Week 3 Practice

CSCI 567 Machine Learning Fall 2025

Instructor: Haipeng Luo

- 1. MULTIPLE-CHOICE QUESTIONS: One or more correct choice(s) for each question.
 - **1.1.** Which of the following surrogate losses is not an upper bound of the 0-1 loss?
 - (a) exponential loss: $\exp(-z)$
 - (b) hinge loss: $\max\{0, 1-z\}$
 - (c) perceptron loss: $\max\{0, -z\}$
 - (d) logistic loss: ln(1 + exp(-z))
 - **1.2.** The perceptron algorithm makes an update $w' \leftarrow w + \eta y_n x_n$ with $\eta = 1$ when wmisclassifies x_n . Using which of the following different values for η will make sure w'classifies x_n correctly?

(a)
$$\eta > \frac{y(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n})}{\|\mathbf{x}_{n}\|_{2}^{2}}$$
 (b) $\eta < \frac{-y(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n})}{\|\mathbf{x}_{n}\|_{2}^{2}+1}$ (c) $\eta < \frac{-y(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n})}{\|\mathbf{x}_{n}\|_{2}^{2}}$ (d) $\eta > \frac{-y(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n})}{\|\mathbf{x}_{n}\|_{2}^{2}}$

- **1.3.** Which of the following is true?
 - (a) Normalizing the output ${m w}$ of the perceptron algorithm so that $\|{m w}\|_2=1$ changes its test error.
 - (b) Normalizing the output ${m w}$ of the perceptron algorithm so that $\|{m w}\|_1=1$ changes its
 - (c) When the data is linearly separable, logistic loss (without regularization) does not admit a minimizer.
 - (d) Minimizing 0-1 loss is generally NP-hard.

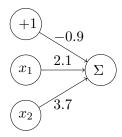
- **1.4.** Which of the following statement is correct for function $f(\mathbf{w}) = w_1 w_2$?
 - (a) (0,0) is the only stationary point.
 - (b) (0,0) is a local minimizer.
 - (c) (0,0) is a local maximizer.
 - (d) (0,0) is a saddle point.

2. Perceptron

Consider the following training dataset:

x	у
(0, 0)	-1
(0, 1)	-1
(1, 0)	-1
(1, 1)	1

and a perceptron with weights $(w_0, w_1, w_2) = \{-0.9, 2.1, 3.7\}$



2.1. What is the accuracy of the perceptron on the training data?

x	У	\hat{y}	$\mathbb{I}(y = \hat{y})$
(0, 0)	-1	sgn(-0.9) = -1	Y
(0, 1)	-1	sgn(-0.9 + 3.7) = 1	N
(1, 0)	-1	sgn(-0.9 + 2.1) = 1	N
(1, 1)	1	sgn(-0.9 + 2.1 + 3.7) = 1	Y

- **2.2.** Select $\mathbf{x} = (1,0)$ and y = -1. Use the perceptron training rule with $\eta = 1$ to train the perceptron for one iteration. What are the weights after this iteration?
- **2.3.** What is the accuracy of the perceptron on the training data after this iteration? Does the accuracy improve?

x	у	\hat{y}	$\mathbb{I}(y = \hat{y})$
(0, 0)	-1	sgn(-1.9) = -1	Y
(0, 1)	-1	sgn(-1.9 + 3.7) = 1	N
(1, 0)	-1	sgn(-1.9 + 1.1) = -1	Y
(1, 1)	1	sgn(-1.9 + 1.1 + 3.7) = 1	Y

3. Maximum Likelihood Estimation

A random sample set X_1, X_2, \ldots, X_n of size n is taken from a Poisson distribution with a mean of $\lambda > 0$. As a reminder, a Poisson distribution is a discrete probability distribution over the natural numbers, with the following probability mass function

$$P(X = x) = \frac{\lambda^x \cdot e^{-\lambda}}{x!}, \ \forall x \in \{0, 1, 2, \dots, \}$$

3.1. Find the log likelihood of the data; call it $l(\lambda)$. You may use any log base you want.

3.2. Find the maximum likelihood estimator for λ .