CSCI 567 Discussion Section
Week 3



Problem 1

1. MULTIPLE-CHOICE QUESTIONS: One or more correct choice(s) for each ques-
tion.

1.1. Which of the following surrogate losses is not an upper bound of the 0-1 loss?

(a) exponential loss: exp(—z)
(b) hinge loss: max{0,1 — z}
(c) perceptron loss: max{0, —z}

(d) logistic loss: In(1 + exp(—2z))
1.4. Which of the following statement is correct for function f(w) = wyws?

1.2. The perceptron algorithm makes an update w’ + w + ny,x, with n = 1 when w

a) (0,0) is the only stationary point.
misclassifies x,. Using which of the following different values for n will make sure w’ (2) (0,0)

) R (b) (0,0) is a local minimizer.
clas&ﬁesyz:;r;o;'rectly. e (c) (0,0) is a local maximizer.
(a) n > ”Tn”g"— (b) n < Ilwn||§+7; (d) (0,0) is a saddle point.

() n< gl (&) > g
n|lo Tnli2

1.3. Which of the following is true?

(a) Normalizing the output w of the perceptron algorithm so that ||w||, = 1 changes its
test error.
(b) Normalizing the output w of the perceptron algorithm so that ||w||; = 1 changes its
test error.

(c) When the data is linearly separable, logistic loss (without regularization) does not
admit a minimizer.
(d) Minimizing 0-1 loss is generally NP-hard.
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Problem 1.2

1.2. The perceptron algorithm makes an update w’ + w + ny,x, with n = 1 when w

misclassifies x,,. Using which of the following different values for n will make sure w’
classifies a,, correctly?
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1.2. The perceptron algorithm makes an update w’ + w + ny,x, with n = 1 when w

misclassifies x,,. Using which of the following different values for n will make sure w’
classifies a,, correctly?
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Problem 1.3

1.3. Which of the following is true?

(a) Normalizing the output w of the perceptron algorithm so that [|w||, = 1 changes its
test error.

(b) Normalizing the output w of the perceptron algorithm so that ||w||; = 1 changes its
test error.

(c) When the data is linearly separable, logistic loss (without regularization) does not
admit a minimizer.

(d) Minimizing 0-1 loss is generally NP-hard.
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Ans: ¢, d. For c, note that when the data is separable, one can find w such that
yan.’Bn > 0 for all n. Scaling this w up will always lead to smaller logistic loss
> In(1+ exp(—ypw'ax,)) and thus the function does not admit a minimizer.



Problem 1.4

1.4. Which of the following statement is correct for function f(w) = wiws?
(a) (0,0) is the only stationary point.
(b) (0,0) is a local minimizer.
(c¢) (0,0) is a local maximizer.
(d) (0,0) is a saddle point.
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1.4. Which of the following statement is correct for function f(w) = wiwsy?

(a) (0,0) is the only stationary point.
(b) (0,0) 1s a local minimizer.

(¢) (0,0) is a local maximizer.

(d) (0,0) is a saddle point.

The gradient of f(w) is:
Vf(w) = (lu,bf) = (8) = w; =wy =0
Case 1: Consider w, = —u;
f(w) = —wi < 0= £((0,0))

(0,0) is not a local minimizer.

Case 2: Consider wy, = wy

flw) = w? > 0= £((0,0))

(0,0) is not a local maximizer.




Problem 2

2. Perceptron
Consider the following training dataset:
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2.2. Select x = (1,0) and y = —1. Use the perceptron training rule with n = 1 to train the

perceptron for one iteration. What are the weights after this iteration?
and a perceptron with weights (wg, w1, ws) = {—0.9,2.1,3.7}

2.3. What is the accuracy of the perceptron on the training data after this iteration? Does
the accuracy improve?

2.1. What is the accuracy of the perceptron on the training data?
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2. Perceptron
Consider the following training dataset:

