Week 3 Practice

CSCI 567 Machine Learning

Fall 2025

Instructor: Haipeng Luo

- 1. MULTIPLE-CHOICE QUESTIONS: One or more correct choice(s) for each question.
 - **1.1.** Which of the following surrogate losses is not an upper bound of the 0-1 loss?
 - (a) exponential loss: $\exp(-z)$
 - (b) hinge loss: $\max\{0, 1-z\}$
 - (c) perceptron loss: $\max\{0, -z\}$
 - (d) logistic loss: $\ln(1 + \exp(-z))$

Ans: c, d. Note that here the logistic loss is using e as the base, instead of 2.

- **1.2.** The perceptron algorithm makes an update $w' \leftarrow w + \eta y_n x_n$ with $\eta = 1$ when wmisclassifies x_n . Using which of the following different values for η will make sure w'classifies \boldsymbol{x}_n correctly?

 - (a) $\eta > \frac{y(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n})}{\|\mathbf{x}_{n}\|_{2}^{2}}$ (b) $\eta < \frac{-y(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n})}{\|\mathbf{x}_{n}\|_{2}^{2}+1}$ (c) $\eta < \frac{-y(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n})}{\|\mathbf{x}_{n}\|_{2}^{2}}$ (d) $\eta > \frac{-y(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n})}{\|\mathbf{x}_{n}\|_{2}^{2}}$

Ans: d. Solve $y_n \mathbf{w'}^T \mathbf{x}_n = y_n (\mathbf{w} + \eta y_n \mathbf{x}_n)^T \mathbf{x}_n > 0$ for η .

- **1.3.** Which of the following is true?
 - (a) Normalizing the output ${\boldsymbol w}$ of the perceptron algorithm so that $\|{\boldsymbol w}\|_2=1$ changes its test error.
 - (b) Normalizing the output \boldsymbol{w} of the perceptron algorithm so that $\|\boldsymbol{w}\|_1 = 1$ changes its

1

test error.

- (c) When the data is linearly separable, logistic loss (without regularization) does not admit a minimizer.
- (d) Minimizing 0-1 loss is generally NP-hard.

Ans: c, d. For c, note that when the data is separable, one can find \boldsymbol{w} such that $y_n \boldsymbol{w}^T \boldsymbol{x}_n \geq 0$ for all n. Scaling this \boldsymbol{w} up will always lead to smaller logistic loss $\sum_{n=1} \ln(1 + \exp(-y_n \boldsymbol{w}^T \boldsymbol{x}_n))$ and thus the function does not admit a minimizer.

- **1.4.** Which of the following statement is correct for function $f(\mathbf{w}) = w_1 w_2$?
 - (a) (0,0) is the only stationary point.
 - (b) (0,0) is a local minimizer.
 - (c) (0,0) is a local maximizer.
 - (d) (0,0) is a saddle point.

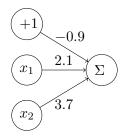
Ans: a, d. The gradient is $\nabla f(\boldsymbol{w}) = (w_2, w_1)$, so the only stationary point is (0,0). To see why it is neither a local minimizer nor a local maximizer, simply consider the direction $w_1 = -w_2$ and $w_1 = w_2$ respectively.

2. Perceptron

Consider the following training dataset:

x	У
(0, 0)	-1
(0, 1)	-1
(1, 0)	-1
(1, 1)	1

and a perceptron with weights $(w_0, w_1, w_2) = \{-0.9, 2.1, 3.7\}$



2.1. What is the accuracy of the perceptron on the training data?

SOLUTION:

x	у	\hat{y}	$\mathbb{I}(y = \hat{y})$
(0, 0)	-1	sgn(-0.9) = -1	Y
(0, 1)	-1	sgn(-0.9 + 3.7) = 1	N
(1, 0)	-1	sgn(-0.9 + 2.1) = 1	N
(1, 1)	1	sgn(-0.9 + 2.1 + 3.7) = 1	Y

3

Out of four predictions, two are correct. The accuracy is hence 50%.

2.2. Select $\mathbf{x} = (1,0)$ and y = -1. Use the perceptron training rule with $\eta = 1$ to train the perceptron for one iteration. What are the weights after this iteration?

For the given $\mathbf{x} = (1,0)$ the classifier makes a mistake $(\hat{y} = 1)$. We need to update the weights following the perceptron rule the new weights are given by

$$w_{k+1} \leftarrow w_k + \eta y \mathbf{x}$$

 $\leftarrow (-0.9, 2.1, 3.7) + (1)(-1)(1, 1, 0)$
 $\leftarrow (-1.9, 1.1, 3.7)$

2.3. What is the accuracy of the perceptron on the training data after this iteration? Does the accuracy improve?

SOLUTION:

x	у	\hat{y}	$\mathbb{I}(y = \hat{y})$
(0, 0)	-1	sgn(-1.9) = -1	Y
(0, 1)	-1	sgn(-1.9 + 3.7) = 1	N
(1, 0)	-1	sgn(-1.9 + 1.1) = -1	Y
(1, 1)	1	sgn(-1.9 + 1.1 + 3.7) = 1	Y

With the new weights, three out of four are correct, hence accuracy increased to 75%.

3. Maximum Likelihood Estimation

A random sample set X_1, X_2, \ldots, X_n of size n is taken from a Poisson distribution with a mean of $\lambda > 0$. As a reminder, a Poisson distribution is a discrete probability distribution over the natural numbers, with the following probability mass function

$$P(X = x) = \frac{\lambda^x \cdot e^{-\lambda}}{x!}, \ \forall x \in \{0, 1, 2, \dots, \}$$

3.1. Find the log likelihood of the data; call it $l(\lambda)$. You may use any log base you want.

$$l(\lambda) = \log \prod_{i} P(X = X_{i})$$

$$= \log \prod_{i} \frac{\lambda^{X_{i}} e^{-\lambda}}{X_{i}!}$$

$$= \sum_{i=1}^{n} [X_{i} \log \lambda - \lambda - \log(X_{i}!)]$$

$$= \log \lambda \cdot \sum_{i=1}^{n} X_{i} - n\lambda - \sum_{i=1}^{n} \log(X_{i}!)$$

3.2. Find the maximum likelihood estimator for λ .

$$l'(\lambda) = \frac{1}{\lambda} \sum_{i=1}^{n} X_i - n = 0$$
$$\lambda = \frac{1}{n} \sum_{i=1}^{n} X_i$$

So our maximum likelihood estimator $\hat{\lambda}$ is the average value.