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1 Multiple-choice Questions (30 points)

IMPORTANT: Select ALL answers that you think are correct. You get 0.5 point for selecting each correct
answer and similarly 0.5 point for not selecting each incorrect answer.

(1) Which of the following on machine learning is correct?

(A) Cross-validation is often used to tune the hyper-parameters of a machine learning algorithm.
(B) Overfitting refers to the phenomenon when the training error is low but the test error is high.
(C) One should prevent overfitting by using the test set during training.
(D) Logistic regression is an algorithm for regression tasks.

(2) Consider the following two-dimensional dataset with N = 7 training points of three classes (triangle,
square, and circle), and additionally one test point denoted by the letter T. Which of the following
configuration of the K-nearest neighbor algorithm will predict square for the test point?

(A) K = 1, L2 distance
(B) K = 3, L1 distance
(C) K = 3, L2 distance.
(D) K = 7, any distance.
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(3) Which of the following on linear regression is correct?

(A) The least square solution has a closed-form formula, even if L1 regularization is applied.
(B) The covariance matrix XTX is not invertible if the number of data points N is smaller than the
dimension D.
(C) When the covariance matrix XTX is not invertible, the Residual Sum of Squares (RSS) objective
has infinitely many minimizers.
(D) Linear regression is a parametric method.

(4) Perceptron algorithm is applying SGD with learning rate η = 1 to the Perceptron loss, and w∗ = 0
is clearly a minimizer of the Perceptron loss. Which of the following statements related to these two
facts is correct?

(A) Perceptron always converges to w∗ = 0.
(B) Perceptron converges to w∗ = 0 when it is initialized at 0.
(C) Perceptron does not converge to w∗ = 0 because the learning rate does not decrease over time.
(D) Perceptron does not converge to w∗ = 0 because SGD uses a stochastic gradient instead of the
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exact gradient.

(5) Which of the following statements is correct when running SGD to minimize a non-convex function?

(A) SGD with random initialization can still get stuck at saddle points.
(B) SGD with random initialization escapes all saddle points with high probability.
(C) As long as we run SGD long enough, it will find a local minimum.
(D) As long as we run SGD long enough, it will find a global minimum.

(6) Which of the following activation functions has a vanishing derivative when its input becomes too large
(either too positive or too negative)? You might find the plot below useful.

(A) ReLU: h(a) = max{a, 0}

(B) Leaky ReLU: h(a) =

{
a if a ≥ 0

0.2a else

(C) Sigmoid: h(a) = 1
1+e−a

(D) TahH: h(a) = ea−e−a

ea+e−a

(7) Which of the following about neural nets is correct?

(A) A fully-connected neural net with a million neurons can approximate any continuous function.
(B) Data augmentation is useful for preventing overfitting when training a nerual net.
(C) Momentum and adaptive learning rate are useful for speeding up the training of a neural net.
(D) One should keep running Backpropagation until the training error goes down to 0.

(8) Suppose that a convolution layer takes a 4× 6 image with 3 channels as input and outputs a 3× 4× 10
volume. Which of the following is a possible configuration of this layer?

(A) Ten 2× 3 filters with depth 10, stride 1, and no zero-padding.
(B) Ten 2× 2 filters with depth 3, stride 2, and 1 pixel of zero-padding.
(C) Ten 2× 2 filters with depth 3, stride 2, and 2 pixels of zero-padding.
(D) One 2× 3 filter with depth 10, stride 1, and no zero-padding.

(9) How many parameters do we need to learn for the following network structure? An 8 × 8 × 3 image
input, followed by a convolution layer with 8 filters of size 3× 3 (stride 1 and 1 pixel of zero-padding),
then another convolution layer with 4 filters of size 2× 2 (stride 2 and no zero-padding), and finally an
average pooling layer with a 2× 2 filter (stride 2 and no zero-padding). (Note: the depth of all filters
are not explicitly spelled out, and we assume no bias/intercept terms used.)

This content is protected and may not be shared, uploaded, or distributed. 3



(A) 144 (B) 344 (C) 348 (D) 360

(10) What is the final output dimension of the last question?

