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Administration

HW 1 is due on Wed, Sep 17th.

recall the late day policy: 3 in total, at most 1 for each homework
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Review of Last Lecture

Regression

Predicting a continuous outcome variable using past observations

temperature, amount of rainfall, house price, etc.

Key difference from classification

continuous vs discrete

measure prediction errors differently.

lead to quite different learning algorithms.

Linear Regression: regression with linear models: f(x) = wTx

5 / 55



Review of Last Lecture

Least square solution

w∗ = argmin
w

RSS(w)

= argmin
w

∥Xw − y∥22

=
(
XTX

)−1
XTy

X =


xT
1

xT
2
...
xT
N

 , y =


y1
y2
...
yN



Two approaches to find the minimum:

find stationary points by setting gradient = 0

“complete the square”
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Review of Last Lecture

Regression with nonlinear basis

Model: f(x) = wTϕ(x) where w ∈ RM

Similar least square solution: w∗ =
(
ΦTΦ

)−1
ΦTy
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Review of Last Lecture

Underfitting and Overfitting

M ≤ 2 is underfitting the data

large training error

large test error

M ≥ 9 is overfitting the data

small training error

large test error M

E
R
M
S
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0
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Test

How to prevent overfitting? more data + regularization

w∗ = argmin
w

(
RSS(w) + λ∥w∥22

)
=

(
ΦTΦ+ λI

)−1
ΦTy
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Review of Last Lecture

General idea to derive ML algorithms

Step 1. Pick a set of models F
e.g. F = {f(x) = wTx | w ∈ RD}
e.g. F = {f(x) = wTΦ(x) | w ∈ RM}

Step 2. Define error/loss L(y′, y)

Step 3. Find (regularized) empirical risk minimizer (ERM):

f∗ = argmin
f∈F

N∑
n=1

L(f(xn), yn) + λR(f)

ML becomes optimization

Today: another exercise of this recipe + a closer look at Step 3
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Linear Classifiers and Surrogate Losses

Classification

Recall the setup:

input (feature vector): x ∈ RD

output (label): y ∈ [C] = {1, 2, · · · ,C}
goal: learn a mapping f : RD → [C]

This lecture: binary classification

Number of classes: C = 2

Labels: {−1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:

require carrying the training set

intuitive but more like a heuristic
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Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let’s follow the recipe:

Step 1. Pick a set of models F .

Again try linear models, but how to predict a label using wTx?

Sign of wTx predicts the label:

sign(wTx) =

{
+1 if wTx > 0
−1 if wTx ≤ 0

(Sometimes use sgn for sign too.)
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Linear Classifiers and Surrogate Losses

The models

The set of (separating) hyperplanes:

F = {f(x) = sgn(wTx) | w ∈ RD}

Good choice for linearly separable data, i.e., ∃w s.t.

sgn(wTxn) = yn or ynw
Txn > 0

for all n ∈ [N ].
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Linear Classifiers and Surrogate Losses

The models

Still makes sense for “almost” linearly separable data
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Linear Classifiers and Surrogate Losses

The models

For clearly not linearly separable data,

Again can apply a nonlinear mapping Φ:

F = {f(x) = sgn(wTΦ(x)) | w ∈ RM}

More discussions in future lectures.
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Linear Classifiers and Surrogate Losses

0-1 Loss

Step 2. Define error/loss L(y′, y).

Most natural one for classification: 0-1 loss L(y′, y) = I[y′ ̸= y]

For classification, more convenient to look at the loss as a function of
ywTx. That is, with

ℓ0-1(z) = I[z ≤ 0]

the loss for hyperplane w on example (x, y) is ℓ0-1(yw
Tx)
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Linear Classifiers and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

