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Review of last lecture

A recurrent layer

from y = f(z) to (y,h') = f(z,h)
e h is “hidden state” (like HMM), updated via

v
== |—>[=]

h=0c(Wh+Uz+by,)

where o is an activation function

e y = Vh'+ b, is the output
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Review of last lecture

Recurrent layer applied recursively

Given a sequence x1, o, ..., can apply f recursively:
BIRIR o ho =0
TTT .
. ® (y1,h1) = f(x1, ho)
ttt ° (Y2, ha) = f(x2, h1)
N O I @ -




Making it “deep”

Stack multiple recurrent layers:

@ hidden states become the inputs of
the next layer

fffrffff

o different layers learn different ST e e
W, U,b, fffrffff
o last layer learns V', b, and output y g2 A A i i s

depth




Review of last lecture

Transformer: overview

OUTPUT [ | am a student

~

i

v,

\
|

INPUT | Je suis étudiant

Encoder: summarizes the input into a useful representation

Decoder: generates outputs



Transformer: a closer look
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Review of last lecture

Transformer: a closer look at self-attention

Matrix notation:

e input matrix X € RT*? obtained by stacking x{ ,...,z;
@ query matrix Q@ = XWg € RTxdk | wo Q
o key matrix K = XWy € RT*% S - = HH
e value matrix V = X Wy € RT*dv
e attention score matrix QK ' € RT*T EEEE - - H-
e output matrix Z € RT*% js

softmax (QKT) 1% HHH - - HH

\/a Q T

where softmax is applied row-wise

softmax( t:H ) l:_ ) j:t

o
O(T?) complexity (ignoring d, di, d,) - HH
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Online decision maing
Decision making

Problems we have discussed so far:
@ start with a training dataset

@ learn a predictor or discover some patterns

But many real-life problems are about learning continuously:
@ make a prediction/decision
@ receive some feedback

@ repeat

Broadly, these are called online decision making problems.
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\TTANGISREEN M Online decision making

Examples

Amazon/Netflix/MSN recommendation systems:
@ a user visits the website
@ the system recommends some products/movies/news stories

@ the system observes whether the user clicks on the recommendation

Playing games (Go/Atari/StarCraft/...) or controlling robots:
@ make a move
@ receive some reward (e.g. score a point) or loss (e.g. fall down)

@ make another move...
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\ITEANGISREEN G Online decision making

Reinforcement Learning

Reinforcement learning, a general framework to model such problems:
@ focus on a special case called multi-armed bandits this week

@ discuss general reinforcement learning next week
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Multi-Armed Bandits Motivation and setup

Mulit-armed bandits: motivation

Imagine going to a casino to play a slot machine
@ it robs you, like a "bandit” with a single arm

Of course there are many slot machines in the casino
o like a bandit with multiple arms (hence the name)

o if I can play for 10 times, which machines should | play?
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Motivation and setup
Applications

This simple model and its variants capture many real-life applications

@ recommendation systems, each product/movie/news story is an arm
(Microsoft MSN indeed employs a variant of bandit algorithm)

@ game playing, each possible move is an arm
(AlphaGo indeed has a bandit algorithm as one of the components)

=

Pokémon GO announced its biggest update

yet, including 80 new Pokémon | » et wows st 0:1 A il LEE SEDOL
? I Y . 00:01:00
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Multi-Armed Bandits Motivation and setup

Formal setup

There are K arms (actions/choices/options/etc.)

The problem proceeds in rounds between the environment and a learner:
for each timet =1,...,T

@ the environment decides the reward for each arm 7y 1,..., 7 K

o the learner picks an arm a; € [K]

@ the learner observes the reward for arm a, i.e., 7,
Importantly, learner does not observe rewards for arms not selected!

This kind of limited feedback is now usually referred to as bandit feedback
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)
Objective

What is the goal of this problem?

