
CSCI567 Machine Learning (Fall 2025)

Haipeng Luo

University of Southern California

Nov 21, 2025

1 / 48

Exam 2 Logistics

Date: Friday, Dec 5th

Time: 2:00-4:00pm (plus another 20 mins for uploading)

Location: THH 201 (Initial A-R) and SGM 101 (Initial S-Z)

Individual effort, close-book (no cheat sheet), no calculators or any other
electronics, but need your phone to upload your solutions to Gradescope
from 4:00-4:20pm

2 / 48

Exam 2 Coverage

Coverage: mostly Lec 7-11 (just see the sample)

Seven problems in total

one problem of 15 multiple-choice multiple-answer questions

please note the new instructions!!

six other homework-like problems, each has a couple sub-problems

clustering, EM, HMM, RNN/transformer, bandits, RL

3 / 48

Outline

1 Review of last lecture

2 Basics of Reinforcement learning

3 Deep Q-Networks and Atari Games

4 Policy Gradient, Actor-Critic, and AlphaGo

4 / 48

Review of last lecture

Outline

1 Review of last lecture

2 Basics of Reinforcement learning

3 Deep Q-Networks and Atari Games

4 Policy Gradient, Actor-Critic, and AlphaGo

5 / 48

Review of last lecture

UCB for multi-armed bandits

Adaptive exploration-exploitation trade-off via optimism

Upper Confidence Bound (UCB) algorithm

For t = 1, . . . , T , pick at = argmaxa UCBt,a where

UCBt,a ≜ µ̂t−1,a + 2

√
ln t

nt−1,a

6 / 48

Review of last lecture

Self-play for dueling bandits (preference feedback)

Exp3 for dueling bandits (selecting bt)

Input: a learning rate parameter η > 0

For t = 1, . . . , T ,

compute arm distribution qt = softmax
(
−η
∑t−1

τ=1 ℓτ

)
sample bt from qt

observe loss feedback I[at ≻ bt] (at selected by opponent)

construct estimator ℓt ∈ RK
+ where for each b: ℓt,b =

I[bt=b]I[at≻b]
qt,b

7 / 48

Review of last lecture

Losses versus rewards

Exp3 for dueling bandits (CORRECT way to select at)

For t = 1, . . . , T ,

sample at from arm distribution pt = softmax
(
−η
∑t−1

τ=1 ℓτ

)
observe reward feedback I[at ≻ bt] (bt selected by opponent)

construct estimator ℓt ∈ RK
+ where for each a: ℓt,a = I[at=a]I[a≺bt]

pt,a

from softmax
(
η
∑t−1

τ=1 rτ

)
to softmax

(
−η
∑t−1

τ=1 ℓτ

)
from rt,a = I[at=a]I[a≻bt]

pt,a
to ℓt,a = I[at=a]I[a≺bt]

pt,a

8 / 48

Review of last lecture

How to find Nash Equilibra of a zero-sum game?

Even for games as large as poker, can approximately find one via
self-play and regret minimization!

Self-play for zero-sum games

Input: multi-armed bandit algorithms A and B
For t = 1, . . . , T ,

get arm distributions pt and qt from A and B respectively

sample at from pt and bt from qt

observe Mat,bt (plus noise), feed it as reward to A and as loss to B

Low regret ⇒ convergence to NE

9 / 48

Basics of Reinforcement learning

Outline

1 Review of last lecture

2 Basics of Reinforcement learning
Markov decision process
Learning MDPs

3 Deep Q-Networks and Atari Games

4 Policy Gradient, Actor-Critic, and AlphaGo

10 / 48

Basics of Reinforcement learning

Recent Successes of Deep Reinforcement Learning (RL)

Atari (2013) Go (2015) Dota 2 (2017)

StarCraft (2019) Rubik’s Cube (2019) ChatGPT (2022)

Deep RL = RL + deep neural net models, so what really is RL?

11 / 48

Basics of Reinforcement learning

Motivation

Multi-armed bandit is among the simplest decision making problems with
limited feedback.

It’s often too simple to capture many real-life problems. One thing it fails
to capture is the “state” of the learning agent, which has impacts on the
reward of each action.

e.g. for Atari games, after making one move, the agent moves to a
different state, with possible different rewards for each action

12 / 48

Basics of Reinforcement learning

Reinforcement learning

Reinforcement learning (RL) is one way to deal with this issue.

