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Review of last lecture

A recurrent layer

§ from y = f(x) to (y,h') = f(=,h)
T @ his "hidden state” (like HMM), updated via
hi W =o(Wh+ Uz +by)
T where o is an activation function
I e y=Vh'+b, is the output
X
sy

Making it “deep”

Stack multiple recurrent layers:

@ hidden states become the inputs of
the next layer

o different layers learn different

W.,U.b, ffffffT

o last layer learns V', b, and output y g A e i s s
depth

time -

Review of last lecture

Recurrent layer applied recursively

Given a sequence x1, o, ..., can apply f recursively:

(] ho =0
t 1t . _
i o (y1,h1) = f(z1,ho)
ttt o (Y2, ho) = f(x2, h1)
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Transformer: overview
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Encoder: summarizes the input into a useful representation
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Transformer: a closer look
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© Multi-Armed Bandits
@ Online decision making
@ Motivation and setup
@ Exploration vs. Exploitation

Transformer: a closer look at self-attention

Matrix notation:

e input matrix X € RT*? obtained by stacking mlT, . ,w;

o query matrix Q = X Wy € RT*d . %"’ﬂ% B;H
o key matrix K = X Wy € RT*d HHH )
@ value matrix V.= X Wy € RT*dv X WK K
@ attention score matrix QK ' € RT*T HH - - B
@ output matrix Z € RT*d s ; . ,
QK™ - [ -8
softmax Vv
dk Q KT

\'}
where softmax is applied row-wise .
PP softmax( EEH @ ) EEE‘

Vi

O(T?) complexity (ignoring d, dy, d,) - BH

e
Decision making

Problems we have discussed so far:
@ start with a training dataset

@ learn a predictor or discover some patterns

But many real-life problems are about learning continuously:
@ make a prediction/decision
@ receive some feedback

@ repeat

Broadly, these are called online decision making problems.



WG REEREIEM  Online decision making

Examples

Amazon/Netflix/MSN recommendation systems:
@ a user visits the website
@ the system recommends some products/movies/news stories

@ the system observes whether the user clicks on the recommendation

Playing games (Go/Atari/StarCraft/...) or controlling robots:
@ make a move
@ receive some reward (e.g. score a point) or loss (e.g. fall down)

@ make another move...

13/ 52

Multi-Armed Bandits Motivation and setup

Mulit-armed bandits: motivation

Imagine going to a casino to play a slot machine
@ it robs you, like a “bandit” with a single arm

Of course there are many slot machines in the casino
o like a bandit with multiple arms (hence the name)

e if | can play for 10 times, which machines should | play?

15 / 52

WG REEREIEM  Online decision making

Reinforcement Learning

Reinforcement learning, a general framework to model such problems:
@ focus on a special case called multi-armed bandits this week

@ discuss general reinforcement learning next week

14 / 52

Motivation and setup
Applications

This simple model and its variants capture many real-life applications

e recommendation systems, each product/movie/news story is an arm
(Microsoft MSN indeed employs a variant of bandit algorithm)

@ game playing, each possible move is an arm
(AlphaGo indeed has a bandit algorithm as one of the components)

Pokémon GO announced its biggest update
yet, including 80 new Pokémon | >

._ 00:01:00

AlphaGo

16 / 52
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Formal setup Objective

What is the goal of this problem?

There are K arms (actions/choices/options/etc.) Maximizing total rewards Z?:l Ttq, Seems natural

The problem proceeds in rounds between the environment and a learner: But the absolute value of rewards is not meaningful, instead we should
for each time f = 1 T compare it to some benchmark. A classic benchmark is
=1,...,
T
@ the environment decides the reward for each arm r;1,... 7 i m?x] ZTW
a€[K] ‘=
@ the learner picks an arm a; € [K] t=1

i.e. the largest reward one can achieve by always playing a fixed arm

@ the learner observes the reward for arm a;, i.e., 7, S ft L.
’ o we want to minimize

Importantly, learner does not observe rewards for arms not selected! T
max E Tt,a — E Tt,at
a€[K]

This kind of limited feedback is now usually referred to as bandit feedback =1 =

This is called the regret: how much | regret for not sticking with the best
fixed arm in hindsight?

