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Review of last lecture

A recurrent layer

from ŷ = f(x) to (ŷ,h′) = f(x,h)

h is “hidden state” (like HMM), updated via

h′ = σ(Wh+Ux+ bh)

where σ is an activation function

ŷ = V h′ + by is the output
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Review of last lecture

Recurrent layer applied recursively

Given a sequence x1,x2, . . ., can apply f recursively:

h0 = 0

(ŷ1,h1) = f(x1,h0)

(ŷ2,h2) = f(x2,h1)

· · ·
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Review of last lecture

Making it “deep”

Stack multiple recurrent layers:

hidden states become the inputs of
the next layer

different layers learn different
W ,U , bh

last layer learns V , by and output ŷ
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Review of last lecture

Transformer: overview

Encoder: summarizes the input into a useful representation

Decoder: generates outputs
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Review of last lecture

Transformer: a closer look
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Review of last lecture

Transformer: a closer look at self-attention

Matrix notation:

input matrix X ∈ RT×d, obtained by stacking x⊤
1 , . . . ,x

⊤
T

query matrix Q = XWQ ∈ RT×dk

key matrix K = XWK ∈ RT×dk

value matrix V = XWV ∈ RT×dv

attention score matrix QK⊤ ∈ RT×T

output matrix Z ∈ RT×dv is

softmax

(
QK⊤
√
dk

)
V

where softmax is applied row-wise

O(T 2) complexity (ignoring d, dk, dv)
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Multi-Armed Bandits Online decision making

Decision making

Problems we have discussed so far:

start with a training dataset

learn a predictor or discover some patterns

But many real-life problems are about learning continuously:

make a prediction/decision

receive some feedback

repeat

Broadly, these are called online decision making problems.

12 / 52



Multi-Armed Bandits Online decision making

Examples

Amazon/Netflix/MSN recommendation systems:

a user visits the website

the system recommends some products/movies/news stories

the system observes whether the user clicks on the recommendation

Playing games (Go/Atari/StarCraft/...) or controlling robots:

make a move

receive some reward (e.g. score a point) or loss (e.g. fall down)

make another move...
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Multi-Armed Bandits Online decision making

Reinforcement Learning

Reinforcement learning, a general framework to model such problems:

focus on a special case called multi-armed bandits this week

discuss general reinforcement learning next week
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Multi-Armed Bandits Motivation and setup

Mulit-armed bandits: motivation

Imagine going to a casino to play a slot machine

it robs you, like a “bandit” with a single arm

Of course there are many slot machines in the casino

like a bandit with multiple arms (hence the name)

if I can play for 10 times, which machines should I play?
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Multi-Armed Bandits Motivation and setup

Applications

This simple model and its variants capture many real-life applications

recommendation systems, each product/movie/news story is an arm
(Microsoft MSN indeed employs a variant of bandit algorithm)

game playing, each possible move is an arm
(AlphaGo indeed has a bandit algorithm as one of the components)
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Multi-Armed Bandits Motivation and setup

Formal setup

There are K arms (actions/choices/options/etc.)

The problem proceeds in rounds between the environment and a learner:
for each time t = 1, . . . , T

the environment decides the reward for each arm rt,1, . . . , rt,K

the learner picks an arm at ∈ [K]

the learner observes the reward for arm at, i.e., rt,at

Importantly, learner does not observe rewards for arms not selected!

This kind of limited feedback is now usually referred to as bandit feedback
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Multi-Armed Bandits Motivation and setup

Objective

What is the goal of this problem?

