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Administration

Administrative stuff

Please enroll in Piazza (still missing many of you).
HW1 is available now (due date: 9/17)

Programming project:
@ invitation to enroll is out

@ all tasks available now, one single due date: 12/16

Administration

Outline

@ Administration

Administration

Outline

@ Administration

© Review of last lecture

© Linear regression

@ Linear regression with nonlinear basis

© Overfitting and preventing overfitting



Outline

© Review of last lecture
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Datasets
Training data
o N samples/instances: D™ = {(x1,y1), (x2,92), -, (ZN, UN) }
@ They are used to learn f(-)
Test data
@ M samples/instances: D™ = {(x1,y1), (x2,y2), - , (XM, ym)}
@ They are used to evaluate how well f(-) will do.
Validation/Development data
e L samples/instances: D°*V = {(x1,y1), (x2,y2), -, (xL,y)}
@ They are used to optimize hyper-parameter(s).
These three sets should not overlap!
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Multi-class classification

Training data (set)

o N samples/instances: D™ = {(z1,y1), (z2,92), -, (N, YN)}
e Each x,, € RP is called a feature vector.

e Each y, € [C] ={1,2,---,C} is called a label/class/category.
@ They are used to learn f : RP — [C] for future prediction.

Special case: binary classification
@ Number of classes: C =2
e Conventional labels: {0,1} or {—1,+1}

K-NNC: predict the majority label within the K-nearest neighbor set

S-fold Cross-validation

What if we do not have a validation set?

@ Split the training data into S S = 5: 5-fold cross validation
equal parts.
@ Use each part in turn as a ] |

development dataset and use
the others as a training dataset.

@ Choose the hyper-parameter
leading to best average
performance.

Special case: S = N, called leave-one-out.
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High level picture Outline

Typical steps of developing a machine learning system:
@ Collect data, split into training, validation, and test sets.

@ Train a model with a machine learning algorithm. Most often we

apply cross-validation to tune hyper-parameters. e Linear regression
@ Motivation
@ Evaluate using the test data and report performance. @ Setup and Algorithm

@ Discussions
@ Use the model to predict future/make decisions.

How to do the red part exactly?

Today: from a simple example to a general recipe
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Regression Linear models are important and (still) useful!

Predicting a continuous outcome variable using past observations

@ Predicting future temperature (last lecture)
@ Predicting the amount of rainfall nature > nature methods > brief communications > article
@ Predicting the demand of a product
Predicting the sale price of a house Brief Communication = Open access = Published: 04 August 2025
@ Predicti i u . .
& P Deep-learning-based gene perturbation effect
° .

prediction does not yet outperform simple linear
Key difference from classification baselines

@ continuous vs discrete
Constantin Ahlmann-Eltze 8, Wolfgang Huber & Simon Anders

@ measure prediction errors differently.
) Iead to qurte dlﬂ:erent |earn|ng algomthms Nature Methods 22, 1657-1661 (2025) | Cite this article

Linear Regression: regression with linear models
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Linear regression

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)
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Linear regression

Correlation between square footage and sale price
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Linear regression

Features used to predict
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Linear regression

Possibly linear relationship

Sale price ~ price_per_sqft x square_footage + fixed_expense
(slope) (intercept)
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How to learn the unknown parameters?

How to measure error for one prediction?

@ The classification error (0-1 loss, i.e. right or wrong) is inappropriate
for continuous outcomes.

Example

Predicted price = price_per_sqft x square_footage + fixed_expense

one model: price_per_sqft = 0.3K, fixed_expense = 210K

e We can look at sqft | sale price (K) | prediction (K) | squared error
o squared error: (prediction - sale price)>  (most common) 2000 | 810 810 0 5
2100 | 907 840 67
e or absolute error: | prediction - sale price |  (robust to outliers) 1100 | 312 540 2282
5500 | 2,600 1,860 740?
Goal: pick the model (unknown parameters) that minimizes the
average/total prediction error, but on what set? Total 0+ 672 +2282 17402 + - .-