(A) 4× 4× 1 (B) 4× 4× 4 (C) 2× 2× 1 (D) 2× 2× 4

(11) Suppose that k1 and k2 are two kernel functions with ϕ1 : RD → RM and ϕ2 : RD → RM being
the corresponding feature maps. Which of the following is the corresponding feature map ϕ for the
product of k1 and k2 (which we know is also a kernel function)?

(A) ϕ(x) = ϕ1(x)ϕ2(x)
⊤ ∈ RM×M

(B) ϕ(x) = ϕ1(x)
⊤ϕ2(x) ∈ R

(C) ϕ(x) = (ϕ1(x),ϕ2(x)) ∈ R2M

(D) ϕ(x) = ϕ1(x) ◦ ϕ2(x) ∈ RM (element-wise product)

(12) Which of the following on SVM is correct? In case you need a reminder, the primal formulation of
SVM is minw,b,{ξn} C

∑
n ξn + 1

2∥w∥
2
2 subject to 1− yn(w

Tϕ(xn) + b) ≤ ξn and ξn ≥ 0 for all n, and
the dual formulation can be found in Problem 4.1.

(A) The larger the hyper-parameter C, the smaller the amount of L2 regularization.
(B) The larger the hyper-parameter C, the larger the amount of L2 regularization.
(C) To handle multiclass classification, one can use the one-versus-one reduction together with SVM.
(D) The α coefficients obtained by SVM satisfy

∑
n:yn=+1 αn =

∑
n:yn=−1 αn.

(13) Which of the following about decision trees is correct?

(A) Good interpretability is a key advantage of decision trees.
(B) Decision tree algorithms are usually implemented using recursion.
(C) Shannon entropy can be used to measure the uncertainty of a node when building a decision tree.
(D) Random forest is a random ensemble of decision trees.

(14) Consider a binary dataset with 50 positive examples and 50 negative examples. Decision stump
T1 splits this dataset into two children where the left one has 20 positive examples and 40 neg-
ative examples, while another decision stump T2 results in a left child with 25 positive examples
and 25 negative examples. Which of the following is correct? (Recall that entropy is defined as

H(P ) = −
∑C

k=1 P (Y = k) logP (Y = k).)

(A) The entropy of the left child of T1 is 1
3 log 3 +

2
3 log

3
2 .

(B) The entropy of the right child of T1 is 1
4 log 4 +

3
4 log

4
3 .

(C) The entropy of either child of T2 is 1
2 log 2 +

1
2 log 2.

(D) Based on conditional entropy, T1 is a better split than T2.
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(15) Which of the following about boosting is correct?

(A) Boosting is guaranteed to achieve zero training error.
(B) AdaBoost is often resistant to overfitting.
(C) AdaBoost never overfits.
(D) The idea of boosting is to repeatedly reweight the examples so that “difficult” ones get more
attention.
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2 Linear Regression with Huber Loss (16 points)

In the lecture, we discussed the pros and cons of using the squared loss ℓsq(r) = r2 versus the absolute loss
ℓabs(r) = |r| for a regression task, where the residual r is the different between a prediction and the true
outcome. To combine the advantages of ℓsq and ℓabs, one could use the Huber loss instead, defined as

ℓδ(r) =

{
1
2r

2, if |r| ≤ δ,

δ(|r| − 1
2δ), else,

for some parameter δ > 0. The intuition is that for a small residual (|r| ≤ δ), the Huber loss behaves the
same way as the squared loss, while for a large residual (|r| ≥ δ), the Huber loss behaves the same way as
the absolute loss.