The foundation of RL is Markov Decision Process (MDP),
a combination of Markov model (Lec 8) and multi-armed bandit (Lec 10)

13 / 48

Basics of Reinforcement learning Markov decision process

Markov Decision Processes (MDPs)

An MDP is parameterized by five elements

S: a set of possible states

A: a set of possible actions

P : transition probability, P (s′|s, a) is the probability of transiting
from state s to state s′ after taking action a (Markov property)

r: reward function, r(s, a) is (expected) reward of action a at state s

γ ∈ (0, 1]: discount factor, informally, 1 dollar tomorrow is only worth
γ when viewed from today (inflation)

Different from simple Markov chains, the state transition is influenced by
the taken action.

Different from Multi-armed bandit, the reward depends on the state.

14 / 48

Basics of Reinforcement learning Markov decision process

Example

Canonical example: a grid world

transition model P

each grid is a state

4 actions: up, down, left, right

reward is 1 for diamond, -1 for fire, and 0 everywhere else

15 / 48

Basics of Reinforcement learning Markov decision process

Policy

A policy π specifies the probability of taking action a at state s as π(a|s).

If we start from state s1 ∈ S and act according to a policy π, the
discounted rewards for time 1, 2, . . . are respectively

r(s1, a1), γr(s2, a2), γ2r(s3, a3), · · ·

where at ∼ π(·|st) and st+1 ∼ P (·|st, at)

If we follow the policy forever, the total (discounted) reward is

E

[∞∑
t=1

γt−1r(st, at)

]

16 / 48

Basics of Reinforcement learning Markov decision process

Optimal Policy and Bellman Equation

First goal: knowing all parameters, how to find the optimal policy

argmax
π

E

[∞∑
t=1

γt−1r(st, at)

]
?

We first answer a related question: what is the maximum reward one can
achieve starting from an arbitrary state s?

V (s) = max
π

E

[∞∑
t=1

γt−1r(st, at)
∣∣∣ s1 = s

]

= max
a∈A

(
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)

)

V is called the optimal value function. It satisfies the above Bellman
equation: |S| nonlinear equations with |S| unknowns, how to solve it?

17 / 48

Basics of Reinforcement learning Markov decision process

Value Iteration

Value Iteration

Initialize V1(s) = 0 for all s ∈ S

For k = 1, 2, . . . (until convergence), perform Bellman update:

Vk+1(s)← max
a∈A

(
r(s, a) + γ

∑
s′∈S

P (s′|s, a)Vk(s
′)

)
, ∀s ∈ S

Value iteration converges exponentially fast! (HW4)

Knowing V , the optimal policy π∗ is simply

π∗(s) = argmax
a∈A

(
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)

)

18 / 48

Basics of Reinforcement learning Learning MDPs

Learning MDPs

Now suppose we do not know the parameters of the MDP

transition probability P

reward function r

How do we find the optimal policy?

model-based approaches

model-free approaches

19 / 48

Basics of Reinforcement learning Learning MDPs

Model-Based Approaches

Key idea: learn the model P and r explicitly from samples

Suppose we have a sequence of interactions: s1, a1, r1, . . . , sT , aT , rT ,
then the MLE for P and r are simply

P (s′|s, a) ∝ #transitions from s to s′ after taking action a

r(s, a) = average observed reward at state s after taking action a

Having estimates of the parameters we can then apply value iteration to
find the optimal policy.

20 / 48

Basics of Reinforcement learning Learning MDPs

Model-Based Approaches

How do we collect data s1, a1, r1, s2, a2, r2, . . . , sT , aT , rT ?

Let’s adopt the ϵ-Greedy idea again to ensure exploration.

A sketch for model-based approaches

Initialize V

For t = 1, 2, . . .,

with probability ϵ, explore: pick an action uniformly at random

with probability 1− ϵ, exploit: pick the optimal action based on V

update the model parameters P, r

update the value function V (via value iteration)

21 / 48

Basics of Reinforcement learning Learning MDPs

Model-Free Approaches

Key idea: do not learn the model explicitly. What do we learn then?