17 / 52 18 / 52
Environments Empirical means
How are the rewards generated by the environments?
Let fit, be the empirical mean of arm a up to time ¢:
@ they could be generated via some fixed distribution
. 1
@ they could be generated via some changing distribution Hta = g Z T'r.a
@ T<t:ar=a
@ they could be generated even completely arbitrarily /adversarially
where
. . : Nt g = lar =a
We first focus on a simple setting: ta ; lar ]
TS

@ rewards of arm a are i.i.d. samples of Ber(s,), that is, ;4 is 1 with

is the number of times we have picked arm a.
prob. s, and O with prob. 1 — p,, independent of anything else.

@ each arm has a different mean (u1, ..., px); the problem is essentially Concentration: [i; , should be close to i, if 1y 4 is large
about finding the best arm argmax, 1, as quickly as possible

19 / 52 20 / 52
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Exploitation only

Greedy

Pick each arm once for the first K rounds.

Fort=K+1,...,T, pick a; = argmax, fit—1,q

What's wrong with this greedy algorithm?
Consider the following example:
© K =2, =0.6,u2 = 0.5 (so arm 1 is the best)

@ suppose the algorithm first picks arm 1 and sees reward 0, then picks
arm 2 and sees reward 1 (this happens with decent probability)

@ the algorithm will never pick arm 1 again!

21/ 52
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A natural first attempt

Explore—then—Exploit
Input: a parameter Ty € [T]

Exploration phase: for the first T rounds, pick each arm for Tp/K times

Exploitation phase: for the remaining 1" — Ty rounds, stick with the
empirically best arm argmax, fity.q

Parameter Tj clearly controls the exploration/exploitation trade-off

23 / 52

T T
The key challenge

All bandit problems face the same dilemma:

Exploitation vs. Exploration trade-off

@ on one hand we want to exploit the arms that we think are good

@ on the other hand we need to explore all arms often enough in order
to figure out which one is better

@ so each time we need to ask: do | explore or exploit? and how?

We next discuss three ways to trade off exploration and exploitation for
our simple multi-armed bandit setting.

22 /52

Multi-Armed Bandits Exploration vs. Exploitation

Issues of Explore—then—Exploit

It's pretty reasonable, but the disadvantages are also clear:
@ not clear how to tune the hyperparameter T

@ in the exploration phase, even if an arm is clearly worse than others
based on a few pulls, it's still pulled for 7/ K times

@ clearly it won't work if the environment is changing

24 / 52
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A slightly better algorithm

e-Greedy

Pick each arm once for the first K rounds.
Fort=K+1,...,T,
@ with probability €, explore: pick an arm uniformly at random

@ with probability 1 — ¢, exploit: pick a; = argmax, fit—1,

Pros Cons

@ always exploring and exploiting @ need to tune €

@ applicable to many other problems @ same uniform exploration

o first thing to try usually

Is there a more adaptive way to explore?

25 / 52
Upper confidence bound picture link
Why is it called upper confidence bound? One can prove that with high
probability,

Mo < UCBt,a
so UCB; q is indeed an upper bound on the true mean.
: Int
Upper Confidence Bound: UCB;, £ ji—1, + 2 - =
t—1,a
5 [ InT { e
Nt—1,a

&
Ht—1,a

- 27 / 52

Multi-Armed Bandits Exploration vs. Exploitation

More adaptive exploration

A simple modification of “Greedy” leads to the well-known:

Upper Confidence Bound (UCB) algorithm
Fort=1,...,T, pick a; = argmax, UCB;, where

Int

UCBt,a = ,atfl,a +2
Nt—1,a

o the first term in UCB,, represents exploitation, while the second
(bonus) term represents exploration

@ the bonus term is large if the arm is not pulled often enough, which
encourages exploration (adaptive due to the first term)

@ exploration never stops due to the Int term (i.e., no arms will be
forever discarded) (see demo)

@ a parameter-free algorithm, and it enjoys optimal regret!

26 / 52

Multi-Armed Bandits Exploration vs. Exploitation

Exploration via Optimism

Another way to interpret UCB, “optimism in face of uncertainty”:
@ true environment is unknown due to randomness (uncertainty)

@ just pretend it's the most preferable one among all plausible
environments (optimism)

This principle is useful for many other bandit problems.