Maximizing total rewards
∑T

t=1 rt,at seems natural

But the absolute value of rewards is not meaningful, instead we should
compare it to some benchmark. A classic benchmark is

max
a∈[K]

T∑
t=1

rt,a

i.e. the largest reward one can achieve by always playing a fixed arm

So we want to minimize

max
a∈[K]

T∑
t=1

rt,a −
T∑
t=1

rt,at

This is called the regret: how much I regret for not sticking with the best
fixed arm in hindsight?
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Multi-Armed Bandits Motivation and setup

Environments

How are the rewards generated by the environments?

they could be generated via some fixed distribution

they could be generated via some changing distribution

they could be generated even completely arbitrarily/adversarially

We first focus on a simple setting:

rewards of arm a are i.i.d. samples of Ber(µa), that is, rt,a is 1 with
prob. µa, and 0 with prob. 1− µa, independent of anything else.

each arm has a different mean (µ1, . . . , µK); the problem is essentially
about finding the best arm argmaxa µa as quickly as possible
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Multi-Armed Bandits Motivation and setup

Empirical means

Let µ̂t,a be the empirical mean of arm a up to time t:

µ̂t,a =
1

nt,a

∑
τ≤t:aτ=a

rτ,a

where
nt,a =

∑
τ≤t

I[aτ = a]

is the number of times we have picked arm a.

Concentration: µ̂t,a should be close to µa if nt,a is large
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Multi-Armed Bandits Exploration vs. Exploitation

Exploitation only

Greedy

Pick each arm once for the first K rounds.

For t = K + 1, . . . , T , pick at = argmaxa µ̂t−1,a

What’s wrong with this greedy algorithm?

Consider the following example:

K = 2, µ1 = 0.6, µ2 = 0.5 (so arm 1 is the best)

suppose the algorithm first picks arm 1 and sees reward 0, then picks
arm 2 and sees reward 1 (this happens with decent probability)

the algorithm will never pick arm 1 again!
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Multi-Armed Bandits Exploration vs. Exploitation

The key challenge

All bandit problems face the same dilemma:

Exploitation vs. Exploration trade-off

on one hand we want to exploit the arms that we think are good

on the other hand we need to explore all arms often enough in order
to figure out which one is better

so each time we need to ask: do I explore or exploit? and how?

We next discuss three ways to trade off exploration and exploitation for
our simple multi-armed bandit setting.
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Multi-Armed Bandits Exploration vs. Exploitation

A natural first attempt

Explore–then–Exploit

Input: a parameter T0 ∈ [T ]

Exploration phase: for the first T0 rounds, pick each arm for T0/K times

Exploitation phase: for the remaining T − T0 rounds, stick with the
empirically best arm argmaxa µ̂T0,a

Parameter T0 clearly controls the exploration/exploitation trade-off
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Multi-Armed Bandits Exploration vs. Exploitation

Issues of Explore–then–Exploit

It’s pretty reasonable, but the disadvantages are also clear:

not clear how to tune the hyperparameter T0

in the exploration phase, even if an arm is clearly worse than others
based on a few pulls, it’s still pulled for T0/K times

clearly it won’t work if the environment is changing
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Multi-Armed Bandits Exploration vs. Exploitation

A slightly better algorithm

ϵ-Greedy

Pick each arm once for the first K rounds.

For t = K + 1, . . . , T ,

with probability ϵ, explore: pick an arm uniformly at random

with probability 1− ϵ, exploit: pick at = argmaxa µ̂t−1,a

Pros

always exploring and exploiting

applicable to many other problems

first thing to try usually

Cons

need to tune ϵ

same uniform exploration

Is there a more adaptive way to explore?
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Multi-Armed Bandits Exploration vs. Exploitation

More adaptive exploration

A simple modification of “Greedy” leads to the well-known:

Upper Confidence Bound (UCB) algorithm

For t = 1, . . . , T , pick at = argmaxa UCBt,a where

UCBt,a ≜ µ̂t−1,a + 2

√
ln t

nt−1,a

the first term in UCBt,a represents exploitation, while the second
(bonus) term represents exploration

the bonus term is large if the arm is not pulled often enough, which
encourages exploration (adaptive due to the first term)

exploration never stops due to the ln t term (i.e., no arms will be
forever discarded) (see demo)

a parameter-free algorithm, and it enjoys optimal regret!
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Multi-Armed Bandits Exploration vs. Exploitation

Upper confidence bound picture link

Why is it called upper confidence bound? One can prove that with high
probability,

µa ≤ UCBt,a

so UCBt,a is indeed an upper bound on the true mean.
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Multi-Armed Bandits Exploration vs. Exploitation

Exploration via Optimism

Another way to interpret UCB, “optimism in face of uncertainty”:

true environment is unknown due to randomness (uncertainty)

just pretend it’s the most preferable one among all plausible
environments (optimism)

This principle is useful for many other bandit problems.

