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Exam 2 Coverage

Coverage: mostly Lec 7-11 (just see the sample)

Seven problems in total
@ one problem of 15 multiple-choice multiple-answer questions
o please note the new instructions!!
@ six other homework-like problems, each has a couple sub-problems

o clustering, EM, HMM, RNN /transformer, bandits, RL

3/ 48

Exam 2 Logistics

Date: Friday, Dec 5th

Time: 2:00-4:00pm (plus another 20 mins for uploading)

Location: THH 201 (Initial A-R) and SGM 101 (Initial S-Z)

Individual effort, close-book (no cheat sheet), no calculators or any other

electronics, but need your phone to upload your solutions to Gradescope
from 4:00-4:20pm
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Outline

© Review of last lecture
© Basics of Reinforcement learning
e Deep Q-Networks and Atari Games

e Policy Gradient, Actor-Critic, and AlphaGo

4/ 48



Review of Iast lecture
Outline UCB for multi-armed bandits

Adaptive exploration-exploitation trade-off via optimism

Upper Confidence Bound (UCB) algorithm

© Review of last lecture Fort=1,...,T, pick a; = argmax, UCB;, where

Int

Nt—1,a

UCBt,a £ ﬂt—l,a +2

e
Self-play for dueling bandits (preference feedback) Losses versus rewards
Exp3 for dueling bandits (selecting b;) Exp3 for dueling bandits (CORRECT way to select a;)
Input: a learning rate parameter n > 0 Fort=1,....T,
For f — 1 T @ sample a; from arm distribution p; = softmax (—77 ZtT_:ll ET)
Dt A ’
o compute arm distribution g, = softmax (—77 Sl fT) @ observe reward feedback I[a; > b (bt selected by opponent)
T=
o sample b; from g e construct estimator £; € R where for each a: £, = M‘”i‘ﬂ#
@ observe loss feedback lja; = b a; selected by opponent
laz > b (as y opP ) e from softmax (n Zt;:ll rT> to softmax (—n Zt;:ll £T>
@ construct estimator £; € ]Rf where for each b: £, = I[b:=b]l[arb]
’ qt.b f _ Tat=a]l[a>b¢] _ Tat=a]l[a<b¢]
@ Trom 7't q = T to Et,a = T



Review of last lecture

How to find Nash Equilibra of a zero-sum game?

Even for games as large as poker, can approximately find one via
self-play and regret minimization!

Self-play for zero-sum games

Input: multi-armed bandit algorithms A and B
Fort=1,...,T,

@ get arm distributions p; and g; from A and B respectively

@ sample a; from p; and b; from q;

@ observe M, p, (plus noise), feed it as reward to A and as loss to B

v

Low regret = convergence to NE
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Basics of Reinforcement learning

Recent Successes of Deep Reinforcement Learning (RL)

ChatGPT

StarCraft (2019) Rubik's Cube (2019) ChatGPT (2022)

Deep RL = RL + deep neural net models, so what really is RL?
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Basics of Reinforcement learning
Outline

© Basics of Reinforcement learning
@ Markov decision process
@ Learning MDPs
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Basics of Reinforcement learning

Motivation

Multi-armed bandit is among the simplest decision making problems with
limited feedback.

Environment

Environment

It's often too simple to capture many real-life problems. One thing it fails

to capture is the “state” of the learning agent, which has impacts on the
reward of each action.

@ e.g. for Atari games, after making one move, the agent moves to a
different state, with possible different rewards for each action
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Basics of Reinforcement learning

Reinforcement learning

Reinforcement learning (RL) is one way to deal with this issue.

The foundation of RL is Markov Decision Process (MDP),
a combination of Markov model (Lec 8) and multi-armed bandit (Lec 10)
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Basics of Reinforcement learning Markov decision process
Example

Canonical example: a grid world

i:% iz
o.1/ﬁ>(N.1
iﬁi

transition model P

@ each grid is a state

@ 4 actions: up, down, left, right

@ reward is 1 for diamond, -1 for fire, and 0 everywhere else
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Basics of Reinforcement learning Markov decision process

Markov Decision Processes (MDPs)

An MDP is parameterized by five elements
@ S: a set of possible states
e A: a set of possible actions

e P: transition probability, P(s'|s,a) is the probability of transiting
from state s to state s’ after taking action a (Markov property)

e 7: reward function, r(s,a) is (expected) reward of action a at state s

e v € (0,1]: discount factor, informally, 1 dollar tomorrow is only worth
~ when viewed from today (inflation)

Different from simple Markov chains, the state transition is influenced by
the taken action.

Different from Multi-armed bandit, the reward depends on the state.
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EECTCRG N ENITI I TAEETAI-S  Markov decision process
Policy

A policy 7 specifies the probability of taking action a at state s as 7(als).

