Week 7 Practice

CSCI 567 Machine Learning

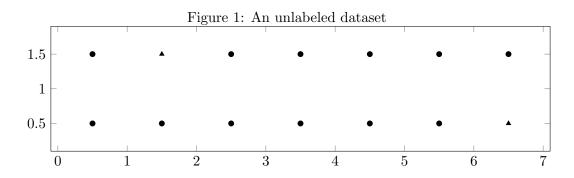
Fall 2025

Instructor: Haipeng Luo

1 Clustering

Consider the following dataset. All points are unlabeled and part of the same set. The triangles are used to distinguish two points later.

Suppose that we run the K-means algorithm on this dataset with K=2 and the two points indicated by triangles as the initial centers. When the algorithm converges, there will be two clearly separated clusters. Directly on Figure 1, draw a straight line that separates these two clusters, as well as the centers of these two clusters.



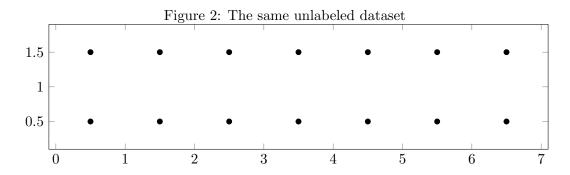
There are infinitely many choices for the separating line. Any vertical line between 3.5 and 4.5 would work for example.

The two centers are (2, 1) and (5.5, 1).

Next, find two other different sets of initialize centers that will converge to the exact same result if we apply K-means. Please follow the instructions below:

• the initialize centers have to be points of the dataset;

- directly on Figure 2, use two triangles to indicate the first set, and two squares to indicate the second;
- these two sets of points can overlap with each other, but of course cannot be the same;
- similarly these sets can overlap with the initialization of Figure 1 but cannot be the same;
- do not pick those that lead to ambiguous results due to different ways of breaking ties.



There are many choices, for example, (2.5, 0.5) and (5.5, 1.5), (2.5, 1.5) and (5.5, 0.5), (2.5, 1.5) and (5.5, 1.5), (1.5, 0.5) and (6.5, 0.5), and so on. Note that answers like (1.5, 0.5) and (5.5, 0.5) are not acceptable due to the ambiguity from tie-breaking.

2 MLE, Mixtures, and EM

In this problem you will practice MLE and EM.

(a) Let $X \in \mathbb{R}$ be a random variable uniformly-distributed on some unknown interval $(0, \theta]$, where $\theta > 0$. More specifically, the density function is

$$P(X = x; \theta) = \begin{cases} \frac{1}{\theta} & \text{, if } x \in (0, \theta], \\ 0 & \text{, otherwise,} \end{cases}$$
 (1)

$$= \frac{1}{\theta} \mathbf{1}[0 < x \le \theta],\tag{2}$$

where $\mathbf{1}[\cdot]$ is an indicator function that outputs 1 when the input condition is true, and 0 otherwise. Suppose that x_1, x_2, \ldots, x_N are i.i.d. samples from this distribution. Write down the likelihood of the observations and then find the maximum likelihood estimator (MLE).

$$P(x_1, ..., x_N; \theta) = \prod_{n=1}^{N} P(x_n; \theta) = \frac{1}{\theta^N} \mathbf{1}[\max_n x_n \le \theta]$$

The MLE for θ is given by

$$\theta_* = \max_n x_n$$

This is because when $\theta < \theta_*$, the likelihood is zero; and when $\theta > \theta_*$, the likelihood is $\frac{1}{\theta^n} < \frac{1}{\theta^n}$.