Q: what happens if we apply pessimism instead?

Lower Confidence Bound (LCB) algorithm

Fort=1,...,T, pick a; = argmax, LCB;, where

Int

LCBt,a £ llt—l,a -2
Nt—1,a

Does not work: pessimism discourages exploration!

28 / 52
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© Dueling Bandits
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Dueling Bandits

Formal setup of dueling bandits

There are K arms (same as before)

The problem proceeds in rounds between the environment and a learner:
for each timet=1,...,T

@ the learner picks a pair of arms a;, by € [K]

@ the learner observes the binary preference feedback I[a; > bi]: ay is
preferred over b; or not

Importantly, learner does not observe
@ any direct reward feedback

@ preference for any other not selected pairs

31/52

Dueling Bandits

Limitation of standard multi-armed bandits

Direct numerical reward feedback is rare or hard to obtain.

On the other hand, preference feedback is ubiquitous and easier to collect

@ especially when only a pair of options is given: do you prefer A or B?

@ a key idea in training LLM, RLHF (reinforcement learning with human
feedback) is exactly based on preference feedback for a pair of answers

We focus on the special case of multi-armed bandits, i.e., dueling bandits.

30 / 52

Dueling Bandits

How is the preference feedback generated?

Consider a simple setup:
o 3 a fixed but unknown preference feedback matrix P € [0, 1]%*K

o I[a > b] is a sample of Ber(P, ), that is, 1 with prob. P, and 0 with
prob. 1 — Py .

Natural assumptions:

® P,y + P, =1 for any pair (a,b), which also implies P, , = 0.5

e I “optimal action” a* such that P« ; > 0.5 for any b € [K], called
Condorcet winner (this assumption can be relaxed)

Intuitively, the goal is to find a* as quickly as possible.

32/52



Dueling Bandits Dueling Bandits

How to solve dueling bandits? A closer look at self-play

There are different approaches; we focus on the idea of sparring/self-play

@ suppose we only get to select a;, and an opponent/adversary selects by “This is exactly a standard multi-armed bandit problem”, or is it?

@ intuitively, we can treat [[a; = b;] as reward feedback (i.e., the goal is
to beat the opponent as often as possible) e the reward for picking arm a, I[a > b, no longer follows a fixed
distribution due to the changing b, = can’t apply UCB anymore!
@ this is exactly a standard multi-armed bandit problem!
@ now how should the “opponent” select b;? same, apply a multi-armed °in f?tc_t’ bi c:ilnbbe Z?inplletel.);;rbitrary = need an “adversarial”
bandit algorithm, but with I[a; > b;] as loss feedback! multi-armed bandit algonthm

@ usually apply two copies of the same algorithm to select a; and by;
hence the name self-play.

33 /52 34 /52
Exponential Weights for Exploration and Exploitation Importance-weighted loss estimators
The very first adversarial multi-armed bandit algorithm: Exp3 Exp3 for dueling bandits (selecting b;)
) . Fort=1,...,T,
Applying Exp3 to select b; (will come back to a; later):
® ---

Exp3 for dueling bandits (selecting b;) _ T[bs=b]T[a;-b]

@ construct estimator £; € Rff where for each b: £, i

Input: a learning rate parameter n > 0

Fort=1,....T, Well-defined using only the information I[a; > by].

T t—1
@ compute arm distribution g; = softmax (—77 > £T> Why scale by inverse importance weight? Make the estimator unbiased:

Ia; > b
@ sample b; from q; E[€p) = (1 —qp) X 0+ grp ¥ [tb] = TI[a; = b]
t,
© observe loss feedback Tla; - b (a; selected by opponent) Estimate the loss of all K actions by only seeing the loss of one action
@ construct loss estimator £; € Rff (think how SGD estimates the gradient using only one example)

Only selected action could have positive loss = exploration encouraged!
35/ 52 36 / 52




Full algorithm

Exp3 for dueling bandits (selecting b;)
Input: a learning rate parameter n > 0

Fort=1,...,T,

compute arm distribution g; = softmax (—77 Zi_:ll £T>
sample b; from q;

observe loss feedback I[a; > b (at selected by opponent)

_ I[be=b]l[ar-b]

construct estimator £; € Rff where for each b: £, i

1 controls exploration-exploitation trade-off

with the right choice of 7, Exp3 ensures regret = v/ KT (optimal)
even against an adversarial exponent

37 /52

Dueling Bandits

Losses versus rewards (cont.)

