Week 2

Discussion |




1. MULTIPLE-CHOICE QUESTIONS: One or more correct choice(s) for each ques-
tion.

1.1. Which one of these is a sign of overfitting?

a. Low training error, low test error
b. Low training error, high test error
c. High training error, low test error

d. High training error, high test error
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Credit: Overfitting and Underfitting (Kaggle)



https://www.kaggle.com/code/ryanholbrook/overfitting-and-underfitting

1.2. Which of the following can help prevent overfitting?

a. Using more training data
b. Training until you get the smallest training error

c. Including a regularization term in the loss function

d. All of the above
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1.3. Let X € RVXP be a data matrix with each row corresponding to the feature of an
example and y € RY be a vector of all the outcomes. The least square solution is
(XTX)~1XTy. Which of the following is the least square solution if we scale each data
point by a factor of 4 (i.e. the new dataset is 4X)?

a. 4(XTX)"1XTy

b. $(XTX) 'XTy

(XTX) ' XTy
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d. None of the above
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1.4. Consider the following two-dimensional dataset with N = 7 training points of three
classes (triangle, square, and circle), and additionally one test point denoted by the
diamond. Which of the following configuration of the K-nearest neighbor algorithm will

predict_triangle for the test point?

a. K =1, L2 distance

b. K = 3, L1 distance

c. K =3, L2 distance

d. K =7, any distance
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1.5. Which of the following on linear regression is correct?

a. The least square solution has a closed-form formula, even if L2 regularization is
applied.

b. The covariance matrix X' X is not invertible if and only if the number of data
points NV is smaller than the dimension D.

c. When the covariance matrix X ' X is not invertible, the Residual Sum of Squares
(RSS) objective has no minimizers.

d. Linear regression is a parametric method.
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b. The covariance matrix X' X is not invertible if and only if the number of data
points N is smaller than the dimension D. Evenif N > D. XTX can still be not

»

invertible , e.g., due to “collinearity

c. When the covariance matrix X ' X is not invertible, the Residual Sum of Squares
(RSS) objective ha @w inimizers. Infinitely many solutions

d. Linear regression is a parametric method.




2. Nearest Neighbor Classification
We mentioned that the Euclidean/L2 distance is often used as the default distance for nearest
neighbor classification. It is defined as

D

E(x,X) = |[x = X|l2 = | Y (za — z}))? (1)

d=1

In some applications such as information retrieval, the cosine distance is widely used too. It
is defined as
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where the L2 norm of x is defined as

C(X,X'):l_LX/ 1_M 2)

(3)

Show that, if data is normalized with unit L2 norm, that ihe train-
ing and test sets, changing the distance function from the Euclidean—distance to the cosine

distance will NOT affect the nearest neighbor classification results.
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3. Linear Regression

In the lectures, we have described the least mean square solution for linear regression as
w' = (XTX)' X"y

where X is the design matrix (N rows, D + 1 columns) and y is the N-dimensional column

vector of the true values in the training data D = {(x,,, yn)}_;.

Question 3.1 We mentioned a practical challenge for linear regression: when X7T X is not
invertible. Please use a concise mathematical statement (in one sentenme
the relationship between the training data X and the dimensionality of w when this scenario
happens. Then use this statement to explain why this scenario must happen when N < D+1.
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Question 3.1 We mentioned a practical challenge for linear regression: when X7T X is not
invertible. Please use a concise mathematical statement (in one sentence) to summarize
the relationship between the training data X and the dimensionality of w when this scenario
happens. Then use this statement to explain why this scenario must happen when N < D+1.

N<D+1>= rank()?T)?) <D
& XTX notinvertible
Why?
« XTXis(D+ 1) x (D + 1) matrix
* rank(X"X) = rank(X) < min{N,D + 1}
/\/\

In general, invertible & full rank



Question 3.2 In this problem we use the notation wg + w ' for the linear model, that is, Design matrix (without bias)

we do not append the constant feature 1 to z. In the lecture we saw that when D = 0, the Y
bias wy is simply the mean of the sample responses ;
X=|"% 7| erv®
R 1 :
Wy = NlN@/ =N zn:yn, (4) — Xl -
where 1y =[1,1,..., 1]T is an N-dimensional column vector whose entries are all ones. Now, Prediction " y
we would like you to generalize this to arbitrary D and arrive at a more general condition P; = xl-TW + wy y < X W’?" W, {
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3) solve the obtained equation and conclude that Eqn. (4) holds if = KS; - [ / y - X W= WOIXNH .

izx =0, Vd= (5)
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that is, each feature has zero mean.
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