CSCI 567 Discussion Session



1 Clustering

Consider the following dataset. All points are unlabeled and part of the same set. The triangles

are used to distinguish two points later.

Suppose that we run the K-means algorithm on this dataset with K = 2 and the two points
indicated by triangles as the initial centers. When the algorithm converges, there will be two clearly
separated clusters. Directly on Figure 1, draw a straight line that separates these two clusters, as

well as the centers of these two clusters.

Figure 1: An unlabeled dataset
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is simply to assign each x,, to the closest p, i.e.

* Two initial centers: c1 (1.5, 1.5) and c2 (6.5,0.5).
* K-means algorithm:
1. Assign each point to the closest cluster. Tnk =
2. Updates the center based on the assignment. simply to average the points of each cluster (hence the name)
3. Return to step 1 if not converged.

1, if k=argmin, |z, — ﬁf:”%

0, else

py = Zrz:’y,a;i;:] Tn . Zn TnkLn
= =
Hﬂ s Ynk = ]-}| zﬂ Tnk

K-means: 10/24 lecture slides page 13-17.



1 Clustering

Consider the following dataset. All points are unlabeled and part of the same set. The triangles
are used to distinguish two points later.

Suppose that we run the K-means algorithm on this dataset with K = 2 and the two points
indicated by triangles as the initial centers. When the algorithm converges, there will be two clearly
separated clusters. Directly on Figure 1, draw a straight line that separates these two clusters, as
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Consider the following dataset. All points are unlabeled and part of the same set. The triangles
are used to distinguish two points later.

Suppose that we run the K-means algorithm on this dataset with K = 2 and the two points
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1 Clustering

Consider the following dataset. All points are unlabeled and part of the same set. The triangles

are used to distinguish two points later.

Suppose that we run the K-means algorithm on this dataset with K = 2 and the two points
indicated by triangles as the initial centers. When the algorithm converges, there will be two clearly
separated clusters. Directly on Figure 1, draw a straight line that separates these two clusters, as

well as the centers of these two clusters.
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* Two new centers: c1(2,1) andc2 (5.5,1).

* Check for convergence:
* Check ifthere is any change of assighments of points.
* There is none.

There are infinitely many choices for the separating line. Any vertical line between 3.5 and 4.5

would work for example.
The two centers are (2. 1) and (5.5, 1).



Next, find two other different sets of initialize centers that will converge to the exact same result

if we apply K-means. Please follow the instructions below:

e the initialize centers have to be points of the dataset;

e directly on Figure 2, use two triangles to indicate the first set, and two squares to indicate

the second;
e these two sets of points can overlap with each other, but of course cannot be the same;

e similarly these sets can overlap with the initialization of Figure 1 but cannot be the same;

e do not pick those that lead to ambiguous results due to different ways of breaking ties.

Figure 2: The same unlabeled dataset
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Next, find two other different sets of initialize centers that will converge to the exact same result
if we apply K-means. Please follow the instructions below:

Figure 2: The same unlabeled dataset
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There are many choices, for example, (2.5,0.5) and (5.5,1.5), (2.5,1.5) and (5.5,0.5), (2.5.1.5)
and (5.5,1.5), (1.5,0.5) and (6.5,0.5), and so on. Note that answers like (1.5.0.5) and (5.5,0.5) are

not acceptable due to the ambiguity from tie-breaking.



Next, find two other different sets of initialize centers that will converge to the exact same result
if we apply K-means. Please follow the instructions below:

Figure 2: The same unlabeled dataset
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Two initial centers: c1 (2.5, 0.5) and c2 (5.5,1.5).
Add points to cluster 1. * Add points to cluster 2.
Average x-coordinate: 2. * Average x-coordinate: 5.5.
Average y-coordinate: 1. * Average y-coordinate: 1.

New center: (2,1). * New center: (5.5,1).



Next, find two other different sets of initialize centers that will converge to the exact same result
if we apply K-means. Please follow the instructions below:

Figure 2: The same unlabeled dataset

| |

1.5 . ° .

1} * .
0.5 . A .

0 1 2 3 4 5 O 7

Two initial centers: c1 (2.5, 1.5) and c2 (5.5,0.5).
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New center: (2,1). * New center: (5.5,1).



2 DMLE, Mixtures, and EM

In this problem you will practice MLE and EM.

(a) Let X € R be a random variable uniformly-distributed on some unknown interval (0, ], where

# > 0. More specifically, the density function is

L ifx
P(}f:iﬂ;g): 6 alf.’I. E([}_-g]r (1)
0 , otherwise,
- %1[0 <x<H, (2)

where 1[-] is an indicator function that outputs 1 when the input condition is true, and 0
otherwise. Suppose that x1.x9.....x N are 1.i.d. samples from this distribution. Write down
the likelihood of the observations and then find the maximum likelihood estimator (MLE).