Q: what happens if we apply pessimism instead?

Lower Confidence Bound (LCB) algorithm

For t = 1, . . . , T , pick at = argmaxa LCBt,a where

LCBt,a ≜ µ̂t−1,a − 2

√
ln t

nt−1,a

Does not work: pessimism discourages exploration!
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Dueling Bandits

Limitation of standard multi-armed bandits

Direct numerical reward feedback is rare or hard to obtain.

On the other hand, preference feedback is ubiquitous and easier to collect

especially when only a pair of options is given: do you prefer A or B?

a key idea in training LLM, RLHF (reinforcement learning with human
feedback) is exactly based on preference feedback for a pair of answers

We focus on the special case of multi-armed bandits, i.e., dueling bandits.
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Dueling Bandits

Formal setup of dueling bandits

There are K arms (same as before)

The problem proceeds in rounds between the environment and a learner:
for each time t = 1, . . . , T

the learner picks a pair of arms at, bt ∈ [K]

the learner observes the binary preference feedback I[at ≻ bt]: at is
preferred over bt or not

Importantly, learner does not observe

any direct reward feedback

preference for any other not selected pairs
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Dueling Bandits

How is the preference feedback generated?

Consider a simple setup:

∃ a fixed but unknown preference feedback matrix P ∈ [0, 1]K×K

I[a ≻ b] is a sample of Ber(Pa,b), that is, 1 with prob. Pa,b and 0 with
prob. 1− Pa,b.

Natural assumptions:

Pa,b + Pb,a = 1 for any pair (a, b), which also implies Pa,a = 0.5

∃ “optimal action” a⋆ such that Pa⋆,b ≥ 0.5 for any b ∈ [K], called
Condorcet winner (this assumption can be relaxed)

Intuitively, the goal is to find a⋆ as quickly as possible.
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Dueling Bandits

How to solve dueling bandits?

There are different approaches; we focus on the idea of sparring/self-play

suppose we only get to select at, and an opponent/adversary selects bt

intuitively, we can treat I[at ≻ bt] as reward feedback (i.e., the goal is
to beat the opponent as often as possible)

this is exactly a standard multi-armed bandit problem!

now how should the “opponent” select bt? same, apply a multi-armed
bandit algorithm, but with I[at ≻ bt] as loss feedback!

usually apply two copies of the same algorithm to select at and bt;
hence the name self-play.
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Dueling Bandits

A closer look at self-play

“This is exactly a standard multi-armed bandit problem”, or is it?

the reward for picking arm a, I[a ≻ bt], no longer follows a fixed
distribution due to the changing bt ⇒ can’t apply UCB anymore!

in fact, bt can be completely arbitrary ⇒ need an “adversarial”
multi-armed bandit algorithm

34 / 52



Dueling Bandits

Exponential Weights for Exploration and Exploitation

The very first adversarial multi-armed bandit algorithm: Exp3

Applying Exp3 to select bt (will come back to at later):

Exp3 for dueling bandits (selecting bt)

Input: a learning rate parameter η > 0

For t = 1, . . . , T ,

compute arm distribution qt = softmax
(
−η
∑t−1

τ=1 ℓτ

)
sample bt from qt

observe loss feedback I[at ≻ bt] (at selected by opponent)

construct loss estimator ℓt ∈ RK
+
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Dueling Bandits

Importance-weighted loss estimators

Exp3 for dueling bandits (selecting bt)

For t = 1, . . . , T ,

· · ·

construct estimator ℓt ∈ RK
+ where for each b: ℓt,b =

I[bt=b]I[at≻b]
qt,b

Well-defined using only the information I[at ≻ bt].