If we start from state s; € S and act according to a policy 7, the
discounted rewards for time 1,2, ... are respectively

7“(317 al)a ’77‘(52; CLQ), 727“(537 a3)7

where a; ~ 7(+|s¢) and spp1 ~ P(+|s¢, ar)

If we follow the policy forever, the total (discounted) reward is

Z’Yt_lr(st, at)]

t=1

E
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EECTCRGEENITI I MEETGT-8  Markov decision process

Optimal Policy and Bellman Equation

First goal: knowing all parameters, how to find the optimal policy

thflr(st, at)] ?

argmax [E
4 t=1

We first answer a related question: what is the maximum reward one can
achieve starting from an arbitrary state s?

o0
V(s) = maxE Z’yt_lr(st,at) ’ 1=
t=1
— P / V /
max (T(s,a) JWSZE; (s'|s,a)V (s ))

V is called the optimal value function. It satisfies the above Bellman
equation: |S| nonlinear equations with |S| unknowns, how to solve it?

17 / 48

I el
Learning MDPs

Now suppose we do not know the parameters of the MDP
@ transition probability P

@ reward function r

How do we find the optimal policy?
@ model-based approaches

@ model-free approaches
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EECTCRG N ENII I MEETGI-S  Markov decision process

Value lteration

Value lteration

Initialize Vi(s) =0 forall s €S

For k =1,2,... (until convergence), perform Bellman update:

s'eS

Vir1(s) « max (r(s,a) +y Z P(s'\s,a)Vk(s’)> , Vse S8

Value iteration converges exponentially fast!

Knowing V', the optimal policy 7* is simply

7*(s) = argmax (r(s, a)+ Z P(s]s, a)V(s'))

a€A s'eS

Basics of Reinforcement learning IEETGILTES VYD1

Model-Based Approaches

Key idea: learn the model P and r explicitly from samples

Suppose we have a sequence of interactions: s1,a1,71,

-, ST,ar, T,
then the MLE for P and r are simply

P(s'|s,a) o #transitions from s to s” after taking action a

r(s,a) = average observed reward at state s after taking action a

Having estimates of the parameters we can then apply value iteration to
find the optimal policy.

v

(HW4)
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Lo
Model-Based Approaches

el
Model-Free Approaches

How do we collect data s1,a1,11,S9,a2,79,...,ST, a1, rT? Key idea: do not learn the model explicitly. What do we learn then?
Let's adopt the e-Greedy idea again to ensure exploration. Define the @ : S x A — R function as

A sketch for model-based approaches Qs,a) = r(s,a) + Z P(s'|s, ) H/laxQ(s',a')
Initialize V/ ies a'€A

Fort=1,2,..., In words, (s, a) is the expected reward one can achieve starting from

e with probability ¢, explore: pick an action uniformly at random state s with action a, then acting optimally.

o with probability 1 — ¢, exploit: pick the optimal action based on V' Clearly, V(s) = max, Q(s, a)
1 - a 9 .

@ update the model parameters P, r

Knowing Q(s,a), the optimal policy at state s is simply argmax, Q(s,a).
@ update the value function V' (via value iteration)

‘ Model-free approaches learn the () function directly from samples.
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ETENEE
Temporal Difference (TD error)

Basics of Reinforcement learning IEETGILTES VYD1
Q-learning

How to learn the Q function? The simplest model-free algorithm:

Q(s,a) =r(s,a) +~ Z P(s'|s,a) max Q(s',ad) Q-learning
a'e
s'€S Initialize Q

Given experience (s, ag, ¢, S¢+1), with the current guess on @, Fort—1.2
2.,

yr = 1t +ymaxy Q(se41,d’) is like a sample of the RHS of the equation.

e with probability ¢, explore: a; is chosen uniformly at random
So it's natural to do the following update (with learning rate «):

e with probability 1 — ¢, exploit: a; = argmax, Q(s¢, a)
Q(st,ar) < (1 — a)Q(st, ar) + oy

= Q(spar) + a (g — Q(se, ar)) @ execute action ay, receive reward 1y, arrive at state s;11
N——— .
temporal difference @ update the @ function
0 (l Sg,ap) — 2)
— Qs ar) — a2 (2( ( ! ) ) Qs ar) + Qlswran) — a (Qst,a0) — 11— Y max Q(sesn, )
’ Q(st, at
which is gradient descent w.r.t. squared loss % (Q(s¢,ar) — y)?. for some learning rate a. 4
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Basics of Reinforcement learning IEETGTLEA VYD1

Comparisons

Model-based Model-free

What it learns model parameters P,r,... | (@ function
Space O(|S?|Al) O(|SIAl)

Sample efficiency usually better usually worse
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Deep Q-Networks and Atari Games

Function approximation

Algorithms discussed so far (called tabular algorithms) run in time/space
poly(|S||A|), which is impractical. (Go has about 2 x 107 states!)