Exp3 for dueling bandits (WRONG way to select a;)
Fort=1,...,T,

sample a; from arm distribution p; = softmax (77 Zt;:ll rT)

observe reward feedback I[a; > by] (bt selected by opponent)

I[a;=all[a>b¢]
Pt,a

construct estimator r; € ]Rf where for each a: 7, =

only selected action could have positive reward = exploration

discouraged!

after a; wins one round, the algorithm increases its weight and
decreases all other arms’ weights aggressively

39 / 52

Dueling Bandits

Losses versus rewards

Importantly, exploration is encouraged when using losses but not rewards
To understand this, go back to the question: how should a; be selected?

Self-play means applying Exp3 to select a; as well, so how about:

Exp3 for dueling bandits (selecting a;)
Fort=1,...,T,

@ sample a; from arm distribution p; = softmax (77 Zi_:ll rT>
@ observe reward feedback I[a; > by]

@ construct estimator r; € Rf where for each a: 7, =

(b selected by opponent)

I[a;=all[a>b¢]
Pt,a

38 / 52

Dueling Bandits

Losses versus rewards (cont.)

Exp3 for dueling bandits (CORRECT way to select a;)
Fort=1,...,T,

sample a; from arm distribution p; = softmax (—77 Zt;:ll ET)

observe reward feedback I[a; > by] (bt selected by opponent)

Iar=a]l[a<b]

construct estimator £; € Rf where for each a: £;, = o

from softmax (77 St rT> to softmax <—17 St £T>

_ Tar=a]lla=b] _ Tar=a]l[a<b]
- Pt,a to et’a - Pt,a

when a; wins, from “increase p;,, and decrease everything else” to
“no updates”

from 7,

when a; loses, from “no updates” to “decrease p;,, and increase

everything else”
40 / 52



Dueling Bandits

What does low regret mean here?

Using Exp3 to select a; guarantees
T T
Z I a - bt ZH at > bt \/ﬁ
t=1 t=1

Similarly, using Exp3 to select b; guarantees

T T
Z]I[at - bt] — Z]I[at - a*] j VKT
t=1 t=1

Summing up gives Zthl I[a* = by]

— ST Tas = o] VKT

Taking expectation and using Py, + P, = 1 shows
T
Z (Pa*,at + Par by — 1) I VKT,
t=1

so can only pick suboptimal actions a negligible fraction (\/K/T) of times

41/ 52

Learning in Games

Self-play in general games

Dueling bandits can be seen as a game between two players

@ each player makes a move each time and observes reward/loss

The idea of self-play naturally extends to other games:

@ “games’ here does not only narrowly refer to card/video games, but
broadly any interaction between agents (from commuting to work, to
arms race between countries)

@ can involve two or more players

@ each player can have a different set of actions (arms)

@ each player can have a different reward/loss function

@ the game can be competitive, cooperative, or a mix of both

@ self-play: use the same learning algorithm for all players

43 / 52

Outline

@ Learning in Games
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Learning in Games

Zero-sum games

Focus on a special case: two-player zero-sum games

o can be described by a game matrix M € [0, 1]%*/ (generalizing P)
@ row-player has K actions, column-player has J actions

o if row-player selects a € [K] and column-player selects b € [J], then
row/column-player gets reward/loss M, (hence zero-sum)