Why scale by inverse importance weight? Make the estimator unbiased:

E [ℓt,b] = (1− qt,b)× 0 + qt,b ×
I[at ≻ b]

qt,b
= I[at ≻ b]

Estimate the loss of all K actions by only seeing the loss of one action
(think how SGD estimates the gradient using only one example)

Only selected action could have positive loss ⇒ exploration encouraged!
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Dueling Bandits

Full algorithm

Exp3 for dueling bandits (selecting bt)

Input: a learning rate parameter η > 0

For t = 1, . . . , T ,

compute arm distribution qt = softmax
(
−η
∑t−1

τ=1 ℓτ

)
sample bt from qt

observe loss feedback I[at ≻ bt] (at selected by opponent)

construct estimator ℓt ∈ RK
+ where for each b: ℓt,b =

I[bt=b]I[at≻b]
qt,b

η controls exploration-exploitation trade-off

with the right choice of η, Exp3 ensures regret ≾
√
KT (optimal)

even against an adversarial exponent
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Dueling Bandits

Losses versus rewards

Importantly, exploration is encouraged when using losses but not rewards

To understand this, go back to the question: how should at be selected?

Self-play means applying Exp3 to select at as well, so how about:

Exp3 for dueling bandits (selecting at)

For t = 1, . . . , T ,

sample at from arm distribution pt = softmax
(
η
∑t−1

τ=1 rτ

)
observe reward feedback I[at ≻ bt] (bt selected by opponent)

construct estimator rt ∈ RK
+ where for each a: rt,a = I[at=a]I[a≻bt]

pt,a
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Dueling Bandits

Losses versus rewards (cont.)

Exp3 for dueling bandits (WRONG way to select at)

For t = 1, . . . , T ,

sample at from arm distribution pt = softmax
(
η
∑t−1

τ=1 rτ

)
observe reward feedback I[at ≻ bt] (bt selected by opponent)

construct estimator rt ∈ RK
+ where for each a: rt,a = I[at=a]I[a≻bt]

pt,a

only selected action could have positive reward ⇒ exploration
discouraged!

after at wins one round, the algorithm increases its weight and
decreases all other arms’ weights aggressively
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Dueling Bandits

Losses versus rewards (cont.)

Exp3 for dueling bandits (CORRECT way to select at)

For t = 1, . . . , T ,

sample at from arm distribution pt = softmax
(
−η
∑t−1

τ=1 ℓτ

)
observe reward feedback I[at ≻ bt] (bt selected by opponent)

construct estimator ℓt ∈ RK
+ where for each a: ℓt,a = I[at=a]I[a≺bt]

pt,a

from softmax
(
η
∑t−1

τ=1 rτ

)
to softmax

(
−η
∑t−1

τ=1 ℓτ

)
from rt,a = I[at=a]I[a≻bt]

pt,a
to ℓt,a = I[at=a]I[a≺bt]

pt,a

when at wins, from “increase pt,at and decrease everything else” to
“no updates”

when at loses, from “no updates” to “decrease pt,at and increase
everything else”
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Dueling Bandits

What does low regret mean here?

Using Exp3 to select at guarantees

T∑
t=1

I[a⋆ ≻ bt]−
T∑
t=1

I[at ≻ bt] ≾
√
KT

Similarly, using Exp3 to select bt guarantees

T∑
t=1

I[at ≻ bt]−
T∑
t=1

I[at ≻ a⋆] ≾
√
KT

Summing up gives
∑T

t=1 I[a⋆ ≻ bt]−
∑T

t=1 I[at ≻ a⋆] ≾
√
KT

Taking expectation and using Pa,b + Pb,a = 1 shows

T∑
t=1

(Pa⋆,at + Pa⋆,bt − 1) ≾
√
KT,

so can only pick suboptimal actions a negligible fraction (
√
K/T ) of times
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Learning in Games
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Learning in Games

Self-play in general games

Dueling bandits can be seen as a game between two players

each player makes a move each time and observes reward/loss

The idea of self-play naturally extends to other games:

“games” here does not only narrowly refer to card/video games, but
broadly any interaction between agents (from commuting to work, to
arms race between countries)

can involve two or more players

each player can have a different set of actions (arms)

each player can have a different reward/loss function

the game can be competitive, cooperative, or a mix of both

self-play: use the same learning algorithm for all players
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Learning in Games

Zero-sum games

Focus on a special case: two-player zero-sum games

can be described by a game matrix M ∈ [0, 1]K×J (generalizing P )

row-player has K actions, column-player has J actions

if row-player selects a ∈ [K] and column-player selects b ∈ [J ], then
row/column-player gets reward/loss Ma,b (hence zero-sum)

canonical examples: rock-paper-scissors

Rock Paper Scissors( )Rock 0.5 0 1
Paper 1 0.5 0
Scissors 0 1 0.5
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Learning in Games

More interesting examples

Figure: chess Figure: Go

Figure: poker Figure: StarCraft

Extremely large action space; still, all can be “solved” by self-play
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Learning in Games

Solving Go via self-play

46 / 52



Learning in Games

Solving poker games via self-play
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Learning in Games

Nash Equilibra

What does “solving a game” mean?

For zero-sum games, this could mean finding a Nash Equilibrium (NE),
that is, a pair of distributions p⋆ (over [K]) and q⋆ (over [J ]) such that

max
p

p⊤Mq⋆ = (p⋆)⊤Mq⋆ = min
q

(p⋆)⊤Mq

p⊤Mq is the expected reward/loss for the row/column-player if they
sample their actions according to p and q respectively

(p⋆, q⋆) is an NE means p⋆ and q⋆ are best-responding to each other

so no player has incentive to deviate from an NE

they are also the best strategies assuming the worst opponent:

p⋆ = argmax
p

min
q

p⊤Mq and q⋆ = argmin
q

max
p

p⊤Mq
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Learning in Games

How to find Nash Equilibra?

Easy for small games (e.g., a pair of uniform distributions is the NE for
rock-paper-scissors)

But how about game as large as poker? Can approximately find one
via self-play and regret minimization!

Self-play for zero-sum games

Input: multi-armed bandit algorithms A and B
For t = 1, . . . , T ,

get arm distributions pt and qt from A and B respectively

sample at from pt and bt from qt

observe Mat,bt (plus noise), feed it as reward to A and as loss to B
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Learning in Games

Low regret means convergence to NE

Suppose A and B have at most
√
T regret:

max
a∈[K]

T∑
t=1

Ma,bt −
T∑
t=1

Mat,bt ≾
√
T

T∑
t=1

Mat,bt − min
b∈[J ]

T∑
t=1

Mat,b ≾
√
T

Summing up gives

max
a∈[K]

T∑
t=1

Ma,bt − min
b∈[J ]

T∑
t=1

Mat,b ≾
√
T

and thus

max
p

p⊤Mq̄ −min
q

p̄⊤Mq ≾
1√
T

for p̄ and q̄ being the empirical distribution of a1:T and b1:T
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Learning in Games

Low regret means convergence to NE (cont.)

max
p

p⊤Mq̄ −min
q

p̄⊤Mq ≾
1√
T

means

p̄⊤Mq̄ ≤ max
p

p⊤Mq̄ ≾ min
q

p̄⊤Mq +
1√
T

and

p̄⊤Mq̄ ≥ min
q

p̄⊤Mq ≿ max
p

p⊤Mq̄ − 1√
T

Therefore,

max
p

p⊤Mq̄ − 1√
T

≾ p̄⊤Mq̄ ≾ min
q

p̄⊤Mq +
1√
T

meaning that (p̄, q̄) converges to NE as T → ∞
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Learning in Games

Summary

Bandit problems, a special case of reinforcement learning

exploration and exploitation trade-off under limited feedback

UCB for direct reward feedback (adaptive exploration via optimism)

self-play with Exp3 for preference feedback (dueling bandits)

self-play for solving games (low regret ⇒ convergence to NE)
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