Even worse, minimizing 0-1 loss is NP-hard in general.
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Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

perceptron loss ℓperceptron(z) = max{0,−z} (used in Perceptron)

hinge loss ℓhinge(z) = max{0, 1− z}(used in SVM and many others)

logistic loss ℓlogistic(z) = log(1 + exp(−z)) (used in logistic regression;
the base of log doesn’t matter)
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Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

w∗ = argmin
w∈RD

N∑
n=1

ℓ(ynw
Txn) = argmin

w∈RD

1

N

N∑
n=1

ℓ(ynw
Txn)

where ℓ(·) can be perceptron/hinge/logistic loss

no closed-form in general (unlike linear regression)

can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.
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A Detour of Numerical Optimization Methods

Numerical optimization

Problem setup

Given: a function F (w)

Goal: minimize F (w) (approximately)
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A Detour of Numerical Optimization Methods First-order methods

First-order optimization methods

Two simple yet extremely popular methods

Gradient Descent (GD): simple and fundamental

Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems

Gradient is sometimes referred to as first-order information of a function.
Therefore, these methods are called first-order methods.
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A Detour of Numerical Optimization Methods First-order methods

Gradient Descent (GD)

GD: keep moving in the negative gradient direction

Start from some (random) w(0). For t = 0, 1, 2, . . .

w(t+1) ← w(t) − η∇F (w(t))

where η > 0 is called step size or learning rate

in theory η should be set in terms of some parameters of F

in practice we often try different small values

Stop when F (w(t)) does not change much or t reaches a fixed number
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A Detour of Numerical Optimization Methods First-order methods

Why GD?

Intuition: by first-order Taylor approximation

F (w) ≈ F (w(t)) +∇F (w(t))T(w −w(t))

GD ensures F (w(t+1)) ≈ F (w(t)) +∇F (w(t))T(w(t+1) −w(t))

= F (w(t))− η∥∇F (w(t))∥22 ≤ F (w(t))
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reasonable η decreases function value
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but large η is unstable

See Colab Example 1
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A Detour of Numerical Optimization Methods First-order methods

More on learning rate

Learning rate η might need to be changing over iterations

often decreasing, according to some schedule (e.g., η ≈ 1
t or 1√

t
)

think F (w) = |w|

Adaptive and automatic step size tuning is an active research area

notable examples: AdaGrad, Adam, etc.

ideas: tune η based on past gradient information
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A Detour of Numerical Optimization Methods First-order methods

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction

SGD: keep moving in some noisy negative gradient direction

w(t+1) ← w(t) − η∇̃F (w(t))

where ∇̃F (w(t)) is a random variable (called stochastic gradient) s.t.

E
[
∇̃F (w(t))

]
= ∇F (w(t)) (unbiasedness)

See Colab Example 1.

More examples coming soon. Key point: it could be much faster to obtain
a stochastic gradient!
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — convex objectives

Many for both GD and SGD on convex objectives.

They tell you how many iterations t (in terms of ϵ) needed to achieve

F (w(t))− F (w∗) ≤ ϵ

usually SGD needs more iterations

but again each iteration takes less time
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

Even for nonconvex objectives, some guarantees exist: e.g. how many
iterations t (in terms of ϵ) needed to achieve

∥∇F (w(t))∥ ≤ ϵ

that is, how close w(t) is as an approximate stationary point

for convex objectives, stationary point ⇒ global minimizer

for nonconvex objectives, what does it mean?
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can be a local minimizer or even a local/global
maximizer (but the latter is not an issue for GD/SGD).

-4 -2 2 4

-10

-5

5

10

f(w) = w3 + w2 − 5w
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer! This is called a saddle point.

f(w) = w2
1 − w2

2

∇f(w) = (2w1,−2w2)

so w = (0, 0) is stationary

local max for blue direction (w1 = 0)

local min for green direction (w2 = 0)

but GD gets stuck at (0, 0) only if
initialized along the green direction

so not a real issue especially when
initialized randomly (Colab Example 2)
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

But not all saddle points look like a “saddle”...

f(w) = w2
1 + w3

2

∇f(w) = (2w1, 3w
2
2)

so w = (0, 0) is stationary

not local min/max for blue direction
(w1 = 0)

GD gets stuck at (0, 0) for any initial
point with w2 ≥ 0 and small η (Colab
Example 3)

Even worse, distinguishing local min and saddle point is generally NP-hard.
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees

Summary:

GD/SGD converges to a stationary point

for convex objectives, this is all we need

for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

recent research shows that many problems have no “bad” saddle
points or even “bad” local minimizers

justify the practical effectiveness of GD/SGD (default method to try)
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A Detour of Numerical Optimization Methods Second-order methods

Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

F (w) ≈ F (w(t)) +∇F (w(t))T(w −w(t))

What if we look at second-order Taylor approximation?