@ test set, ideal but we cannot use test set while trainin . . . )
& Adjust price_per_sqft and fixed_expense such that the total squared error is

@ training set v’ minimized.
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Formal setup for linear regression

Setup and Algorithm
Goal

Input: = € RP (features, covariates, context, etc) column vector

Minimize total squared error
Output: y € R (responses, targets, outcomes, etc)

Training data: D = {(zn,y),n = 1,2,...,N} @ Residual Sum of Squares (RSS), a function of w

RSS(’II)) = Z (f(a:n) - yn)2 = Z(QNL'E’UNJ - yn)2

n n

Linear model: f:RP — R, with f(x) = wg + ZdD:1 WaTg= wo + wre
(superscript T stands for transpose), i.e. a hyper-plane parametrized by

o w=[wy wy --- wp]T (weights, weight vector, parameter vector, etc)

: e find w* = argmin RSS(w), i.e. least squares solution (more
@ bias wy

weRP+!

generally called empirical risk minimizer)
NOTE: for notation convenience, very often we

@ append 1 to each x as the first feature: & = [1 21 x5 ... zp|T o reduce machine learning to optimization

o let w = [wy wy wo --- wp]T, a concise representation of all D + 1

parameters
@ the model becomes simply f(x) = w
@ sometimes just use w,x, D for w, x,

@ in principle can apply any optimization algorithm, but linear
T regression admits a closed-form solution
D+ 1!
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ek L
Warm-up: D =0

Only one parameter wy: constant prediction f(z) = wp

6
257 .

n
.

Sale Price
3
L]

0.5

0 . . . . )
1000 2000 3000 4000 5000 6000 7000
Square footage

f is a horizontal line, where should it be?
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ek e
Warm-up: D=1

Optimization objective becomes

RSS(w) = » (w0 + wizn — yn)”

n

General approach: find stationary points, i.e., points with zero gradient

ORSS(w) _
ow -
{ ORSS(w) _ 0

owq

Zn(wo + w1z, — yn) =0
Zn(wo +wixy — yn)xn =0

Nwo +w1 ), Tn = nUn
Wo Y, Tn WL, D =D, YnTn

i(zivxn ZZ%)(Z?):(z%ﬁZn)

(a linear system)
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el e
Warm-up: D =0

Optimization objective becomes

(it's a quadratic aw? + bwg + c)

RSS(wo) = > (w0 — yn)?

n

= Nwg — 2 (Zyn> wo + cnt.
) 2
=N (wo - Nzn:yn> + cnt.

It is clear that w; = % > n Yn, i.e. the average

Exercise: what if we use absolute error instead of squared error?
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Least square solution for D = 1
~1
*
wy Zn Ln Zn T Zn TnYn
(assuming the matrix is invertible)
Are stationary points minimizers?
@ yes for convex objectives (RSS is convex in w)
@ not true in general
24 /56



General least square solution General least square solution

Objective:  RSS(w) = ) _(#, —yn)” X'R)5-XTy-0 = @ = (X'K) K"y

Calculate the gradient (multivariate calculus):
VRSS(®) =2 &n(Tp® — yn) = 2 (Z gﬁngzg) W -2 Enyn

A compact form:

assuming X T X (covariance matrix) is invertible for now.

Again by convexity w* is the minimizer of RSS.

Verify the solution when D = 1:

RSS(w) = || Xw —y||? and VRSS(w) = 2(XTX)w —2XTy 1
~T S5 T G | Il B A 0
Ty (1 1 T2 TN YonTn DonTh
~ iig Y9 Iy
where X = . e RNX(DFD) gy — _ e RN
zl UN when D = 0: (XTX)_lz%,XTy:Znyn
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Another approach Computational complexity
RSS is a quadratic, so let's complete the square:
_ Bottleneck of computing
RSS() = | X — yl3 §
- T /- bt = X’TX> XT
(%) (%) @ = v
= ' XTXw — yTX'LB — @TXTy + cnt. is to invert the matrix XTX ¢ R(O+1)x(D+1)
o~ - T /o~ o~ -
- (zb - (XTX)—ley) (XTX> (w - (XTX)_lXTy) +ent.
e naively need O(D?) time
Note: uT (XTX> w= <X’u)T Xu= HX‘qu >0 andis 0 if u=0. @ there are many faster approaches (such as conjugate gradient)
So w* = (XTX)"' X Ty is the minimizer.
28 / 56
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Discussions
What if XTX is not invertible

What does that imply?