Define the Q : S ×A → R function as

Q(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)max
a′∈A

Q(s′, a′)

In words, Q(s, a) is the expected reward one can achieve starting from

state s with action a, then acting optimally.

Clearly, V (s) = maxaQ(s, a).

Knowing Q(s, a), the optimal policy at state s is simply argmaxaQ(s, a).

Model-free approaches learn the Q function directly from samples.

22 / 48

Basics of Reinforcement learning Learning MDPs

Temporal Difference (TD error)

How to learn the Q function?

Q(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)max
a′∈A

Q(s′, a′)

Given experience (st, at, rt, st+1), with the current guess on Q,
yt = rt + γmaxa′ Q(st+1, a

′) is like a sample of the RHS of the equation.

So it’s natural to do the following update (with learning rate α):

Q(st, at)← (1− α)Q(st, at) + αyt

= Q(st, at) + α (yt −Q(st, at))︸ ︷︷ ︸
temporal difference

= Q(st, at)− α
∂
(
1
2 (Q(st, at)− yt)

2
)

∂Q(st, at)

which is gradient descent w.r.t. squared loss 1
2 (Q(st, at)− yt)

2.
23 / 48

Basics of Reinforcement learning Learning MDPs

Q-learning

The simplest model-free algorithm:

Q-learning

Initialize Q

For t = 1, 2, . . .,

with probability ϵ, explore: at is chosen uniformly at random

with probability 1− ϵ, exploit: at = argmaxaQ(st, a)

execute action at, receive reward rt, arrive at state st+1

update the Q function

Q(st, at)← Q(st, at)− α
(
Q(st, at)− rt − γmax

a
Q(st+1, a)

)
for some learning rate α.

24 / 48

Basics of Reinforcement learning Learning MDPs

Comparisons

Model-based Model-free

What it learns model parameters P, r, . . . Q function

Space O(|S|2|A|) O(|S||A|)

Sample efficiency usually better usually worse

25 / 48

Deep Q-Networks and Atari Games

Outline

1 Review of last lecture

2 Basics of Reinforcement learning

3 Deep Q-Networks and Atari Games

4 Policy Gradient, Actor-Critic, and AlphaGo

26 / 48

Deep Q-Networks and Atari Games

Function approximation

Algorithms discussed so far (called tabular algorithms) run in time/space
poly(|S||A|), which is impractical. (Go has about 2× 10170 states!)

To overcome this issue, we approximate Q by a function parametrized by θ:

Qθ(s, a) ≈ Q(s, a), ∀ (s, a)

(simplest) linear function approximation: Qθ(s, a) = ⟨θ, ϕ(s, a)⟩ for
some “feature” ϕ(s, a)

deep Q-network (DQN): Qθ is a neural net with weight θ

27 / 48

Deep Q-Networks and Atari Games

Q-learning with function approximation

How to learn θ?

Recall in the tabular case, with yt = rt + γmaxa′ Q(st+1, a
′):

Q(st, at)← Q(st, at) + α (yt −Q(st, at))︸ ︷︷ ︸
temporal difference

= Q(st, at)− α
∂
(
1
2 (Q(st, at)− yt)

2
)

∂Q(st, at)

A natural generalization: perform gradient descent on θ with squared loss
1
2 (Qθ(st, at)− yt)

2:

θ ← θ − α∇θ

(
1

2
(Qθ(st, at)− yt)

2

)
= θ − α (Qθ(st, at)− yt)∇θQθ(st, at)

28 / 48

Deep Q-Networks and Atari Games

Q-learning with function approximation

Q-learning

Initialize θ randomly

For t = 1, 2, . . .,

with probability ϵ, explore: at is chosen uniformly at random

with probability 1− ϵ, exploit: at = argmaxaQθ(st, a)

execute action at, receive reward rt, arrive at state st+1

update the parameter of the Q function

θ ← θ − α (Qθ(st, at)− yt)∇θQθ(st, at)

for some learning rate α.