2 DMLE, Mixtures, and EM

In this problem you will practice MLE and EM.

(a) Let X € R be a random variable uniformly-distributed on some unknown interval (0. #], where
# > 0. More specifically, the density function is

L i '

P(X —2:0)=17 , if = € (0.4)]. (1)
0 , otherwise,

- %1[{) <x <4, (2)

where 1[-] is an indicator function that outputs 1 when the input condition is true, and 0
otherwise. Suppose that x1.x9.....2 N are 1.i.d. samples from this distribution. Write down
the likelihood of the observations and then find the maximum likelihood estimator (MLE).

 \We know that the density function for “X=x” under 0 is:

1
P X =uxz:0) = El[{] < x <4,

 We observe data points *1.72;---.N | from this distribution.
* Sothe likelihood of seeing all these observations together is:

N
P(X = x,;60) * P(X = x;0) - % P(X = x,;6) = Pler.oon :60) = || Plan :0)
n=1
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In this problem you will practice MLE and EM.

(a) Let X € R be a random variable uniformly-distributed on some unknown interval (0, #], where
f > 0. More specifically, the density function is

L ifr e (0,0],

0 , otherwise,

P(X =xz:0) = { (1)
:%”Oéwgmg (2)

where 1[-] is an indicator function that outputs 1 when the input condition is true, and 0
otherwise. Suppose that r{,x9..... N are i.1.d. samples from this distribution. Write down
the likelihood of the observations and then find the maximum likelihood estimator (MLE).
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- I I I——> Why? Here is an example.
0 X1 X3 e \ ® X
Max xp

If the biggest value of xis < 0, (maxx,, < 6), theproductis1*1*...*1=1.
n
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2 MLE, Mixtures, and EM

In this problem you will practice MLE and EM.

(a) Let X € R be a random variable uniformly-distributed on some unknown interval (0, #], where
f > 0. More specifically, the density function is

1 1 - :

P(J&r — ,H) _ a 3 if a = (UH] (1)
0 , otherwise,

_ %1[0 <<, (2)

where 1[-] is an indicator function that outputs 1 when the input condition is true, and 0
otherwise. Suppose that r{,x9..... N are i.1.d. samples from this distribution. Write down
the likelihood of the observations and then find the maximum likelihood estimator (MLE).

* Therefore, the likelihood is:

N )
1
P(,E'l_ vy AT 1HJ = H P(J'n ,H) — ﬁl[ .?il'};‘rn E {')]] 1
n=1
* Tofind the MLE:
e If0 < maxx,, P(xq,..,xy;0) = 0.
n
° . — l —— >
If 0 > max X, P(xq,...,xy;0) = N maxx, 0
n

1, : : :
* onisa decreasing function of 6, given that N> 0.

Roughly it looks like this, the
* Sowehave fl, = maxu, ehYy
7L

shape ofe—lN dependson the value
Relevant materials: 10/24 slides page 35. of N.



(b) Now suppose that X is distributed according to a mixture of two uniform distributions: one
on interval (0,6f{] and the other on (0, 5], for some unknown #,f0y > 0. More specifically,
the density function is

where U is the uniform distribution defined as in Eq. (1) or Eq. (2), and wq, ws are mixture
weights such that

wi = 0.wg >0, and wy + w9y = 1.

Suppose that z1.x2.....2xn are 1.i.d. samples from this mixture of uniform distributions.
MLE does not admit a closed-form for this problem, and we will use the EM algorithm to
approximately find the MLE.

e First, the E-Step fixes a set of parameters 6,605, wi,ws and computes for each n the
posterior distribution v, = P(z, = k | x, ;01,02,w1,w9) of the latent variable z,,
where £ € {1,2} indicates which mixture component x, belongs to. Write down the
explicit form of this posterior distribution without using the proportional notation. Then
write down explicitly the expected complete log-likelihood using 7,1 (as a function of
the four parameters 61, fs, wyi,ws).



« Xis distributed according to a mixture of two uniform distributions with unknown #,6f > 0.
PX=x)=PX=zx,z=1)+P(X=uxz=2)
=Pz=1)PX=z|z=1)+P:z=2)P(X=z2|2=2)
=wU(X =2;01) +wU(X =z ;67)
w1 = 0,wo >0, and wy + wo = 1.
* Uisthe uniform distribution:
P(X =x:0) = %1[{) < x <4,
. Suppose that x1,r9,..., 25 are 1.1.d. samples from this mixture of uniform distributions.
* Use EM algorithm to approximately find the MLE.