Recall (XTX) w* = XTy. If XTX not invertible, this equation has
@ no solution (= RSS has no minimizer? X)

e or infinitely many solutions (= infinitely many minimizers v')
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How about the following?
D=1,N=2
sqft | sale price
1000 500K
1000 600K
Any line passing the average is a minimizer of RSS.
D=2,N=37
sqft | #bedroom | sale price
1000 2 500K
1500 3 700K
2000 4 800K
Again infinitely many minimizers.
31/ 56

Discussions
What if XTX is not invertible

Why would that happen?

One situation: N < D+ 1, i.e. not enough data to estimate all parameters.

Example: D=N=1

sqft

sale price

1000

500K

Any line passing this single point is a minimizer of RSS.

How to resolve this issue?

Intuition: what does inverting XTX do?

eigendecomposition:

where \; > A\g > --- Apy1 > 0 are eigenvalues.

inverse:

i.e. just invert the eigenvalues

XTx =u”

(XTX) 1 =y?

A1

0

0

_0
r 1

ao )

0 5
0
0

0
A2
AD
0
0
0
1
Lo
0 AD41
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How to solve this problem?

Non-invertible = some eigenvalues are 0.

One natural fix: add something positive

[ A+ A 0 e 0 1
0 A2+ A e 0
XTX +Aa1=U" : : : : U
0 o+ AD+A 0
0 e 0 AD4+1+ A
where A > 0 and I is the identity matrix. Now it is invertible:
- -
PYED ? 0
0 x= 0
(XTX +An ' =U" : : U
1
0 P EDY (1)
IR D e
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Comparison to NNC

Non-parametric versus Parametric
@ Non-parametric methods: the size of the model grows with the size
of the training set.

e e.g. NNC, the training set itself needs to be kept in order to predict.
Thus, the size of the model is the size of the training set.

e Parametric methods: the size of the model does not grow with the
size of the training set N.

o e.g. linear regression, D + 1 parameters, independent of N.
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Fix the problem

The solution becomes
- -1 -
@ = (XX + 1) X"y

@ not a minimizer of the original RSS

@ more than an arbitrary hack (as we will see soon)

A is a hyper-parameter, can be tuned by cross-validation.
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Linear regression with nonlinear basis

Outline

@ Linear regression with nonlinear basis
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Linear regression with nonlinear basis

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data
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Linear regression with nonlinear basis

Regression with nonlinear basis

Model: f(x) = wT¢(x) where w € RM

Objective:

RSS(w) = Z (wT¢(mn) - yn)2

n

Similar least square solution:

w* = (<I>T<I>)_1 ®Ty where &=
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¢(CL‘1)T
b(w2) " c RVxXM
¢(93.N)T
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Linear regression with nonlinear basis

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

o)z eRP - 2z e RM

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for

the new feature space).
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Linear regression with nonlinear basis
Example

Polynomial basis functions for D = 1

o) = |

Learning a linear model in the new space

38 / 56

= learning an M -degree polynomial model in the original space
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Linear regression with nonlinear basis

Example

Fitting a noisy sine function with a polynomial (M = 0,1, or 3):

Overfitting and preventing overfitting
Outline

© Overfitting and preventing overfitting

Why nonlinear?

Can | use a fancy linear feature map?

1 — T2
3.%'4 — I3
— _ MxD
&) = | 90, + 24 + zs | = Az forsome A €R
No, it basically does nothing since
: T 2 _ . ( T )2
min w Ax, — = min w T, —
weRM - ( " yn) 'w’elm(AT)CIRD; n

We will see more nonlinear mappings soon.

