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Exam 2 Logistics

Date: Friday, Dec 5th

Time: 2:00-4:00pm (plus another 20 mins for uploading)

Location: THH 201 (Initial A-R) and SGM 101 (Initial S-Z)

Individual effort, close-book (no cheat sheet), no calculators or any other

electronics, but need your phone to upload your solutions to Gradescope
from 4:00-4:20pm

2/48



Exam 2 Coverage

Coverage: mostly Lec 7-11 (just see the sample)

Seven problems in total
@ one problem of 15 multiple-choice multiple-answer questions

e please note the new instructions!!

@ six other homework-like problems, each has a couple sub-problems

o clustering, EM, HMM, RNN/transformer, bandits, RL
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Outline

@ Review of last lecture
© Basics of Reinforcement learning
© Deep Q-Networks and Atari Games

@ Policy Gradient, Actor-Critic, and AlphaGo
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Review of last lecture

UCB for multi-armed bandits

Adaptive exploration-exploitation trade-off via optimism

Upper Confidence Bound (UCB) algorithm
Fort=1,...,T, pick a; = argmax, UCB;, where

Int

Nt—1,a

UCBt,a £ ﬂt—l,a +2




Self-play for dueling bandits (preference feedback)

Exp3 for dueling bandits (selecting b;)

Input: a learning rate parameter 7 > 0

Fort=1,...,T,
@ compute arm distribution q; = softmax (—n Zi_:ll £T>

@ sample b; from q;

@ observe loss feedback I[a; > by] (a; selected by opponent)
@ construct estimator £; € ]Rff where for each b: £, = H[b’:g]tw
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Review of last lecture

Losses versus rewards

Exp3 for dueling bandits (CORRECT way to select a;)
Fort=1,...,T,

@ sample a; from arm distribution p; = softmax (—77 Zt;:ll ET)

@ observe reward feedback I[a; > b (bt selected by opponent)

I[ar=a]l]a<b¢]

@ construct estimator £; € Rf where for each a: 4; , = o

e from softmax (77 st rT) to softmax (—77 et ET)

Hav=alllarbe] o p, ~— Har=alllaxb]

[+ ] frd
from r;, Pra , ia
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Review of last lecture

How to find Nash Equilibra of a zero-sum game?

Even for games as large as poker, can approximately find one via
self-play and regret minimization!

Self-play for zero-sum games

Input: multi-armed bandit algorithms A and B
Fort=1,...,T,

@ get arm distributions p; and g; from A and B respectively

@ sample a; from p; and b; from g

@ observe M,, 5, (plus noise), feed it as reward to A and as loss to B

v

Low regret = convergence to NE
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Basics of Reinforcement learning
Outline

@ Basics of Reinforcement learning
@ Markov decision process
@ Learning MDPs



Basics of Reinforcement learning

Recent Successes of Deep Reinforcement Learning (RL)

ChatGPT

StarCraft (2019) Rubik’s Cube (2019) ChatGPT (2022)

Deep RL = RL + deep neural net models, so what really is RL?
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Basics of Reinforcement learning

Motivation

Multi-armed bandit is among the simplest decision making problems with
limited feedback.

Environment

Environment

It's often too simple to capture many real-life problems. One thing it fails
to capture is the “state” of the learning agent, which has impacts on the
reward of each action.

o e.g. for Atari games, after making one move, the agent moves to a
different state, with possible different rewards for each action
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Basics of Reinforcement learning

Reinforcement learning

Reinforcement learning (RL) is one way to deal with this issue.

The foundation of RL is Markov Decision Process (MDP),
a combination of Markov model (Lec 8) and multi-armed bandit (Lec 10)
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Markov decison process
Markov Decision Processes (MDPs)

An MDP is parameterized by five elements
@ S: a set of possible states
o A: a set of possible actions

e P: transition probability, P(s'|s,a) is the probability of transiting
from state s to state s’ after taking action a (Markov property)

e 7: reward function, r(s,a) is (expected) reward of action a at state s
@ 7 € (0,1]: discount factor, informally, 1 dollar tomorrow is only worth

~ when viewed from today (inflation)

Different from simple Markov chains, the state transition is influenced by
the taken action.

Different from Multi-armed bandit, the reward depends on the state.
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Basics of Reinforcement learning

Example

Canonical example: a grid world

transition model P

@ each grid is a state
@ 4 actions: up, down, left, right

@ reward is 1 for diamond, -1 for fire, and 0 everywhere else




Basics of Reinforcement learning Markov decision process
Policy

A policy 7 specifies the probability of taking action a at state s as 7(als).