29 / 48

Deep Q-Networks and Atari Games

Case study: superhuman AI for Atari games [Deepmind, 2013]

Model each Atari game as an MDP (S,A, P, r, γ):
states: raw images (84× 84 after preprocessing)

no feature engineering, end-to-end (from pixel to
action) reinforcement learning, just like humans

stack 4 most recent frames as one state (to make
things Markovian)

18 possible actions:

transition: determined by each game

reward: change in score

γ = 0.99 (but note that the game will end at some point)

30 / 48

Deep Q-Networks and Atari Games

Deep Q-Network

input: 84× 84× 4 images

3 convolutional layers + 2 fully-connected layers, 3M parameters

each of the 18 outputs specifies the Q-value of the corresponding
action given a certain state input

31 / 48

Deep Q-Networks and Atari Games

Training

For each game, run Q-learning for T = 50M (around 38 days of game
experience), with two more tricks:

use a target network θ̄ to stabilize training

yt = rt + γmax
a′

Qθ(st+1, a
′) =⇒ yt = rt + γmax

a′
Qθ̄(st+1, a

′)

θ̄ is a snapshot of θ, updated every 10K rounds

use experience replay to reduce correlation / increase data efficiency

instead of using one sample in each update, use a minibatch of 32
samples randomly selected from the most recent 1M frames

(Qθ(st, at)− yt)
2

=⇒
∑

k∈minibatch

(Qθ(sk, ak)− yk)
2

32 / 48

Deep Q-Networks and Atari Games

More on experience replay

Use a minibatch of samples from previous experience

target: from (Qθ(st, at)− yt)
2 to

∑
k∈minibatch (Qθ(sk, ak)− yk)

2

update: from

θ ← θ − α (Qθ(st, at)− yt)∇θQθ(st, at)

to
θ ← θ − α

∑
k∈minibatch

(Qθ(sk, ak)− yk)∇θQθ(sk, ak)

in the tabular case, it means from (see programming project)

Q(st, at)← Q(st, at)− α(Q(st, at)− yt)

to

Q(sk, ak)← Q(sk, ak)− α(Q(sk, ak)− yk), ∀k ∈ minibatch

33 / 48

Deep Q-Networks and Atari Games

Results

tested on 49 Atari Games, 5 mins each game for 30 times

same model architecture, same algorithm, same hyperparameters

compared against best linear learner and a professional human tester

report DQN score − random play score
human score − random play score × 100%

34 / 48

Deep Q-Networks and Atari Games

Results

35 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Outline

1 Review of last lecture

2 Basics of Reinforcement learning

3 Deep Q-Networks and Atari Games

4 Policy Gradient, Actor-Critic, and AlphaGo

36 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Learning policies directly

Another popular class of RL algorithms learns the policy directly:

max
π

“expected reward of policy π”

To handle large scale problems, consider a parameterized policy class
Π = {πρ : ρ ∈ Ω} (e.g., a set of neural nets) and solve

max
ρ∈Ω

“expected reward of policy πρ”

via stochastic gradient descent

37 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem

For simplicity, suppose γ = 1 and a trajectory ends after H steps.

Expected reward of πρ can be written as

R(πρ) =
∑
τ

Pρ(τ)R(τ)

τ = (s1, a1, . . . , sH , aH) ranges over all possible H-step trajectories

Pρ(τ) is the probability of encountering trajectory τ under policy πρ

R(τ) =
∑H

h=1 r(sh, ah) is the cumulative reward for trajectory τ

So we have
∇ρR(πρ) =

∑
τ

∇ρPρ(τ)R(τ)

How do we efficiently compute/approximate it?

38 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem (cont.)

∇ρR(πρ) =
∑
τ

∇ρPρ(τ)R(τ) =
∑
τ

Pρ(τ)
∇ρPρ(τ)

Pρ(τ)
R(τ)

=
∑
τ

Pρ(τ)∇ρ logPρ(τ)R(τ) (log derivative trick)

= Eτ [∇ρ logPρ(τ)R(τ)] (written as an expectation)

= Eτ

[
∇ρ log

(
ΠH

h=1πρ(ah|sh)P (sh+1|sh, ah)
)
R(τ)

]
= Eτ

[(
H∑

h=1

∇ρ log πρ(ah|sh)

)
R(τ)

]
(transition doesn’t matter!)

which can be approximated by sampling n trajectories using πρ and
taking the empirical average:

1

n

n∑
i=1

(
H∑

h=1

∇ρ log πρ(a
(i)
h |s

(i)
h)