To overcome this issue, we approximate () by a function parametrized by 6:

QQ(saa) ~ Q(Sva)v v (Sva)

@ (simplest) linear function approximation: Qy(s,a) = (0, ¢(s,a)) for
some “feature” ¢(s,a)

o deep Q-network (DQN): Qy is a neural net with weight 6
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Deep Q-Networks and Atari Games

Outline

© Deep Q-Networks and Atari Games
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Deep Q-Networks and Atari Games

(Q-learning with function approximation

How to learn 07

Recall in the tabular case, with y; = ry + v maxy Q(s141,4d):

Q(st,at) < Q(st, ar) + a (yr — Q(st, ar))

~——

temporal difference
0 <% (Q(St, at) - yt)2>

0Q(st, at)

A natural generalization: perform gradient descent on 6 with squared loss
2
% (Qo(st,at) —yi)™

= Q(St7 at) -«

0+ 60— aVy (; (Qo(st,at) — yt)2>
=0—-« (Qg(St, at) - yt) VeQe(St, at)
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Deep Q-Networks and Atari Games

(Q-learning with function approximation

Q-learning

Initialize € randomly

Fort=1,2,...,
e with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax, Qgy(s¢, a)
@ execute action a;, receive reward 1, arrive at state sy

@ update the parameter of the () function
0 < 0 — a(Qo(st, ar) — yt) VoQo(st, ar)

for some learning rate «.

Deep Q-Network

@ input: 84 x 84 x 4 images
@ 3 convolutional layers + 2 fully-connected layers, 3M parameters

@ each of the 18 outputs specifies the ()-value of the corresponding
action given a certain state input

Convolution

Convglution Fully cgrmected Fully cgnnected

.

goal
o-

MRlEJe vy
1L
© [© (¢ (¢ (@) (¢ (¢

2
©
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Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games

Model each Atari game as an MDP (S, A, P, r,~):
@ states: raw images (84 x 84 after preprocessing)

[Deepmind, 2013]

e no feature engineering, end-to-end (from pixel to
action) reinforcement learning, just like humans

o stack 4 most recent frames as one state (to make
things Markovian)

@ 18 possible actions:

AIMNIREe VY ]2
+1+1+0+0+0+0+0+ N & N > 15

@ transition: determined by each game

indui o

@ reward: change in score

e v =0.99 (but note that the game will end at some point)
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Deep Q-Networks and Atari Games
Training

For each game, run Q-learning for T'= 50M (around 38 days of game
experience), with two more tricks:

@ use a target network 6 to stabilize training

ye = o+ ymax Qo(ser1, @) = g = re+ymax Qg(sei1,a)

e 6 is a snapshot of #, updated every 10K rounds

@ use experience replay to reduce correlation / increase data efficiency

e instead of using one sample in each update, use a minibatch of 32
samples randomly selected from the most recent 1M frames

(Qo(s¢,at) — Z/t)2 = Z (Qo(sk,ar) — Z/k)2

kE€minibatch
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Deep Q-Networks and Atari Games

More on experience replay

Use a minibatch of samples from previous experience

o target: from (Qp(st,ar) — y)* 10 X peminibarch (Qo(Sk> ar) — i)’

@ update: from

0 < 0 — a(Qo(se,ar) —yr) VeQo(se, ar)

to
0—0—a > (Qolsk ar) — yk) VoQo(sk, ar)
keminibatch
@ in the tabular case, it means from (see programming project)
Q(st, at) < Q(st, ar) — a(Q(st, ar) — yr)
to

Q(sg, a) < Q(sk,ar) — a(Q(sk, ax) — yx), Vk € minibatch

Deep Q-Networks and Atari Games

Results

at human-level or above
below human-level
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Deep Q-Networks and Atari Games

Results

@ tested on 49 Atari Games, 5 mins each game for 30 times
@ same model architecture, same algorithm, same hyperparameters

@ compared against best linear learner and a professional human tester

DQN score — random play score % 100%

@ report human score — random play score

Policy Gradient, Actor-Critic, and AlphaGo
Outline

@ Policy Gradient, Actor-Critic, and AlphaGo



Policy Gradient, Actor-Critic, and AlphaGo

Learning policies directly

Another popular class of RL algorithms learns the policy directly:

max “expected reward of policy 7"
™

To handle large scale problems, consider a parameterized policy class
II={n,:peQ} (eg., aset of neural nets) and solve

max “expected reward of policy m,"
pe

via stochastic gradient descent
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Policy gradient theorem (cont.)

