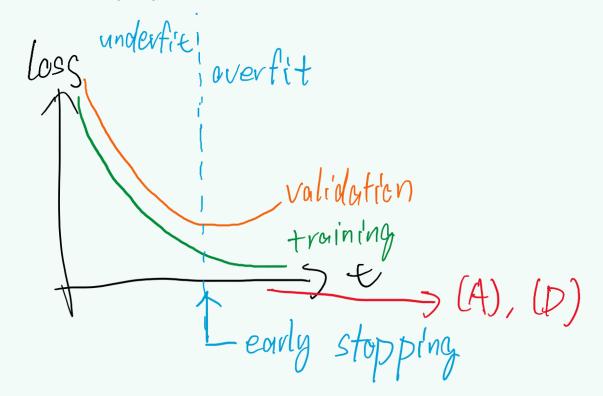
CSCI 567 discussion: Neural Nets

Yue Wu wu.yue@usc.edu

Today

- Practice: 5 multiple choice questions
- Neural nets, CNN

• Demonstration of back propagation



- 1.1. Which of the following is/are **true** about neural nets?
 - (A) A neural net with one hidden layer and a fixed number of neurons can approximate any continuous function.
 - (B) A fully connected feedforward neural net without nonlinear activation functions is the same as a linear model.
 - (C) Dropping random neurons in each iteration of Backpropagation helps prevent over-
 - (D) A max-pooling layer with a 2×2 filter has 4 parameters to be learned.
 - (A) universal approx. thm. : # neuron > 0. X
 - (B) Feed forward:

If no nonlinear: > W=Wy...w,

y=WnWn-1...W, X one linear layer

- **1.2.** Which of the following can help prevent overfitting in neural nets?
 - (A) Retraining on the same data many times. **BC**
 - (B) Using a validation set for early stopping.
 - (C) Data augmentation.
 - (D) Training until you get the smallest training error.

- **1.3.** Suppose a convolution layer takes an 8×8 image with 3 channels as input and outputs a $4 \times 4 \times 8$ volume. Which of the following is a possible configuration of this layer?
 - (A) One 4×4 filter with depth 8, stride 2, 1 pixel of zero-padding.
 - (B) Three 4×4 filters with depth 8, stride 2, no zero-padding.
 - (C) Eight 4×4 filters with depth 3, stride 2, 1 pixel of zero-padding.
 - (D) Eight 4×4 filters with depth 3, stride 1, 1 pixel of zero-padding.

$$8 \times 8 \times 3$$

$$depth=3 \quad channels = 8$$

$$8 \times 8$$

$$Pad=1 \quad (a \times 10) \quad stride=2 \quad 4 \times 4$$

$$W=11=4$$

1.4. How many parameters do we need to learn for the following network structure? An $32 \times 32 \times 3$ image input, followed by a convolution layer with 3 filters of size 3×3 (stride 1, 1 pixel of zero-padding), then another convolution layer with 4 filters of size 2×2 (stride 2, no zero-padding), and finally a max-pooling layer with a 2×2 filter (stride 1, no zero-padding). (Note: the depth of all filters are not explicitly spelled out, and we assume no bias/intercept terms are used.)

(A) 43

(B) 97

(C) 129

(D) 145

convolution layer: # parameter doesn't depend on image size

C. $3 \times (3 \times 3 \times 3) + 4 \times (2 \times 2 \times 3)$

- 1.4. How many parameters do we need to learn for the following network structure? An $32 \times 32 \times 3$ image input, followed by a convolution layer with 3 filters of size 3×3 (stride 1, 1 pixel of zero-padding), then another convolution layer with 4 filters of size 2×2 (stride 2, no zero-padding), and finally a max-pooling layer with a 2×2 filter (stride 1, no zero-padding). (Note: the depth of all filters are not explicitly spelled out, and we assume no bias/intercept terms are used.) 37X3J
- **1.5.** What is the final output dimension of the last question?

(A)
$$15 \times 15 \times 1$$

(B)
$$16 \times 16 \times 4$$

(C)
$$32 \times 32 \times 1$$

(D)
$$15 \times 15 \times 4$$

common filter size:

• amount of zero padding
$$P$$
 (for one side)

• Divisor Ve Output: a volume of size $W_2 \times H_2 \times D_2$ where

• $W_2 = (W_1 + 2P - F)/S + 1$

• $H_2 = (H_1 + 2P - F)/S + 1$

• $D_2 = K$

#parameters: $(F \times F \times D_1 + 1) \times K$ weights

Summary for convolution layer **Input**: a volume of size $W_1 \times H_1 \times D_1$ Hyperparameters:

Convolutional neural networks (ConvNets/CNNs) Architecture

- K filters of size $F \times F$
- \bullet stride S
- amount of zero padding P (for one side)

- $W_2 = (W_1 + 2P F)/S + 1$
- $H_2 = (H_1 + 2P F)/S + 1$
- $D_2 = K$

#parameters: $(F \times F \times D_1 + 1) \times K$ weights

COMV
$$W=h=3$$
, $S=1$, $P=($
 $\Rightarrow 32+2-3+1=32$

COMV $w=h=2$, $S=2$, $P=0$
 $\Rightarrow 32+0-2+1=66$

max pad $w=h=2$ $S=1$
 $\Rightarrow 16+0-2+1=15$.

Back propagation demo

• https://xnought.github.io/backprop-explainer/