)
R(τ (i))

39 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Reducing variance of gradient estimators via baselines

The key to make policy gradient work is to reduce variance of gradient
estimators. Subtracting a “baseline” is a standard way to achieve so:

∇ρR(πρ) = Eτ

[
H∑

h=1

∇ρ log πρ(ah|sh)R(τ)

]

= Eτ

[
H∑

h=1

∇ρ log πρ(ah|sh) (R(τ)− b(s1:h, a1:h−1))

]

This holds for any b that only depends on s1:h, a1:h−1, because

Eah [∇ρ log πρ(ah|sh)b] = b
∑
ah∈A

πρ(ah|sh)
∇ρπρ(ah|sh)
πρ(ah|sh)

= b∇ρ

∑
ah∈A

πρ(ah|sh) = b∇ρ1 = 0

40 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Which baselines?

∇ρR(πρ) = Eτ

[
H∑

h=1

∇ρ log πρ(ah|sh) (R(τ)− b(s1:h, a1:h−1))

]
Want b(s1:h, a1:h−1) to be close to R(τ), leading to an idealized choice:

“observed reward before h”+ “expected reward starting from h”

=

(
h−1∑
h′=1

r(sh′ , ah′)

)
+ E

[
H∑

h′=h

r(sh′ , ah′) | sh′ = sh

]
︸ ︷︷ ︸

Vπρ (sh)

Vπρ , called a critic, is usually approximated by another network θ:

“observed reward before h”+ “estimated reward starting from h”

=

(
h−1∑
h′=1

r(sh′ , ah′)

)
+ Vθ(sh)

41 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Actor-Critic methods

Repeat:

Critic evaluates the current policy πρ by fitting Vθ from samples using
square loss:

min
θ

m∑
j=1

H∑
h=1

(
Vθ

(
s
(j)
h

)
−

H∑
h′=h

r
(
s
(j)
h′ , a

(j)
h′

))2

Actor improves the current policy πρ via stochastic gradient descent:

ρ← ρ− α

n

n∑
i=1

H∑
h=1

∇ρ log πρ(a
(i)
h |s

(i)
h)

(
H∑

h′=h

r
(
s
(i)
h′ , a

(i)
h′

)
− Vθ(s

(i)
h)

)
︸ ︷︷ ︸

=R(τ (i))−b(s
(i)
1:h,a

(i)
1:h−1)

42 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Case study: AlphaGo [Deepmind, 2015]

Model Go as an MDP (S,A, P, r, γ):

states: each 19× 19 position of the
game is pre-processed into an
19× 19× 48 image stack consisting of
feature planes

actions: all legal next moves

transition: determined by the opponent

reward: only the ending state has
reward (1 if win, −1 if lose)

γ = 1

43 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Policy/value networks

Both πρ and Vθ are large convolutional neural nets:

44 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Training

Step 1: first train a policy πσ using pure supervised learning from 30M
expert moves (a multiclass classification task)

Step 2: use actor-critic to train policy network πρ and value network Vθ

initialize ρ as σ

self-play: every 500 iterations, add current ρ to an opponent pool; in
each iteration, randomly sampled one from this pool as the opponent

trained for 10K iterations, each with 128 games

45 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Testing (actual play)

“Monte-Carlo Tree Search” with the help of policy/value networks:

select a move with highest estimated quality Q + UCB (inversely
proportional to #visits, just like bandits)

expand a leaf (when visited more than a certain times) using πσ

evaluate the leaf by averaging Vθ’s prediction and a random rollout

update the quality Q value along the traversed edges

when the search halts, select the most visited move at the root

46 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Results

99.8% win rate against other Go programs

5-0 Fan Hui (2013/2014/2015 European Go champion)

first superhuman AI for Go, previously believed to be a decade away

47 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Summary

A brief introduction to (deep) RL:

foundation: MDP, value iteration, model-based/free learning

large-scale and practical deep RL methods:

Q-learning with function approximation, DQN, and their success in
Atari games

policy gradient, actor-critic methods, and their success in Go

48 / 48

	Review of last lecture
	Basics of Reinforcement learning
	Deep Q-Networks and Atari Games
	Policy Gradient, Actor-Critic, and AlphaGo