F (w) ≈ F (w(t)) +∇F (w(t))T(w −w(t)) +
1

2
(w −w(t))THt(w −w(t))

where Ht = ∇2F (w(t)) ∈ RD×D is the Hessian of F at w(t), i.e.,

Ht,ij =
∂2F (w)

∂wi∂wj

∣∣∣
w=w(t)

(think “second derivative” when D = 1)
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A Detour of Numerical Optimization Methods Second-order methods

Newton method

If we minimize the second-order approximation (via “complete the square”)

F (w)

≈ F (w(t)) +∇F (w(t))T(w −w(t)) +
1

2
(w −w(t))THt(w −w(t))

=
1

2

(
w −w(t) +H−1

t ∇F (w(t))
)T

Ht

(
w −w(t) +H−1

t ∇F (w(t))
)
+ cnt.

for strictly convex F (so Ht is positive
definite), we obtain Newton method:

w(t+1) ← w(t) −H−1
t ∇F (w(t))
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A Detour of Numerical Optimization Methods Second-order methods

Comparing GD and Newton

w(t+1) ← w(t) − η∇F (w(t)) (GD)

w(t+1) ← w(t) −H−1
t ∇F (w(t)) (Newton)

Both are iterative optimization procedures, but Newton method

has no learning rate η (so no tuning needed!)

converges super fast in terms of #iterations (for convex objectives)

e.g. how many iterations needed when applied to a quadratic?

computing Hessian in each iteration is very slow though

does not really make sense for nonconvex objectives
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Perceptron

Recall the perceptron loss

F (w) =
1

N

N∑
n=1

ℓperceptron(ynw
Txn)

=
1

N

N∑
n=1

max{0,−ynwTxn}

Let’s approximately minimize it with GD/SGD.
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Perceptron

Applying GD to perceptron loss

Objective

F (w) =
1

N

N∑
n=1

max{0,−ynwTxn}

Gradient (or really sub-gradient) is

∇F (w) =
1

N

N∑
n=1

−I[ynwTxn ≤ 0]ynxn

(only misclassified examples contribute to the gradient)

GD update

w ← w +
η

N

N∑
n=1

I[ynwTxn ≤ 0]ynxn

Slow: each update makes one pass of the entire training set!
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Perceptron

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n ∈ [N ] uniformly at random, let

∇̃F (w(t)) = −I[ynwTxn ≤ 0]ynxn

clearly unbiased (convince yourself).

SGD update:
w ← w + ηI[ynwTxn ≤ 0]ynxn

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!
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Perceptron

The Perceptron Algorithm

Perceptron algorithm is SGD with η = 1 applied to perceptron loss:

Repeat:

Pick a data point xn uniformly at random

If sgn(wTxn) ̸= yn
w ← w + ynxn

Note:

w is always a linear combination of the training examples

why η = 1? Does not really matter in terms of prediction of w
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Perceptron

Why does it make sense?

If the current weight w makes a mistake

ynw
Txn < 0

then after the update w′ = w + ynxn we have

ynw
′Txn = ynw

Txn + y2nx
T
nxn ≥ ynw

Txn

Thus it is more likely to get it right after the update.
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Perceptron

Example: Iris Dataset
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Perceptron

Example: Perceptron for Iris Dataset
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Perceptron

Any theory?

If training set is linearly separable

Perceptron converges in a finite number
of steps

training error is 0

There are also guarantees when the data are not linearly separable.