. T
Maximizing total rewards > 3, , 74, seems natural

But the absolute value of rewards is not meaningful, instead we should

compare it to some benchmark. A classic benchmark is

T

max Tta
a€[K] =1

i.e. the largest reward one can achieve by always playing a fixed arm

So we want to minimize

T T
max Tta — Z Tt
o€kl t=1

This is called the regret: how much | regret for not sticking with the best

fixed arm in hindsight?
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Multi-Armed Bandits Motivation and setup

Environments

How are the rewards generated by the environments?
@ they could be generated via some fixed distribution
@ they could be generated via some changing distribution

@ they could be generated even completely arbitrarily /adversarially

We first focus on a simple setting:

e rewards of arm a are i.i.d. samples of Ber(y,), that is, 7, is 1 with
prob. i, and 0 with prob. 1 — u,, independent of anything else.

@ each arm has a different mean (1, ..., ux); the problem is essentially
about finding the best arm argmax, i, as quickly as possible
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Multi-Armed Bandits Motivation and setup

Empirical means

Let /it be the empirical mean of arm a up to time t:

. 1
Ht,a = Tra

n
t,a T<t:ar=a

where

Ntgq = ZH[aT = a]

T<t

is the number of times we have picked arm a.

Concentration: fi; , should be close to p if ns, is large
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=l
Exploitation only

Greedy
Pick each arm once for the first X rounds.

Fort=K +1,...,T, pick a; = argmax, f[it—1,4

What's wrong with this greedy algorithm?
Consider the following example:
@ K =213 =0.6,pu2 =0.5 (so arm 1 is the best)

@ suppose the algorithm first picks arm 1 and sees reward 0, then picks
arm 2 and sees reward 1 (this happens with decent probability)

o the algorithm will never pick arm 1 again!
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Exploration vs. Exploitation
The key challenge

All bandit problems face the same dilemma:

Exploitation vs. Exploration trade-off

@ on one hand we want to exploit the arms that we think are good

@ on the other hand we need to explore all arms often enough in order
to figure out which one is better

@ so each time we need to ask: do | explore or exploit? and how?

We next discuss three ways to trade off exploration and exploitation for
our simple multi-armed bandit setting.
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ol o EREEE)
A natural first attempt

Explore—then—Exploit
Input: a parameter Tj € [T]

Exploration phase: for the first Ty rounds, pick each arm for T/ K times

Exploitation phase: for the remaining T' — Ty rounds, stick with the
empirically best arm argmax, fity.q

Parameter T clearly controls the exploration/exploitation trade-off
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Multi-Armed Bandits Exploration vs. Exploitation

Issues of Explore—then—Exploit

It's pretty reasonable, but the disadvantages are also clear:
@ not clear how to tune the hyperparameter Ty

@ in the exploration phase, even if an arm is clearly worse than others
based on a few pulls, it's still pulled for T/ K times

@ clearly it won't work if the environment is changing
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Multi-Armed Bandits Exploration vs. Exploitation

A slightly better algorithm

e-Greedy

Pick each arm once for the first X rounds.

Fort=K+1,...,T,

@ with probability €, explore: pick an arm uniformly at random

@ with probability 1 — ¢, exploit: pick a; = argmax, fi;—1,q

Pros Cons
@ always exploring and exploiting @ need to tune ¢
@ applicable to many other problems @ same uniform exploration

o first thing to try usually

Is there a more adaptive way to explore?
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Multi-Armed Bandits Exploration vs. Exploitation

More adaptive exploration

A simple modification of “Greedy” leads to the well-known:

Upper Confidence Bound (UCB) algorithm

Fort=1,...,T, pick a; = argmax, UCB;, where

Int

UCBt,a £ /lt—l,a +2
Nt—1,a

o the first term in UCB;, represents exploitation, while the second
(bonus) term represents exploration

@ the bonus term is large if the arm is not pulled often enough, which
encourages exploration (adaptive due to the first term)

@ exploration never stops due to the Int term (i.e., no arms will be
forever discarded) (see demo)

@ a parameter-free algorithm, and it enjoys optimal regret!
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Multi-Armed Bandits Exploration vs. Exploitation

Upper confidence bound picture link

Why is it called upper confidence bound? One can prove that with high
probability,

Ha S UCBt,a
so UCB;, is indeed an upper bound on the true mean.
Upper Confidence Bound: UCB,, £ ji; 1, + 2 nlnt
t—1,a

ln t Small Large
2 uncertainty uncertainty
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https://eugeneyan.com/writing/bandits/

Multi-Armed Bandits Exploration vs. Exploitation

Exploration via Optimism

Another way to interpret UCB, “optimism in face of uncertainty”:
@ true environment is unknown due to randomness (uncertainty)

@ just pretend it's the most preferable one among all plausible
environments (optimism)

This principle is useful for many other bandit problems.