@ canonical examples: rock-paper-scissors

Rock Paper Scissors
Rock 0.5 0 1
Paper ( 1 0.5 0 )
Scissors 0 1 0.5

44 / 52



Learning in Games

More interesting examples

Figure: poker

“

LEE SEDOL
. 00:01:00

) 107

Figure: StarCraft

Extremely large action space; still, all can be “solved” by self-play

Learning in Games

Solving poker games via self-play

Description of Pluribus

The core of Pluribus’s strategy was computed through self-play, in which the Al plays
against copies of itself, without any data of human or prior Al play used as input. The
Al starts from scratch by playing randomly and gradually improves as it determines
which actions, and which probability distribution over those actions, lead to better
outcomes against earlier versions of its strategy. Forms of self-play have previously
been used to generate powerful Als in two-player zero-sum games such as backgam-
mon (18), Go (9, 19), Dota 2 (20), StarCraft 2 (21), and two-player poker (4-6), though
the precise algorithms that were used have varied widely. Although it is easy to con-
struct toy games with more than two players in which commonly used self-play algo-
rithms fail to converge to a meaningful solution (22), in practice self-play has never-
theless been shown to do reasonably well in some games with more than two players

(23).

45 /52
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Solving Go via self-play

Mastering the game of Go with deep neural networks
and tree search

David S'\\verE, Aja Huang, Chris J. Arthur Guez, Laurent Sifre, George van den Driessche, Julian

Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe,

John Nham, Nal Kalchbrenner, llya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuogluy,

Thore Graepel & Demis Hassabis &

Nature 529, 484-489 (2016) | Cite this article

508k Accesses | 10k Citations | 3036 Altmetric | Metrics

Abstract

The game of Go has long been viewed as the most challenging of classic games for artificial
intelligence owing to its enormous search space and the difficulty of evaluating board

positions and moves. Here we introduce a new approach to computer Go that uses ‘value

networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep c:|\xl| :'f:. 3 :;;:::{}:::“’("
neural networks are trained by a novel combination of supervised learning from human ALL SYSTEMS
expert games, and reinforcement learning from games of self-play. Without any lookahead ~ /

search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search
programs that simulate thousands of random games of self-play. We also introduce a new

search algorithm that combines Monte Carlo simulation with value and policy networks.
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Nash Equilibra

What does “solving a game’' mean?

For zero-sum games, this could mean finding a Nash Equilibrium (NE),
that is, a pair of distributions p* (over [K]) and ¢* (over [J]) such that

maxp' Mq* = (p")' Mg" = min(p*) ' Mg

o p' Mg is the expected reward/loss for the row/column-player if they
sample their actions according to p and q respectively

@ (p*,q*) is an NE means p* and ¢* are best-responding to each other

@ so no player has incentive to deviate from an NE

@ they are also the best strategies assuming the worst opponent:

p* = argmaxminp' Mq and ¢* = argminmaxp' Mg
p q q p

48 / 52
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How to find Nash Equilibra? Low regret means convergence to NE

Suppose A and B have at most /T regret:
Easy for small games (e.g., a pair of uniform distributions is the NE for

T T
rock-paper-scissors) max My, — Z My, 5 = VT
(IG[K] — ) — ’ ~/
But how about game as large as poker? Can approximately find one = =t
via self-play and regret minimization! T T
ZMat,bt min Mg, p 3 VT
Self-play for zero-sum games P belJ] =
Input: multi-armed bandit algorithms A and B Summing up gives
Fort=1,...,T, T
@ get arm distributions p; and q; from A and B respectively max ZM mln My, <\T
belJ] b
@ sample a; from p; and b; from q; =
_ _ and thus 1
@ observe My, 1, (plus noise), feed it as reward to A and as loss to B ) max p TMg— mmp TMq = i
for p and g being the empirical distribution of ay.7 and by.1
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Low regret means convergence to NE (cont.) Summary
T _T 1
maxp Mq— mlnp Mq =
P \/> Bandit problems, a special case of reinforcement learning
means 1
p' Mg <maxp' Mg = minjp' Mq + ﬁ @ exploration and exploitation trade-off under limited feedback
P q
and 1 e UCB for direct reward feedback (adaptive exploration via optimism)
p'Mg>minp' Mq = maxp' Mg— —
1 P vT o self-play with Exp3 for preference feedback (dueling bandits)
Therefore,

1 e self-play for solving games (low regret = convergence to NE)
N mlinMq—l— —

VT

1
Tas—
maxp Mqg— —

i b q \/>Np

meaning that (p, ) converges to NE as 7' — oo

51 /52 52 / 52



	Review of last lecture
	Multi-Armed Bandits
	Dueling Bandits
	Learning in Games