44 / 55



Logistic Regression
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Logistic Regression

A simple view

In one sentence: find the minimizer of

F (w) =
1

N

N∑
n=1

ℓlogistic(ynw
Txn)

=
1

N

N∑
n=1

ln(1 + e−ynwTxn)

Before optimizing it: why logistic loss? and why “regression”?
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Logistic Regression A probabilistic view

Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities

One way: sigmoid function + linear model

P(y = +1 | x;w) = σ(wTx)

where σ is the sigmoid function:

σ(z) =
1

1 + e−z
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Logistic Regression A probabilistic view

Properties

Properties of sigmoid σ(z) = 1
1+e−z

between 0 and 1 (good as probability)

σ(wTx) ≥ 0.5⇔ wTx ≥ 0, consistent
with predicting the label with sgn(wTx)

larger wTx⇒ larger σ(wTx) ⇒ higher
confidence in label 1

σ(z) + σ(−z) = 1 for all z
−6 −4 −2 0 2 4 6
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The probability of label −1 is naturally

1− P(y = +1 | x;w) = 1− σ(wTx) = σ(−wTx)

and thus

P(y | x;w) = σ(ywTx) =
1

1 + e−ywTx
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Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.

Take a probabilistic view

assume data is independently generated in this way by some w

perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1, · · · , yn given
x1, · · · , xn, as a function of some w?

P (w) =
N∏

n=1

P(yn | xn;w)

MLE: find w∗ that maximizes the probability P (w)
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Logistic Regression A probabilistic view

The MLE solution

w∗ = argmax
w

P (w) = argmax
w

N∏
n=1

P(yn | xn;w)

= argmax
w

N∑
n=1

lnP(yn | xn;w) = argmin
w

N∑
n=1

− lnP(yn | xn;w)

= argmin
w

N∑
n=1

ln(1 + e−ynwTxn) = argmin
w

N∑
n=1

ℓlogistic(ynw
Txn)

= argmin
w

F (w)

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!
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Logistic Regression Algorithms

Back to algorithms: apply SGD again

w ← w − η∇̃F (w)

= w − η∇wℓlogistic(ynw
Txn) (n ∈ [N ] is drawn u.a.r.)

= w − η

(
∂ℓlogistic(z)

∂z

∣∣∣
z=ynwTxn

)
ynxn

= w − η

(
−e−z

1 + e−z

∣∣∣
z=ynwTxn

)
ynxn

= w + ησ(−ynwTxn)ynxn

= w + ηP(−yn | xn;w)ynxn

This is a soft version of Perceptron!

P(−yn|xn;w) versus I[yn ̸= sgn(wTxn)]
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Logistic Regression Algorithms

Applying Newton to logistic loss

∇wℓlogistic(ynw
Txn) = −σ(−ynwTxn)ynxn

∇2
wℓlogistic(ynw

Txn) =

(
∂σ(z)

∂z

∣∣∣
z=−ynwTxn

)
y2nxnx

T
n

=

(
e−z

(1 + e−z)2

∣∣∣
z=−ynwTxn

)
xnx

T
n

= σ(ynw
Txn)

(
1− σ(ynw

Txn)
)
xnx

T
n

Exercises:

why is the Hessian of logistic loss positive semidefinite?

can we apply Newton method to perceptron/hinge loss?
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Logistic Regression Algorithms

Summary

Linear models for classification:

Step 1. Model is the set of separating hyperplanes

F = {f(x) = sgn(wTx) | w ∈ RD}
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Logistic Regression Algorithms

Step 2. Pick the surrogate loss

perceptron loss ℓperceptron(z) = max{0,−z} (used in Perceptron)

hinge loss ℓhinge(z) = max{0, 1− z}(used in SVM and many others)

logistic loss ℓlogistic(z) = log(1+ exp(−z)) (used in logistic regression)
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Logistic Regression Algorithms

Step 3. Find empirical risk minimizer (ERM):

w∗ = argmin
w∈RD

1

N

N∑
n=1

ℓ(ynw
Txn)

using

GD: w ← w − η∇F (w)

SGD: w ← w − η∇̃F (w) (E[∇̃F (w)] = ∇F (w))

Newton: w ← w −
(
∇2F (w)

)−1∇F (w)
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