X Yy
0, 0) | -1
(0,1) | -1
(1,0) | -1
(1,1) | 1

and a perceptron with weights (wg, w1, w2) = {-0.9,2.1,3.7}

2.1. What is the accuracy of the perceptron on the training data?

X J I(y =9)
(0, 0) sgn(—0.9) = —1 Y
(0, 1) sgn(—0.9+3.7) =1 N
(1, 0) sgn(—0.9+2.1) =1 N
(1, 1) sgn(—0.9+4+2.1+3.7) =1 Y
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2. Perceptron
Consider the following training dataset:

X |y
(0,0) | -1
(0,1) | -1
(1,0) | -1
(1,1) | 1

and a perceptron with weights (wq, w1, w2) = {—0.9,2.1,3.7}

2.2. Select x = (1,0) and y = —1. Use the perceptron training rule with n = 1 to train the
perceptron for one iteration. What are the weights after this iteration?
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2. Perceptron
Consider the following training dataset:

X y
(0, 0) | -1
(0, 1) | -1 . .. . . A
(1,0) | 1 For the given x = (1,0) the classifier makes a mistake (7 = 1). We need to
(1,1) | 1 update the weights following the perceptron rule.
and a perceptron with weights (wq, w1, w2) = {-0.9,2.1,3.7} —0.9 1 —1.9
weewtngyx=| 21 | -[1]) =] 11

3.7 0 3.7

2.2. Select x = (1,0) and y = —1. Use the perceptron training rule with n = 1 to train the
perceptron for one iteration. What are the weights after this iteration?
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2. Perceptron
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and a perceptron with weights (wq, w1, w2) = {—0.9,2.1,3.7}

2.3. What is the accuracy of the perceptron on the training data after this iteration? Does
the accuracy improve?
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2. Perceptron
Consider the following training dataset:

X Yy
0, 0) | -1
(0,1) | -1
(1,0) | -1
(1,1) | 1

and a perceptron with weights (wg, w1, w2) = {-0.9,2.1,3.7}

2.3. What is the accuracy of the perceptron on the training data after this iteration? Does
the accuracy improve?

X 0 [(y =9)
(0, 0) sgn(—1.9) = —1 Y
(0, 1) sgn(—1.9+3.7) =1 N
(1, 0) sgn(—1.9+1.1) = —1 Y
(1, 1) sgn(—1.9+ 1.1+ 3.7) =1 Y




Problem 3

3. Maximum Likelihood Estimation

A random sample set X1, Xo,...,X,, of size n is taken from a Poisson distribution with a
mean of A > 0. As a reminder, a Poisson distribution is a discrete probability distribution
over the natural numbers, with the following probability mass function

Ax.e—A

2!

P(X = x) , Ve €{0,1,2,...,}

3.1. Find the log likelihood of the data; call it [(\). You may use any log base you want.

3.2. Find the maximum likelihood estimator for .
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3. Maximum Likelihood Estimation

A random sample set X1, Xo,...,X,, of size n is taken from a Poisson distribution with a
mean of A > 0. As a reminder, a Poisson distribution is a discrete probability distribution
over the natural numbers, with the following probability mass function

A$°€_A

2!

P(X = x) , Vr € {0,1,2,...,} n

Likelihood of the data = | [ P(X = =)
=1

3.1. Find the log likelihood of the data; call it [(A). You may use any log base you want.

log-likelihood = £(\) = log | | P(X = =)
i=1

=) zilog A — X — log(z:!)

1=1

= log A f: Ti — N\ — i: log(x;!)
i=1 i=1
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3. Maximum Likelihood Estimation
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3. Maximum Likelihood Estimation

A random sample set X1, Xo,...,X,, of size n is taken from a Poisson distribution with a
mean of A > 0. As a reminder, a Poisson distribution is a discrete probability distribution
over the natural numbers, with the following probability mass function

Aw.e—A
P(X =x) = ' , Ve e€{0,1,2,...,}
X Maximize £()\)
3.2. Find the maximum likelihood estimator for A. F) =0 - Z“’ _—
=0=> ) zi-n=
=1
=\ = E‘Zl o < average

n
r; < 0= A 1s a maximizer
1

"y 1