If we start from state s; € S and act according to a policy 7, the
discounted rewards for time 1,2,... are respectively

T(Sla a1)7 ’77“(527 a2)7 727"(837 a3)a

where a; ~ m(-|s¢) and sp41 ~ P(¢|s¢, at)

If we follow the policy forever, the total (discounted) reward is

(o9}
Z’Yt_lr(st, at)]
t=1

E
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D2 G
Optimal Policy and Bellman Equation

First goal: knowing all parameters, how to find the optimal policy

th_lr(st,at)] ?

t=1

argmax [E
s

We first answer a related question: what is the maximum reward one can
achieve starting from an arbitrary state s?

V(s) = maxE Z’yt_lr(st,at) ‘ s1=s5
t=1
— P / V /
max (T(s,a) + VSIZE;S (s'ls,a)V (s ))

V is called the optimal value function. It satisfies the above Bellman
equation: |S| nonlinear equations with |S| unknowns, how to solve it?
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Markov decision process
Value lteration

Value lteration
Initialize Vi(s) =0 for all s € S

For kK =1,2,... (until convergence), perform Bellman update:

Vit1(s) < max (r(s, a) + Z P(s/]s,a)Vk(s')> , VseS§

s'eS

v

Value iteration converges exponentially fast! (HW4)

Knowing V/, the optimal policy 7* is simply

7 (s) = argmax <T(s, a)+ Z P(s']s, a)V(s’))

aceA s'eS
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EauneCoRs
Learning MDPs

Now suppose we do not know the parameters of the MDP
@ transition probability P

@ reward function r

How do we find the optimal policy?
@ model-based approaches

@ model-free approaches
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LTI
Model-Based Approaches

Key idea: learn the model P and r explicitly from samples

Suppose we have a sequence of interactions: s1,a1,71,...,S7,ar, 1,
then the MLE for P and r are simply

P(s'|s,a) oc #transitions from s to s’ after taking action a

r(s,a) = average observed reward at state s after taking action a

Having estimates of the parameters we can then apply value iteration to
find the optimal policy.
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LTI
Model-Based Approaches

How do we collect data s1,a1,71, S2,a9,79,...,S7,ar,rp?

Let's adopt the e-Greedy idea again to ensure exploration.

A sketch for model-based approaches
Initialize V

Fort=1,2,...,
o with probability ¢, explore: pick an action uniformly at random
@ with probability 1 — ¢, exploit: pick the optimal action based on V'

@ update the model parameters P, r

@ update the value function V' (via value iteration)
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LTI
Model-Free Approaches

Key idea: do not learn the model explicitly. What do we learn then?

Define the @ : § x A — R function as

Q(s,a) =r(s,a) +~ Z P(s|s,a) max Q(s',a)

s'eS

In words, Q(s,a) is the expected reward one can achieve starting from

state s with action a, then acting optimally.

Clearly, V(s) = max, Q(s,a).
Knowing Q(s,a), the optimal policy at state s is simply argmax, Q(s,a).

Model-free approaches learn the () function directly from samples.
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Learing MDPs
Temporal Difference (TD error)

How to learn the Q function?
Q(s,a) =r(s,a) +7 Y P(s'|s,a) max Q(s', ')
ves a’'eA
Given experience (¢, at, ¢, S¢+1), with the current guess on @,

Yy = e +ymaxy Q(si41,4d") is like a sample of the RHS of the equation.

So it's natural to do the following update (with learning rate «):

Q(st,ap) < (1 — a)Q(se, ar) + oy
= Q(st,ar) + a(yr — Q(st,ar))
— ———————
temporal difference
d(% (Q(St, at) - .%)2
=Q(st,at) — (2 300 an) >

which is gradient descent w.r.t. squared loss %(Q(st, ag) — yt)z.
23/ 48



Leaming MDPs
Q-learning

The simplest model-free algorithm:

Q-learning

Initialize )

Fort=1,2,...,
o with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax, Q(s¢, a)
@ execute action ay, receive reward 1y, arrive at state Syy1

@ update the @ function

Q(st, at) < Q(s,a1) — a (Q(Suat) — 7 = ymax Q(set1, a))

for some learning rate a.
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Basics of Reinforcement learning Learning MDPs

Comparisons

Model-based Model-free
What it learns model parameters P,r,... | ( function
Space O(ISP?|A]) O(|S[[-A[)

Sample efficiency

usually better

usually worse
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e Deep Q-Networks and Atari Games



Deep Q-Networks and Atari Games

Function approximation

Algorithms discussed so far (called tabular algorithms) run in time/space
poly(|S||.Al), which is impractical. (Go has about 2 x 107" states!)