First, the E-Step fixes a set of parameters 1,609, wi.ws and computes for each n the
posterior distribution v, = P(z, = k | x, ;01,02 wi,ws) of the latent variable z,,
where k € {1,2} indicates which mixture component x, belongs to.
* Write down the explicit form of this posterior distribution without using the proportional notation.
* write down explicitly the expected complete log-likelihood using Vnk

* We do not know which distribution x,, is from.

« E-step: Estimate how likely each data point x,, comes from each component. .. = P(z, = k | x, 101,02, w1, wo)
_ P(zy =k, xy; 01,02, Wy, w,) By Bayes’rule
P(xn)
P(zp, =k | xp 01,00, w1, w9) x Pz, =k, xy ;01,09 w1, ws) “is proportional to”

= Pz, =k ;01,02 w1, J;E)P( n | Zn = k101,09, w1,wa)

10/24 slides page 36



« Xis distributed according to a mixture of two uniform distributions with unknown #,6f > 0.
PX=x)=PX=zx,z=1)+P(X=uxz=2)
=P:z=1))P(X=z|z=1)+P:z=2)P(X =z |2=2)
=wU(X =2;01) +wU(X =z ;67)

w1 = 0,wo >0, and wy + wo = 1.
* Uis the uniform distribution:
1
P(X=x:0) = El[{] < x <4,

. Suppose that z1.x2..... 25 are 1.1.d. samples from this mixture of uniform distributions.
* Use EM algorithm to approximately find the MLE.

First, the E-Step fixes a set of parameters 1,609, wi.ws and computes for each n the

posterior distribution v, = P(z, = k | x, ;01,02 wi,ws) of the latent variable z,,

where k£ € {1.2} indicates which mixture component z, belongs to.
* Write down the explicit form of this posterior distribution without using the proportional notation.
* write down explicitly the expected complete log-likelihood using Vnk

From the problem definition:  P(z, = k) = wi, Pz, |z, = k)= — 1[0 < z,, < 6;].
= wU(X =@y, ;0k) Put in the definitions.

LJ.Jk .
= —110 < x, < ¥
0 [0 < a k)



« Xis distributed according to a mixture of two uniform distributions with unknown #,6f > 0.
PX=x)=PX=zx,z=1)+P(X=uxz=2)
=P:z=1))P(X=z|z=1)+P:z=2)P(X =z |2=2)
=wU(X =2;01) +wU(X =z ;67)

w1 = 0,wo >0, and wy + wo = 1.
* Uis the uniform distribution:
1
P(X =x:0) = El[{] < x <4,

. Suppose that z1.x2..... 25 are 1.1.d. samples from this mixture of uniform distributions.
* Use EM algorithm to approximately find the MLE.

First, the E-Step fixes a set of parameters 1,609, wi.ws and computes for each n the

posterior distribution v, = P(z, = k | x, ;01,02 wi,ws) of the latent variable z,,

where £ € {1,2} indicates which mixture component x, belongs to.
* Write down the explicit form of this posterior distribution without using the proportional notation.
* write down explicitly the expected complete log-likelihood using Vnk

P(Zn = k, Xn» 01, 02, W1, Wz) \/

= D We have shown that, P(z,, = k, x,,; 01,05, w1, Wy) = —k 0 < x5 < 0]
1 1
P(z,) = w19—1[0 <z, < O]+ wgg—l[U < xp < 6. Marginal likelihood.
1 2
Thus,
2EL[0 < @, < O]
Yok = Pz, =k |z 301, o, wi,wy) = - Vi € {1. 2}.

211[0 < 2y, < 03] + $21[0 < x, < O]



« Xis distributed according to a mixture of two uniform distributions with unknown #,6f > 0.
PX=x)=PX=zx,z=1)+P(X=uxz=2)
= P(z = )P(Y —r|z=1)4+P:z=2)P(X =z|z=2)
=wU(X =2;01) +wU(X =z ;67)
1 > 0,w9 >0, and wy + w9y = 1.
* U is the uniform distribution:
P(X =x:0) = l1[{] < x <4,
. Suppose that z1.x2...., 25 are 1i.d. Samples tmm this mixture of uniform distributions.
* Use EM algorithm to approximately find the MLE.