2.1 Write down the derivative ℓ′δ(r) of ℓδ(r) with respect to r (okay to skip reasoning). (6 points)
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2.2 To apply Huber loss to linear regression for a training set (x1, y1), . . . , (xN , yN ) ∈ RD ×R, we consider
the following objective function

F (w) =
1

N

N∑
n=1

ℓδ(w
Txn − yn), (1)

and apply SGD to minimize it. Fill in the missing details in the following implementation of this idea.
No reasoning is required, but the stochastic gradient should be written down explicitly (instead of using a
generic form such as ℓ′δ). (6 points)

Algorithm 1: SGD for minimizing Eq. (1)

1 Input: A training set (x1, y1), . . . , (xN , yN ) ∈ RD × R, learning rate η > 0, and parameter δ > 0.

2 Initialization: w = 0 ∈ RD.
3 Repeat:

2.3 Suppose that you believe the dataset contains outliers. Would you use a large or a small value of δ
(explain briefly)? More generally, if you do not have any prior knowledge on the dataset, how would to
decide the value of δ? (4 points)
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3 Multiclass Logistic Regression and Kernel (16 points)

In the lecture, we discussed multiclass logistic regression, with the following (partial) implementation.

Algorithm 2: SGD for minimizing multiclass logistic loss

1 Input: A training set (x1, y1), . . . , (xN , yN ) ∈ RD × [C], learning rate η > 0.

2 Initialize W ∈ RC×D randomly.
3 Repeat:
4 Randomly pick an example (xn, yn).
5 Compute P(y = c | xn;W ) for each c ∈ [C] (using softmax):

6 Update the parameters: W ←W − η



P(y = 1 | xn;W )
...

P(y = yn | xn;W )− 1
...

P(y = C | xn;W )

xT
n .

3.1 Fill in the missing detail in Line 5 of Algorithm 2 (no reasoning required). You can use w⊤
1 , . . . ,w

⊤
C to

denote the rows of W . (4 points)
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3.2 Just like multiclass Perceptron in HW2, we once again see that the parameters w1, . . . ,wC computed

by Algorithm 2 are always linear combinations of the training points x1, . . . ,xN , that is, wc =
∑N

n=1 αc,nxn

for some coefficient αc,n. This means that one can kernelize the algorithm for any given kernel function
k(·, ·) (with a corresponding feature mapping ϕ).

Specifically, fill in the missing details in the repeat-loop of the algorithm below which maintains and
updates weights αc,n, ∀c ∈ [C], n ∈ [N ] such that wc =

∑N
n=1 αc,nϕ(xn) is always the same as what one

would get by running Algorithm 2 with xn replaced by ϕ(xn) for all n. No reasoning is required. Keep in
mind that in your solution ϕ(xn) should never appear. (8 points)

Algorithm 3: Kernelized Multiclass Logistic Regression

1 Input: A training set (x1, y1), . . . , (xN , yN ) ∈ RD × [C], learning rate η > 0, a kernel function k(·, ·).
2 Initialize: αc,n = 0 for all c ∈ [C] and n ∈ [N ].
3 Repeat:

3.3 After training with Algorithm 3, describe how you would make a prediction given a a new test point x.
(4 points)
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4 SVM (12 points)

Consider the following 2-dimensional dataset of 12 examples for a binary classification task, where positive
examples (i.e., with +1 label) are marked as blue dots and negative examples (i.e., with −1 label) are marked
as red crosses. The two features of each example are also shown above its label.
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4.1 When running SVM on this dataset with a polynomial kernel k(x,x′) = (x⊤x′)2 and parameter C =
+∞, it turns out that there are only 3 support vectors, highlighted by dash circles in the figure above. Based
on this information, simplify the following general SVM dual formulation by plugging in the actual values
of this dataset. (Please write down your reasoning.) (6 points)

max
α1,...,αN

N∑
n=1

αn −
1

2

N∑
m=1

N∑
n=1

ymynαmαnk(xm,xn)

s.t.
N∑

n=1

αnyn = 0 and αn ≥ 0, ∀ n
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4.2 Solve the dual formulation and obtain the α coefficients for the three support vectors. (Hint: the solu-
tions are fractional numbers.) (6 points)
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5 Backpropagation (26 points)

Consider the following mini convolutional neural net, where (x1, x2, x3) is the 3-dimensional input, followed
by a convolution layer with a filter (w1, w2), a ReLU activation layer, and finally a fully connected layer with
3 outputs that correspond to the scores of 3 classes.

x1
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a2
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More concretely, the computation is specified by

a1 = x1w1 + x2w2,

a2 = x2w1 + x3w2,

o1 = max{0, a1},
o2 = max{0, a2}, s1

s2
s3

 = V

(
o1
o2

)
, where V =

 v11 v21
v12 v22
v13 v23

 .