Overfitting and preventing overfitting

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

) L1 0 L1
1 M=3 1 M=9
t t

°
0 °© 0
°

41 a1

) 1 0 1




Underfitting and Overfitting

M < 2 is underfitting the data
@ large training error

@ large test error

M > 9 is overfitting the data
@ small training error

o large test error

More complicated models = larger gap between training and test error

How to prevent overfitting?

Overfitting and preventing overfitting

—©6— Training
—e— Test

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

@ use cross-validation to pick hyper-parameter M

When M or in general ® is fixed, are there still other ways to control

complexity?
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Overfitting and preventing overfitting

Method 1: use more training data

The more, the merrier

0 - 1

More data = smaller gap between training and test error

Overfitting and preventing overfitting

Magnitude of weights

Least square solution for the polynomial example:

M=0 M=1 M=3 M=9
wo 0.19 0.82 0.31 0.35
w1 -1.27 7.99 232.37
wa -25.43 -5321.83
w3 17.37 48568.31
wy -231639.30
ws 640042.26
we -1061800.52
wy 1042400.18
wg -557682.99
Wy 125201.43

Intuitively, large weights = more complex model

46 / 56
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Overfitting and preventing overfitting Overfitting and preventing overfitting

How to make w small? The effect of A

Regularized linear regression: new objective . .. . .
when we increase regularization coefficient )

F(w) = RSS(w) + AR(w) InA=-00 InA=-18 InA=0
. . . wo 0.35 0.35 0.13
Goal: find w* = argmin,, £(w) wy 239 37 474 0.05
o R:RP — R* is the regularizer Wy -5321.83 -0.77 -0.06
e measure how complex the model w is, penalize complex models s 48508.31 -3L.97 -0.06
Hre ow comp P P wy | -231639.30 -3.89  -0.03
e common choices: ||w||3, ||w]|1, etc. ws 640042.26 55.28 -0.02
@ A\ > 0 is the regularization coefficient we. | -1061800.52 41.32 -0.01
wy | 1042400.18 -45.95 -0.00
® A =0, no regularization ws | -557682.99 -91.53 0.00
e A — 400, w — argmin,, R(w) Wy 125201.43 72.68 0.01
o i.e. control trade-off between training error and complexity
49 / 56 50 / 56
The trade-off How to solve the new objective?

when we increase regularization coefficient A

Simple for R(w) = ||w||3:

r1 ﬁ1 /0/9\@\\ A=0
. s, F(w) = RSS(w) + Aw|3 = [ ®w — ylf5 + Allwlf;
. 1 Nl . .
VFE(w)=2(® Pw— P y) + 2 \w =0
= (®Te+ M) w=2>"y
: = w* = (®T® + A1) BTy
Zos Note the same form as in the fix when X T X is not invertible!

(;

For other regularizers, can apply general optimization algorithms (Lec 3).

35 -30 mA -25 20
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Overfitting and preventing overfitting Overfitting and preventing overfitting

Equivalent form Summary

Regularization is also sometimes formulated as

argmin RSS(w)  subject to R(w) < /8 w' = (‘I’T‘I’ + AI)_I Ty
w

Important to understand the derivation than remembering the formula
where 3 is some hyper-parameter.

Overfitting: small training error but large test error
Finding the solution becomes a constrained optimization problem.

Preventing Overfitting: more data + regularization
Choosing either A or 3 can be done by cross-validation.
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Recall the question General idea to derive ML algorithms

1. Pick a set of models F
o eg F={f(zx) =wlz|wecRP}

Typical steps of developing a machine learning system: o g F—{f(x)=wTd@) |we RM}

@ Collect data, split into training, development, and test sets. 2. Define error/loss L(y',y)
@ Train a model with a machine learning algorithm. Most often we 3. Find empirical risk minimizer (ERM):
apply cross-validation to tune hyper-parameters. N
f* = argmin Z L(f(xn),yn)

@ Evaluate using the test data and report performance. feF f
n=

@ Use the model to predict future/make decisions. or regularized empirical risk minimizer:

N
How to do the red part exactly? ff= arfgn]l:inz L(f(zn):yn) + AR(S)
€

n=1

ML becomes optimization
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