-means with 𝐾 = 2 on the following dataset:

ℙ init. to {A, B} × 𝔼 Value|final centers = {𝐴, 𝐵}

ℙ init. to {A, C} or {B,C} × 𝔼 Value|final centers = {𝐷, 𝐶}
i



Problem 1. Clustering

1.3 Based on Q1.1 and Q1.2, explain briefly why K-means++ 
is better than greedy initialization in this dataset. 

For greedy, the objective value = 2𝑚 → ∞ as 𝑚 → ∞
For K-means++, the objective value is always bounded.
⇒ K-means++ is better
 

Consider running K-means with 𝐾 = 2 on the following dataset:



Problem 2. EM
Known:
• data 𝑥1, … , 𝑥𝑁 ∈ ℝ𝐷

• noise scale 𝜎 > 0

Unknown:
• Latent 𝑧1, … , 𝑧𝑁 ∈ ℝ  
• Parameter 𝑣 ∈ ℝ𝑑  

Model:
 𝑝 𝑧 ∝ exp − 1

2
𝑧2

 𝑝 𝑥 𝑧; 𝑣) ∝ exp − 1
2𝜎2 𝑥 − 𝑧𝑣 2

2 = exp − 1
2

𝑧2 + 𝑥𝑛 2
2

𝜎2 + 𝑣 2
2

𝜎2 𝑧2 − 2𝑥𝑛
𝑇𝑣

𝜎2 𝑧  
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2𝑏2 𝑧2 − 2𝑏2 ⋅ 𝑥𝑛

𝑇𝑣
𝜎2 𝑧  

= exp − 1
2𝑏2 𝑧 − 𝑎𝑛

2 + 𝑎𝑛
2

2𝑏2

∝ exp − 1
2𝑏2 𝑧 − 𝑎𝑛

2  

𝑎𝑛 =
𝑥𝑛

𝑇𝑣
𝜎2 + 𝑣 2

2 =
𝑥𝑛

𝑇𝑣
𝜎2 ⋅ 𝑏2

𝑏2 =
𝜎2

𝜎2 + 𝑣 2
2 = 1 +

𝑣 2
2

𝜎2

−1

𝑧2 − 2𝑎𝑛𝑧 = 𝑧 − 𝑎𝑛
2 − 𝑎𝑛

2
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• data 𝑥1, … , 𝑥𝑁 ∈ ℝ𝐷

• noise scale 𝜎 > 0

Unknown:
• Latent 𝑧1, … , 𝑧𝑁 ∈ ℝ  
• Parameter 𝑣 ∈ ℝ𝑑  

Model:
 𝑝 𝑧 ∝ exp − 1

2
𝑧2

 𝑝 𝑥 𝑧; 𝑣) ∝ exp − 1
2𝜎2 𝑥 − 𝑧𝑣 2

2 

𝑞𝑛 𝑧 = 𝑝 𝑧𝑛 = 𝑧| 𝑥𝑛; 𝑣  
 ∝ exp − 1

2𝑏2 𝑧 − 𝑎𝑛
2  

Var 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2 

Jchain
rule

dropped Ixall

o
adiment



Problem 2. EM
Known:
• data 𝑥1, … , 𝑥𝑁 ∈ ℝ𝐷

• noise scale 𝜎 > 0

Unknown:
• Latent 𝑧1, … , 𝑧𝑁 ∈ ℝ  
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2
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2 
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Problem 3. PCA

If 𝐹 𝑥1, … , 𝑥𝑛 = σ𝑖 𝑓𝑖(𝑥𝑖),
then min𝑥1:𝑛 𝐹 = σ𝑖 min 𝑓𝑖  

MY xy
fixing

min infixy

w̅
n



Problem 3. PCA

Reconstruct ො𝑥𝑛 = 𝑐𝑛,1𝑣1 + ⋯ + 𝑐𝑛,𝑝𝑣𝑝 = 𝑉𝑐𝑛



Problem 3. PCA

3.2.



Problem 3. PCA 3.2.

𝑉 = 𝑣1  … 𝑣𝑝
Col 𝑗 is 𝑣𝑗 ∈ ℝ𝐷×1
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