Week 7 Practice

CSCI 567 Machine Learning
Fall 2025

Instructor: Haipeng Luo

1 Clustering

Consider the following dataset. All points are unlabeled and part of the same set. The triangles
are used to distinguish two points later.

Suppose that we run the K-means algorithm on this dataset with K = 2 and the two points
indicated by triangles as the initial centers. When the algorithm converges, there will be two clearly
separated clusters. Directly on Figure 1, draw a straight line that separates these two clusters, as
well as the centers of these two clusters.

Figure 1: An unlabeled dataset
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There are infinitely many choices for the separating line. Any vertical line between 3.5 and 4.5
would work for example.
The two centers are (2, 1) and (5.5, 1).

Next, find two other different sets of initialize centers that will converge to the exact same result
if we apply K-means. Please follow the instructions below:

e the initialize centers have to be points of the dataset;
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directly on Figure 2, use two triangles to indicate the first set, and two squares to indicate
the second;

these two sets of points can overlap with each other, but of course cannot be the same;

similarly these sets can overlap with the initialization of Figure 1 but cannot be the same;

do not pick those that lead to ambiguous results due to different ways of breaking ties.

Figure 2: The same unlabeled dataset
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There are many choices, for example, (2.5,0.5) and (5.5,1.5), (2.5,1.5) and (5.5,0.5), (2.5,1.5)
and (5.5,1.5), (1.5,0.5) and (6.5,0.5), and so on. Note that answers like (1.5,0.5) and (5.5,0.5) are
not acceptable due to the ambiguity from tie-breaking.



2 MLE, Mixtures, and EM

In this problem you will practice MLE and EM.

(a) Let X € R be a random variable uniformly-distributed on some unknown interval (0, 6], where
6 > 0. More specifically, the density function is

P(X = 2:0) = % ,if z € (0,40], (1)
R ) , otherwise,
1
:51[O<x§«9], (2)

where 1[-] is an indicator function that outputs 1 when the input condition is true, and 0
otherwise. Suppose that x1,z9,...,zyN are i.i.d. samples from this distribution. Write down
the likelihood of the observations and then find the maximum likelihood estimator (MLE).

N
1
P(ar, ..oy 30) = [[ Plan :6) = gy Lmaxe, <]

n=1

The MLE for 6 is given by
0. = maxx,,
n

This is because when 6 < 0., the likelihood is zero; and when 6 > 0., the likelihood is ﬁ < %.



(b) Now suppose that X is distributed according to a mixture of two uniform distributions: one
on interval (0,6;] and the other on (0, f2], for some unknown 61,602 > 0. More specifically,
the density function is

PX=z)=PX=z,z2=1)+P(X=2,2=2)
=Pz=1)P(X=2z|2=1)+P=2)P(X=z|2=2)
:wlU(X:x;Gl)—i—wQU(X:x;Hg)

where U is the uniform distribution defined as in Eq. (1) or Eq. (2), and w1, we are mixture
weights such that

w1 > 0,we >0, and wy + wy = 1.

Suppose that x1,z9,...,xy are i.i.d. samples from this mixture of uniform distributions.
MLE does not admit a closed-form for this problem, and we will use the EM algorithm to
approximately find the MLE.

e First, the E-Step fixes a set of parameters 01, 6s,w1,ws and computes for each n the
posterior distribution v, = P(z, = k | @, ;01,602,w1,w2) of the latent variable z,,
where k € {1,2} indicates which mixture component x,, belongs to. Write down the
explicit form of this posterior distribution without using the proportional notation. Then
write down explicitly the expected complete log-likelihood using v, (as a function of
the four parameters 6,602, w1, ws).

P(zp =k | xy ;01,02,w1,ws) < P(zy, = k,xy ; 01,02, w1, ws)
— P(Zn =k ;017027(*‘)17(-‘02)P($n | Zn = k ;01702vwlaw2)
= wrU(X = 2y ;0g)
_ Y

P1[0 < 2, < 04]
O,

Thus,

%:1[0 <zp < Qk]
‘5—111[0 <xp < O1)+ ‘5—51[0 < Xy < 6]

Yok = P(2n =k | 2y 101,02, w1,w2) = , VE €{1,2}.

The expected complete log-likelihood is

Q01,02 w1,w2) = D> Ype I P, 2 = k 101,02, w1, wp)
n k
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e Next, derive the M-Step by maximizing the expected complete log-likelihood you derived
from the last problem over the four parameters. Hint: you will need to use the fact
0ln0=0.

The solution to wy, is the same as in GMMs:

Wk

For 6}, observe

1[0<xn§9k} 1[0<xn§0k]

arg maxg, g Ynk 1D B = argmaxg, E Ynk 1IN 9 = nglzz)éo T,
n N Yk >0 "

where the reasoning of last step is similar to Problem 2(a): anything smaller than
maXp:~,, >0 Tn Will lead to —oo objective value, and anything larger will lead to a strictly
smaller objective value.
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