To overcome this issue, we approximate () by a function parametrized by 6:

Q9(57 a) ~ Q(Sa (l), v (57 a)

o (simplest) linear function approximation: Qy(s,a) = (6, ¢(s,a)) for
some “feature” ¢(s,a)

o deep Q-network (DQN): Qp is a neural net with weight 0
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Deep Q-Networks and Atari Games

@-learning with function approximation
How to learn 67

Recall in the tabular case, with y; = 1y + v maxy Q(s¢4+1,a):

Q(s1,ar)  Q(st,a) + a (yr — Q(s¢, 1))
temporal difference
9 (5 (Q(st,at) — yt)2
- aan-a2 0Q(srra) )

A natural generalization: perform gradient descent on 6 with squared loss
2
% (Qo(st,at) — i)™

0« 0—aVy (; (Qo(st,ar) — yt)2>
=0 — a(Qo(st,ar) — yt) VoQo(st, ar)
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Deep Q-Networks and Atari Games

@-learning with function approximation

Q-learning

Initialize 6 randomly

Fort=1,2,...,
o with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax, Qg(s¢, a)
@ execute action ay, receive reward 1, arrive at state Syy1

@ update the parameter of the @) function

0 < 60— a(Qo(st,ar) —y) VoQo(st, ar)

for some learning rate «.
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Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games [Deepmind, 2013]

Model each Atari game as an MDP (S, A, P,r,7):
@ states: raw images (84 x 84 after preprocessing)

o no feature engineering, end-to-end (from pixel to
action) reinforcement learning, just like humans

o stack 4 most recent frames as one state (to make
things Markovian)

@ 18 possible actions:

AN IRI€EIe iV N>
+ i+ +1+0+0+ 0+ 0+ ™ & J => 15
d8EEEEERGANARARER:

@ transition: determined by each game

indui oN

@ reward: change in score

@ 7 =0.99 (but note that the game will end at some point)
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Deep Q-Network

@ input: 84 x 84 x 4 images
@ 3 convolutional layers + 2 fully-connected layers, 3M parameters

@ each of the 18 outputs specifies the ()-value of the corresponding
action given a certain state input

Convolution Convolution Fully connected Fully connected
v v v 4
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Deep Q-Networks and Atari Games
Training

For each game, run Q-learning for 7' = 50M (around 38 days of game
experience), with two more tricks:

@ use a target network 0 to stabilize training

Yy =1¢ + ’YHE}XQG(SHMGI) = Y="t+ fymz}ng(stH, a')
a

e 0 is a snapshot of #, updated every 10K rounds

@ use experience replay to reduce correlation / increase data efficiency

e instead of using one sample in each update, use a minibatch of 32
samples randomly selected from the most recent 1M frames

(Qolsrar) —w)” = > (Qolskran) — i)

kE€minibatch
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Deep Q-Networks and Atari Games

More on experience replay

Use a minibatch of samples from previous experience

o target: from (Q9(St7at) - yt)2 to ZkEminibatch (QG(Sk,CLk) - yk)z

@ update: from

0 < 0 — a(Qo(st,ar) —yt) VoQo(st, ar)

to
0+ 60—« Z (Qo(sk,ar) — yx) VoQo(sk, ax)
keminibatch
@ in the tabular case, it means from (see programming project)
Q(st, at) < Q(st,ar) — a(Q(st,at) — yt)
to

Q(sk,ar) < Q(sk,ar) — a(Q(sg,ar) — yx), Yk € minibatch
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Deep Q-Networks and Atari Games

Results

o tested on 49 Atari Games, 5 mins each game for 30 times
@ same model architecture, same algorithm, same hyperparameters

@ compared against best linear learner and a professional human tester

DQN score — random play score % 100%

o report human score — random play score
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Deep Q-Networks and Atari Gam

Results
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Outline

@ Policy Gradient, Actor-Critic, and AlphaGo



Policy Gradient, Actor-Critic, and AlphaGo

Learning policies directly

Another popular class of RL algorithms learns the policy directly:

max “expected reward of policy 7"
s
To handle large scale problems, consider a parameterized policy class
II={n,:pecQ} (eg., aset of neural nets) and solve

max “expected reward of policy 7,"
pE

via stochastic gradient descent
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Policy gradient theorem
For simplicity, suppose v = 1 and a trajectory ends after H steps.