For an example (x, y) ∈ R3 × {1, 2, 3}, the cross-entropy loss of the CNN is ℓ = ln
(
1 +

∑
c̸=y e

sc−sy
)
,

which is a function of the parameters of the network: w1, w2, and V . In the following questions, you are
asked to calculate the derivative of ℓ with respect to some variable in terms of its derivative with respect to
some other variables, and you can (and should in some cases) express your final solutions in terms of other
neurons/parameters of the network, but not other derivatives that are not mentioned. You will
need to use the following chain rule discussed in the lecture:

• for a composite function f(g1(z), . . . , gd(z)), we have ∂f
∂z =

d∑
k=1

∂f
∂gk

∂gk
∂z .

In your solutions, please show the intermediate steps that apply this chain rule.
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5.1 During training, the update of the last fully-connected layer (that is, parameter V ) is similar to the
standard multiclass logistic regression, so we focus on the update of the first convolution layer (that is,
parameters w1 and w2). To this end, first write down ∂ℓ

∂w1
in terms of ∂ℓ

∂a1
and ∂ℓ

∂a2
. (3 points)

5.2 Next, write down ∂ℓ
∂a1

in terms of ∂ℓ
∂s1

, ∂ℓ
∂s2

, and ∂ℓ
∂s3

. (The derivative of the ReLU function is H(a) =
I[a > 0], which you can use directly in your answer.) (4 points)
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In the remaining questions, consider adding the Batch Normalization layer immediately after the convo-
lution layer, as shown in the picture below.
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More specifically, during one epoch of backpropagation, suppose that we sample a batch of M training

points and denote their corresponding outputs after the convolution layer as a
(1)
1 , a

(1)
2 , . . . , a

(M)
1 , a

(M)
2 . Then,

what the Batch Normalization layer does for the m-th training point in the batch is as follows, where we
ignore the subscript 1 or 2 since the operations are the same (and you should do the same as well in
your solution):

b(m) = a(m) − µ, where µ =
1

M

M∑
k=1

a(k), (shifted by the mean)

c(m) =
b(m)

σ
, where σ =

√√√√ 1

M

M∑
h=1

(b(h))2, (divided by the standard deviation)

d(m) = γc(m) + β. (another linear transformation)

Here, the last linear transformation step parameterized by two numbers γ and β (that are shared by all

training points in the batch, but different for c
(m)
1 , d

(m)
1 and c

(m)
2 , d

(m)
2 ) is to make sure that the network

can still represent the original architecture that has no batch normalization (if that happens to be the right
thing to do). To train this new architecture, we need to additionally figure out ∂ℓ

∂γ and ∂ℓ
∂β to update γ and

β, and also ∂ℓ
∂a(m) in order to update w1 and w2. Please do so following the steps below (which eventually

express all these derivatives in terms of ∂ℓ
∂d(m) ).
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5.3 Write down ∂ℓ
∂β in terms of ∂ℓ

∂d(m) for m = 1, . . . ,M . (3 points)

5.4 Write down ∂ℓ
∂γ in terms of ∂ℓ

∂d(m) for m = 1, . . . ,M . (3 points)
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5.5 For a fixed m ∈ [M ], write down ∂ℓ
∂c(m) in terms of ∂ℓ

∂d(m) . (2 points)

5.6 For a fixed m ∈ [M ], write down ∂ℓ
∂a(m) in terms of ∂ℓ

∂b(h) for h = 1, . . . ,M . (4 points)
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5.7 For a fixed m ∈ [M ], write down ∂ℓ
∂b(m) in terms of ∂ℓ

∂c(k) for k = 1, . . . ,M . (7 points)
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