(b) Now suppose that X is distributed according to a **mixture** of two uniform distributions: one on interval $(0, \theta_1]$ and the other on $(0, \theta_2]$, for some unknown $\theta_1, \theta_2 > 0$. More specifically, the density function is

$$P(X = x) = P(X = x, z = 1) + P(X = x, z = 2)$$

$$= P(z = 1)P(X = x \mid z = 1) + P(z = 2)P(X = x \mid z = 2)$$

$$= \omega_1 U(X = x; \theta_1) + \omega_2 U(X = x; \theta_2)$$

where U is the uniform distribution defined as in Eq. (1) or Eq. (2), and ω_1 , ω_2 are mixture weights such that

$$\omega_1 \geq 0, \omega_2 \geq 0, \text{ and } \omega_1 + \omega_2 = 1.$$

Suppose that $x_1, x_2, ..., x_N$ are i.i.d. samples from this mixture of uniform distributions. MLE does not admit a closed-form for this problem, and we will use the EM algorithm to approximately find the MLE.

• First, the E-Step fixes a set of parameters $\theta_1, \theta_2, \omega_1, \omega_2$ and computes for each n the posterior distribution $\gamma_{nk} = P(z_n = k \mid x_n ; \theta_1, \theta_2, \omega_1, \omega_2)$ of the latent variable z_n , where $k \in \{1, 2\}$ indicates which mixture component x_n belongs to. Write down the explicit form of this posterior distribution without using the proportional notation. Then write down explicitly the expected complete log-likelihood using γ_{nk} (as a function of the four parameters $\theta_1, \theta_2, \omega_1, \omega_2$).

$$P(z_n = k \mid x_n ; \theta_1, \theta_2, \omega_1, \omega_2) \propto P(z_n = k, x_n ; \theta_1, \theta_2, \omega_1, \omega_2)$$

$$= P(z_n = k ; \theta_1, \theta_2, \omega_1, \omega_2) P(x_n \mid z_n = k ; \theta_1, \theta_2, \omega_1, \omega_2)$$

$$= \omega_k U(X = x_n ; \theta_k)$$

$$= \frac{\omega_k}{\theta_k} \mathbf{1}[0 < x_n \le \theta_k]$$

Thus,

$$\gamma_{nk} = P(z_n = k \mid x_n ; \theta_1, \theta_2, \omega_1, \omega_2) = \frac{\frac{\omega_k}{\theta_k} \mathbf{1}[0 < x_n \le \theta_k]}{\frac{\omega_1}{\theta_1} \mathbf{1}[0 < x_n \le \theta_1] + \frac{\omega_2}{\theta_2} \mathbf{1}[0 < x_n \le \theta_2]}, \ \forall \ k \in \{1, 2\}.$$

The expected complete log-likelihood is

$$Q(\theta_1, \theta_2, \omega_1, \omega_2) = \sum_n \sum_k \gamma_{nk} \ln P(x_n, z_n = k ; \theta_1, \theta_2, \omega_1, \omega_2)$$
$$= \sum_n \sum_k \gamma_{nk} \ln \omega_k + \sum_n \sum_k \gamma_{nk} \ln \frac{\mathbf{1}[0 < x_n \le \theta_k]}{\theta_k}.$$

• Next, derive the M-Step by maximizing the expected complete log-likelihood you derived from the last problem over the four parameters. Hint: you will need to use the fact $0 \ln 0 = 0$.

The solution to ω_k is the same as in GMMs:

$$\omega_k = \frac{\sum_n \gamma_{nk}}{N}.$$

For θ_k , observe

$$\arg\max_{\theta_k} \sum_n \gamma_{nk} \ln \frac{\mathbf{1}[0 < x_n \leq \theta_k]}{\theta_k} = \arg\max_{\theta_k} \sum_{n: \gamma_{nk} > 0} \gamma_{nk} \ln \frac{\mathbf{1}[0 < x_n \leq \theta_k]}{\theta_k} = \max_{n: \gamma_{nk} > 0} x_n,$$

where the reasoning of last step is similar to Problem 2(a): anything smaller than $\max_{n:\gamma_{nk}>0} x_n$ will lead to $-\infty$ objective value, and anything larger will lead to a strictly smaller objective value.