Expected reward of 7, can be written as
R(m,) = Z Py(1)R(7)

o 7= (s1,a1,...,Sm,ap) ranges over all possible H-step trajectories
@ P,(7) is the probability of encountering trajectory 7 under policy m,

o R(1)= Zthl r(sh,ap) is the cumulative reward for trajectory 7

So we have
VpR(m,) = Z Vo Pp(T)R(7)

How do we efficiently compute/approximate it?
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Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem (cont.)
V,P,(T
VoR(m) = SV, BR() = 3 R Vg R
= ZP )V, log P,(1)R(T) (log derivative trick)

= ]ET [V, log P,(7)R(T)] (written as an expectation)
=E; [V, log (II}2 7y (an|sn) P(spetlsn, an)) R(T)]

H
<Z V,log Wp(ahfsh)> R(7)

h=1

(transition doesn't matter!)

which can be approximated by sampling n trajectories using 7, and
taking the empirical average:

Z(ZV log 7y ( ah |5h )) ( )
=1 \h=1
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Reducing variance of gradient estimators via baselines

The key to make policy gradient work is to reduce variance of gradient
estimators. Subtracting a “baseline” is a standard way to achieve so:

V,R(r,) =

ZV log 7w, (an|sn)R(T)

h=1

H
Z V,logm,(aplsy) (R(T) — b(s1., al:hl))]

h=1

This holds for any b that only depends on s1.;,,a1.;,—1, because

an [Vplog m,(ap|sy)b] =0 Z mp(an|sh) Vomp(anlsn)
v Tp(an|sh)
= bV, Z mp(anlsy) = 0V,1 =0
ap€A
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Which baselines?

V,R(m,) =

ZV log 7p(an|sn) (R(T) — b(51;h7(11:h1))]

h=1
Want b(s1.p,a1.,—1) to be close to R(7), leading to an idealized choice:

“observed reward before h" + “expected reward starting from h"

h—1 H
= (Z r(sh/,ah/)> —I—E Z r(sh/,ah/) ‘ Sp! = Sh]

h'=1 h'=h

VTrp(Sh)
Vr,, called a critic, is usually approximated by another network 6:
“observed reward before h" + “estimated reward starting from A"
h—1
(32 o) vt
h=1
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Actor-Critic methods

Repeat:

@ Critic evaluates the current policy 7, by fitting Vp from samples using
square loss:

mmzz (Ve (s17) - XI:: R ))2

@ Actor improves the current policy 7, via stochastic gradient descent:

H
p—p—— ZZV logwp(ah ]sh ) <Z r (85;,),(]/2/)> — Vg(sg))>

i=1 h=1 h'=h

=R(r)=b(s) af}) )
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Case study: AlphaGo [Deepmind, 2015]

Model Go as an MDP (S, A, P,r,~):

@ states: each 19 x 19 position of the
game is pre-processed into an
19 x 19 x 48 image stack consisting of
feature planes

@ actions: all legal next moves

@ transition: determined by the opponent oo 3e

©00=@x

@ reward: only the ending state has ©
reward (1 if win, —1 if lose)

o v=1
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Policy Gradient, Actor-Critic, and AlphaGo

Policy /value networks

Both 7, and Vj are large convolutional neural nets:




Policy Gradient, Actor-Critic, and AlphaGo

Training

Step 1: first train a policy m, using pure supervised learning from 30M
expert moves (a_multiclass classification task)

Step 2: use actor-critic to train policy network 7, and value network Vj

@ initialize p as o

o self-play: every 500 iterations, add current p to an opponent pool; in
each iteration, randomly sampled one from this pool as the opponent

@ trained for 10K iterations, each with 128 games
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Testing (actual play)

“Monte-Carlo Tree Search” with the help of policy/value networks:
e select a move with highest estimated quality @ + UCB (inversely
proportional to #visits, just like bandits)

expand a leaf (when visited more than a certain times) using 7,
evaluate the leaf by averaging Vj's prediction and a random rollout
update the quality ) value along the traversed edges

when the search halts, select the most visited move at the root

a Selection b Expansion c Evaluation d Backup

ﬂmj& culp a o 15 1§ # ﬁ{i’i :
Q+ulP) magﬁ p(ﬁ) ﬁ V”(m) ﬁ %
N\ "l

(+#)

|
@) )
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Policy Gradient, Actor-Critic, and AlphaGo

Results

@ 99.8% win rate against other Go programs
@ 5-0 Fan Hui (2013/2014/2015 European Go champion)

@ first superhuman Al for Go, previously believed to be a decade away
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Policy Gradient, Actor-Critic, and AlphaGo

Summary

A brief introduction to (deep) RL:

e foundation: MDP, value iteration, model-based/free learning

o large-scale and practical deep RL methods:

e (-learning with function approximation, DQN, and their success in
Atari games

e policy gradient, actor-critic methods, and their success in Go
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