First, the E-Step fixes a set of parameters 1,609, wi.ws and computes for each n the
posterior distribution v, = P(z, = k | x, ;01,02 wi,ws) of the latent variable z,,
where k£ € {1.2} indicates which mixture component z, belongs to.
* Write down the explicit form of this posterior distribution without using the proportional notation.
* write down explicitly the expected complete log-likelihood using Vnk

and obtain Expectation of complete likelihood

9@) ZE MO [11]?3(:1371,2“ :9)]
n_l TB
. Co . . . In P(x,,.z, =k : 01,09, w1. w:
The expectation over the distribution of the latent variable z, / \ nPla 1,02, w1, 02)

(Q(01, 02, w1, wa) = Z Z Yk 111 P(.:'n. Zn =k 301,02, w1, wo) P(zy =k, xp; 01,02, w1, W) = :—?1[{) < xp < O]

D) B e In(ab) = Ina + Inb
T k T k

k



« Xis distributed according to a mixture of two uniform distributions with unknown #,6f > 0.
PX=x)=PX=zx,z=1)+P(X=uxz=2)
=P:z=1))P(X=z|z=1)+P:z=2)P(X =z |2=2)
=wlU(X =2;01) +wlU(X =2 ;60

w1 = 0,wo >0, and wy + wo = 1.
e Uisthe uniform distribution:

1
P(X=x:0) = El[{] < x <4,
. Suppose that z1.x2..... 25 are 1.1.d. samples from this mixture of uniform distributions.

* Use EM algorithm to approximately find the MLE.
e Next, derive the M-Step by maximizing the expected complete log-likelihood you derived

from the last problem over the four parameters. Hint: you will need to use the fact
Oln0=0.

o M-Step: update our guesses for 01, 02’ W1, Wy Step 2 (M-Step) update the model parameter via Maximization

Q(eljegjwl’wg} - sz}’”kmwk + ZZ%&& In (1[0 : g: - gk])
n__k n k .

* Solve for wy (10/24 lecture slides page 47 and 48)

To find wq,...,wk, solve

0t  argmax Q(6 ;0M)
g

N K
. Zn Tﬂﬁf
argmax E E Ynk In W WE = T
w
n=1k=1



« Xis distributed according to a mixture of two uniform distributions with unknown #,6f > 0.
PX=z)=PX=z,z=1)+PX=x2=2
:P(’z =1)P(X=zx|z2=1)+4P:=z=2)P X =x]|z=2)

=wU(X =2 ;6) —1—%:2[.!?(}{ = ;6

o

wi > 0,we >0, and wy +wo = 1.
* U is the uniform distribution:
PX =2:0) = %1[0 e <
. Suppose that z1.x2..... 25 are 1.1.d. samples from this mixture of uniform distributions.
* Use EM algorithm to approximately find the MLE.
e Next, derive the M-Step by maximizing the expected complete log-likelihood you derived

from the last problem over the four parameters. Hint: you will need to use the fact
Oln0=0.

Step 2 (M-Step) update the model parameter via Maximization
* M-step: update our guesses for 64, 05, w{, W, p2( p) up p

Q (81,85, w1, wn) = Zz%kmwk + ZZ‘}’”" In ( 0 < g:, < Bk])

0t « argmaxQ(0 ;6W)
)

* Solve for 8y:

1 0 < I'np < H ]. D < I'p < ICJ} -
arg maxg, Z".:-"n.k In [ f;k — k] = arg maxg, Z Yk 1N [ ';k — k]

n nYnk =0

Drop points with Ynk = 0



« Xis distributed according to a mixture of two uniform distributions with unknown #,6f > 0.
PX=x)=PX=zx,z=1)+P(X=uxz=2)
:P@:Umeﬂw-—U+P(
=wU(X =2 ;01) +wlU(X

Q)P(X =z |z=2)

t2)
wyp 2 0,wpy >0, and wy +ws = 1.
e Uisthe uniform distribution:

1
P(X =x;6) = 710 <2 <],
. Suppose that z1.x2..... 25 are 1.1.d. samples from this mixture of uniform distributions.
* Use EM algorithm to approximately find the MLE.

e Next, derive the M-Step by maximizing the expected complete log-likelihood you derived

from the last problem over the four parameters. Hint: you will need to use the fact
Oln0=0.

* M-step: update our guesses for 64, 05, w{, W,

Q (81,85, w1, wn) = ZZ,},nklnwk + ZZ%" In ( 0 < g; < Bk])

* Solve for G: Similar to Problem 2 (a) in this exercise.

If 6, < nI'E:-;E‘U n " n(-) function goes to -.

1[0 < z,, < by
gy, 3 el 12 <O

nnk >0

ox . 1 1[0 <z, < 0]
max i | < O] . - .
f0) = 1y, 50 ", In i is a decreasing function of 8,

So,the maxis: Imax .y
n:Yp k>0
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