Q: what happens if we apply pessimism instead?

Lower Confidence Bound (LCB) algorithm

Fort=1,...,T, pick a; = argmax, LCB;, where

Int

Nt—1,a

LCBt,a £ ﬂt—l,a -2

Does not work: pessimism discourages exploration!
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© Dueling Bandits



Dueling Bandits

Limitation of standard multi-armed bandits

Direct numerical reward feedback is rare or hard to obtain.

On the other hand, preference feedback is ubiquitous and easier to collect

@ especially when only a pair of options is given: do you prefer A or B?

Mexican food Italian food

@ a key idea in training LLM, RLHF (reinforcement learning with human
feedback) is exactly based on preference feedback for a pair of answers

We focus on the special case of multi-armed bandits, i.e., dueling bandits.




Dueling Bandits

Formal setup of dueling bandits

There are K arms (same as before)

The problem proceeds in rounds between the environment and a learner:
for each timet=1,...,T

o the learner picks a pair of arms a;, b, € [K]

@ the learner observes the binary preference feedback I[a; > by]: a; is
preferred over b; or not

Importantly, learner does not observe
@ any direct reward feedback

o preference for any other not selected pairs
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Dueling Bandits

How is the preference feedback generated?

Consider a simple setup:
e J a fixed but unknown preference feedback matrix P € [0, 1)5*K
o I[a > b] is a sample of Ber(P, ), that is, 1 with prob. P,; and 0 with
prob. 1 — P, ;.
Natural assumptions:
® Pyp+ Pyq =1 for any pair (a,b), which also implies P, , = 0.5
e 1 “optimal action” a* such that P, ; > 0.5 for any b € [K], called
Condorcet winner (this assumption can be relaxed)

Intuitively, the goal is to find a* as quickly as possible.
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Dueling Bandits

How to solve dueling bandits?

There are different approaches; we focus on the idea of sparring/self-play
@ suppose we only get to select a;, and an opponent/adversary selects by

e intuitively, we can treat [[a, > b;] as reward feedback (i.e., the goal is
to beat the opponent as often as possible)

@ this is exactly a standard multi-armed bandit problem!

@ now how should the “opponent” select b7 same, apply a multi-armed
bandit algorithm, but with I[a; > b;] as loss feedback!

@ usually apply two copies of the same algorithm to select a; and b;
hence the name self-play.

33 /52



Dueling Bandits

A closer look at self-play

“This is exactly a standard multi-armed bandit problem™, or is it?

@ the reward for picking arm a, I[a > b;], no longer follows a fixed
distribution due to the changing by = can't apply UCB anymore!

@ in fact, b; can be completely arbitrary = need an “adversarial”
multi-armed bandit algorithm
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Exponential Weights for Exploration and Exploitation

The very first adversarial multi-armed bandit algorithm: Exp3

Applying Exp3 to select b; (will come back to a; later):

Exp3 for dueling bandits (selecting b;)

Input: a learning rate parameter n > 0

Fort=1,...,T,
@ compute arm distribution q; = softmax (—17 Zt;:ll £T>
@ sample b; from q;

@ observe loss feedback I[a; > by] (a; selected by opponent)

@ construct loss estimator £; € ]Rff
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Dueling Bandits

Importance-weighted loss estimators

Exp3 for dueling bandits (selecting b;)
Fort=1,...,T,

H[bt :b]ﬂ[at >b]

@ construct estimator £; € Rf where for each b: ;) = o

Well-defined using only the information I[a; > b].

Why scale by inverse importance weight? Make the estimator unbiased:
]I[(It - b]
qt,b

Estimate the loss of all K actions by only seeing the loss of one action
(think how SGD estimates the gradient using only one example)

Elp] = (1 —qip) x0+qp x = l[a; = 0]

Only selected action could have positive loss = exploration encouraged!
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Full algorithm

Exp3 for dueling bandits (selecting b;)
Input: a learning rate parameter n > 0
Fort=1,...,T,

@ compute arm distribution g; = softmax (—n Zt;:ll £T>

sample b; from q;

observe loss feedback I[a; > by] (at selected by opponent)

construct estimator £; € R;’f where for each b: £, = W

71 controls exploration-exploitation trade-off

with the right choice of 1, Exp3 ensures regret < /KT (optimal)
even against an adversarial exponent
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Dueling Bandits

Losses versus rewards

Importantly, exploration is encouraged when using losses but not rewards
To understand this, go back to the question: how should a; be selected?