ZVP
_ZP )V, log P,(1)R(7)

E. [V,log Py(7)R(T)]
=K, [Vp log (Hleﬂ'p(ahbh)P(

VR?TP

(log derivative trick)

(written as an expectation)
Shit|sn, an)) R(T)]

H
(Z V,log 7rp(ah|8h)> R(7)

h=1

(transition doesn't matter!)

which can be approximated by sampling n trajectories using 7, and
taking the empirical average:

Z(ZV log m,(a} |5\’ >> R(®)
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Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem

For simplicity, suppose v = 1 and a trajectory ends after H steps.

Expected reward of 7, can be written as

Tp) = ZP/J(T)R T

e 7= (s1,a1,...,SH,ap) ranges over all possible H-step trajectories
@ P,(7) is the probability of encountering trajectory 7 under policy 7,
R(t) = Zthl r(sp,ap) is the cumulative reward for trajectory 7
So we have

Tp) = Z VpPy(T)R(7)

How do we efficiently compute/approximate it?

38 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Reducing variance of gradient estimators via baselines

The key to make policy gradient work is to reduce variance of gradient
estimators. Subtracting a “baseline” is a standard way to achieve so:
rH

V,R(r,) =E. | Y V,logm,(an|sp)R(r)
Lh=1

CH
=E, Z V,log my(an|sn) (R(T) — b(s1.1, al:hl))]

Lh=1

This holds for any b that only depends on s1.j,a1.;,1, because

7w, (apls
Eq, [Vplogm,(an|sp)b] = b Z 7o(an|sn) Vo (pa( |f;| )h)
ahGA h{oh
= bV, Z mp(an|sp) =bV,1 =0
CLhE.A
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Policy Gradient, Actor-Critic, and AlphaGo Policy Gradient, Actor-Critic, and AlphaGo

Which baselines? Actor-Critic methods
Repeat:
V,R(r,) = Zv log m,(an|sn) (R(r )—b<sl;h,a1:h1>>] .
he1 o Critic evaluates the current policy 7, by fitting Vj from samples using
Want b(s1.,a1.,—1) to be close to R(7), leading to an idealized choice: square loss:
“observed reward before h" + “expected reward starting from h” m H 2
h—1 H mlnzz (Vg ( ) Z <3h' ,ah, )>
= (Z r(sh/,ah/)) + E Z T(Sh/,ah/) ’ Spr = Sh] j=1 h=1 I—h
h'=1 h'=h
Vﬂ;@h) @ Actor improves the current policy 7, via stochastic gradient descent:
Vz,, called a critic, is usually approximated by another network 0:
(4) (1) (@) (4)
“observed reward before "' + “estimated reward starting from h" p—p—— ZZV log my( ah |3 ) (Z (Sh’ ,ah,> = Vo(sy, )>
b1 i=1 h=1 h'=h .
- (Z r(sh/,ah/)> + Vi(sn) =R(r)—=b(s{) al?) )
h'=1
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Case study: AlphaGo [Péepmind, 2015] Policy /value networks

Both 7, and Vj are large convolutional neural nets:
Model Go as an MDP (S, A, P,r,~):

@ states: each 19 x 19 position of the
game is pre-processed into an
19 x 19 x 48 image stack consisting of
feature planes

@ actions: all legal next moves

@ transition: determined by the opponent

@ reward: only the ending state has
reward (1 if win, —1 if lose)

o y=1
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Policy Gradient, Actor-Critic, and AlphaGo
Training

Step 1: first train a policy 7, using pure supervised learning from 30M
expert moves (a_multiclass classification task)

Step 2: use actor-critic to train policy network 7, and value network Vj

@ initialize p as ¢

@ self-play: every 500 iterations, add current p to an opponent pool; in
each iteration, randomly sampled one from this pool as the opponent

@ trained for 10K iterations, each with 128 games
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Policy Gradient, Actor-Critic, and AlphaGo

Results

Elo Rating

@ 99.8% win rate against other Go programs
@ 5-0 Fan Hui (2013/2014/2015 European Go champion)

@ first superhuman Al for Go, previously believed to be a decade away
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Testing (actual play)

“Monte-Carlo Tree Search” with the help of policy/value networks:

e select a move with highest estimated quality @ + UCB (inversely
proportional to #visits, just like bandits)

expand a leaf (when visited more than a certain times) using 7,
evaluate the leaf by averaging Vj's prediction and a random rollout
update the quality ) value along the traversed edges

when the search halts, select the most visited move at the root

b Expansion c Evaluation d Backup

Selection

B k3 e )

maN, Q-+ u(P) ) . ﬁ 7
i wow B e
Q+uP) max 0+ uP ! >
CRNE N S A
N\ 2H it 3
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Summary
A brief introduction to (deep) RL:
e foundation: MDP, value iteration, model-based/free learning
o large-scale and practical deep RL methods:
o (-learning with function approximation, DQN, and their success in
Atari games
e policy gradient, actor-critic methods, and their success in Go
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