Self-play means applying Exp3 to select a; as well, so how about:

Exp3 for dueling bandits (selecting a;)
Fort=1,...,T,

@ sample a; from arm distribution p; = softmax <n ZT 1 TT>

@ observe reward feedback I[a; > b (b selected by opponent)

. Tar=a]l[a>b
e construct estimator 7 € RE where for each a: r;, = W
’ t,a
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Dueling Bandits

Losses versus rewards (cont.)

Exp3 for dueling bandits (WRONG way to select a;)
Fort=1,...,T,

@ sample a; from arm distribution p; = softmax (n ZT 1 ’I"T>

@ observe reward feedback I[a; > b] (bt selected by opponent)

I[ar=a]l[a>b¢]
Pt,a

@ construct estimator r; € Rf where for each a: 7, =

@ only selected action could have positive reward = exploration
discouraged!

o after a; wins one round, the algorithm increases its weight and
decreases all other arms’ weights aggressively
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Dueling Bandits

Losses versus rewards (cont.)

Exp3 for dueling bandits (CORRECT way to select a;)
Fort=1,...,T,

@ sample a; from arm distribution p; = softmax <—77 Zi_:ll £T>

@ observe reward feedback I[a; > b (b selected by opponent)

Ia;=a]lla<b¢]

@ construct estimator £; € Rf where for each a: £;, = o

e from softmax (77 st 7‘7) to softmax <—77 et ET)

T[la;=all b Iat=all b
o from 1y, = Hdoee=alllazbe] 4o p - Har=a]lla<by]
’ Pt,a ’ Pt,a
@ when a; wins, from “increase p; ,, and decrease everything else” to
“no updates”

@ when a; loses, from “no updates” to “decrease p; 4, and increase

everything else”
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Dueling Bandits

What does low regret mean here?

Using Exp3 to select a; guarantees

T
> Ta* = bi) = ) Ilay - b] I VKT

t=1 t=1
Similarly, using Exp3 to select b; guarantees

T T
> Tar = b = > Tag = o] VKT
t=1 t=1

Summing up gives Zthl Ija* > b] — Zthl Ila; = a*] Z VKT
Taking expectation and using P, + P, , = 1 shows

T
> (Para, + Pary, — 1) 3 VKT,

t=1

so can only pick suboptimal actions a negligible fraction (/K /T) of times
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@ Learning in Games



Learning in Games

Self-play in general games

Dueling bandits can be seen as a game between two players

@ each player makes a move each time and observes reward/loss

The idea of self-play naturally extends to other games:

@ “games” here does not only narrowly refer to card/video games, but
broadly any interaction between agents (from commuting to work, to
arms race between countries)

@ can involve two or more players

@ each player can have a different set of actions (arms)

@ each player can have a different reward/loss function

@ the game can be competitive, cooperative, or a mix of both

@ self-play: use the same learning algorithm for all players
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Learning in Games

Zero-sum games

Focus on a special case: two-player zero-sum games
@ can be described by a game matrix M € [0,1]%*/ (generalizing P)
@ row-player has K actions, column-player has J actions

e if row-player selects a € [K] and column-player selects b € [J], then
row/column-player gets reward/loss M, ; (hence zero-sum)

@ canonical examples: rock-paper-scissors

Rock Paper Scissors
Rock 0.5 0 1
Paper ( 1 0.5 0 )

Scissors 0 1 0.5
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Learning in Games

More interesting examples

LEE SEDOL
00:01:00

Figure: poker Figure: StarCraft

Extremely large action space; still, all can be “solved” by self-play
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Solving Go via self-play

Mastering the game of Go with deep neural networks
and tree search

David Sl\verE, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian

Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe,

John Nham, Nal Kalchbrenner, llya Sutskever, Timothy Lillicrap, Leach, Koray Kavukcuogly,

Thore Graepel & Demis Hassabis &
Nature 529, 484-489 (2016) | Cite this article

508k Accesses | 10k Citations | 3036 Altmetric | Metrics

Abstract

The game of Go has long been viewed as the most challenging of classic games for artificial
intelligence owing to its enormous search space and the difficulty of evaluating board
positions and moves. Here we introduce a new approach to computer Go that uses ‘value

networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep ”*:‘ :ﬁ‘:"n fh“:x‘;;':f" f_‘ll;*;:‘“‘ thats

ALL SYSTEMS 90

neural networks are trained by a novel combination of supervised learning from human
expert games, and reinforcement learning from games of self-play. Without any lookahead
search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search

programs that simulate thousands of random games of self-play. We also introduce a new

search algorithm that combines Monte Carlo simulation with value and policy networks.
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Learning in Games

Solving poker games via self-play

Description of Pluribus

The core of Pluribus’s strategy was computed through self-play, in which the Al plays
against copies of itself, without any data of human or prior Al play used as input. The
Al starts from scratch by playing randomly and gradually improves as it determines g
which actions, and which probability distribution over those actions, lead to better / / ,ﬁ@
outcomes against earlier versions of its strategy. Forms of self-play have previously - s
been used to generate powerful Als in two-player zero-sum games such as backgam-
mon (18), Go (9, 19), Dota 2 (20), StarCraft 2 (21), and two-player poker (4-6), though
the precise algorithms that were used have varied widely. Although it is easy to con-
struct toy games with more than two players in which commonly used self-play algo-
rithms fail to converge to a meaningful solution (22), in practice self-play has never-
theless been shown to do reasonably well in some games with more than two players
(23).
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Nash Equilibra

What does “solving a game" mean?

For zero-sum games, this could mean finding a Nash Equilibrium (NE),
that is, a pair of distributions p* (over [K]) and ¢* (over [J]) such that

mgxpTMq* = (") Mq" = mqin(p*)TMq
e p' Mg is the expected reward/loss for the row/column-player if they
sample their actions according to p and g respectively

e (p*,q*) is an NE means p* and ¢* are best-responding to each other

@ so no player has incentive to deviate from an NE

@ they are also the best strategies assuming the worst opponent:

p* = argmaxminp' Mq and ¢* = argminmaxp' Mq
P q q P
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How to find Nash Equilibra?

Easy for small games (e.g., a pair of uniform distributions is the NE for
rock-paper-scissors)

But how about game as large as poker? Can approximately find one
via self-play and regret minimization!
Self-play for zero-sum games

Input: multi-armed bandit algorithms A and B
Fort=1,...,T,
@ get arm distributions p; and g; from A and B respectively

@ sample a; from p; and b; from q;

@ observe M,, 5, (plus noise), feed it as reward to A and as loss to B
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Learning in Games

Low regret means convergence to NE

Suppose A and B have at most /T regret:

T T
max » Mgy, — My, s, INVT
a€[K] pa a,by tzl ag,by ~S
T T
> Mo, b, — min » Mo, 3 VT
t=1 €U
Summing up gives
T T
max Mgyp, —min » My, 3 VT
a€[K] i1 be[J}t 1

and thus )
maxp' Mg — Imn M
s b q D q3 ~ \f

for p and ¢ being the empirical distribution of ay.7 and by.7
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Learning in Games

Low regret means convergence to NE (cont.)

T _T
maxp Mq mln M
4 p q— p q3 ~ \F
means )
i T o= T
Mg<maxp Mg=minp Mq+ —
p q > . p q > p p q \/T
and )
T y— . T Ty
Mg>minp Mg~ maxp Mqg— —
p q = p p q . p q \/T
Therefore,
1
Tars Tar- T
max M——ij Jminp Mg+ —
o p q \/» q p q \/T

meaning that (p, ¢) converges to NE as 7" — oo
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Learning in Games

Summary

Bandit problems, a special case of reinforcement learning
@ exploration and exploitation trade-off under limited feedback
e UCB for direct reward feedback (adaptive exploration via optimism)
o self-play with Exp3 for preference feedback (dueling bandits)

o self-play for solving games (low regret = convergence to NE)
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