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Administration

e HW 1 is due on Wed, Sep 17th.

@ recall the late day policy: 3 in total, at most 1 for each homework

Review of Last Lecture

Outline

@ Review of Last Lecture



Regression

Predicting a continuous outcome variable using past observations

@ temperature, amount of rainfall, house price, etc.

Key difference from classification
@ continuous vs discrete
@ measure prediction errors differently.

o lead to quite different learning algorithms.

Linear Regression: regression with linear models: f(x) = w'a
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Regression with nonlinear basis
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Model: f(x) = wT¢(z) where w € RM
.. . -1
Similar least square solution: w* = (®7®) @'y
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Review of Last Lecture

Least square solution

w™ = argmin RSS(w) x] Y1
* mg Y2
:argmin||Xw—y||§ X = ] , Y= )
w . .

Ty\~ 1 T T
=(X'X) X'y TN YN

Two approaches to find the minimum:
o find stationary points by setting gradient = 0

e “complete the square”
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Underfitting and Overfitting

—6— Training

M < 2 is underfitting the data —o— Test

@ large training error

@ large test error 5: 05

M > 9 is overfitting the data

@ small training error

o large test error
How to prevent overfitting? more data + regularization

w* = argmin (RSS(w) + AH“’H%) = (@Tq) + /\I)_l o'y
w
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Review of Last Lecture

General idea to derive ML algorithms

Step 1. Pick a set of models F
oecg F={f(x)=w"z|wecRP}
°oeg F={f(x)=w'®(x)|wecRM}

Step 2. Define error/loss L(y',y)

Step 3. Find (regularized) empirical risk minimizer (ERM):

N
£ = argmin > " L(f(2n),yn) + AR(f)

fer

n=1

ML becomes optimization

Today: another exercise of this recipe + a closer look at Step 3
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Classification

Recall the setup:
e input (feature vector): « € RP
e output (label): y € [C] ={1,2,---,C}
@ goal: learn a mapping f : RP — [C]

This lecture: binary classification
@ Number of classes: C = 2

@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:
@ require carrying the training set

@ intuitive but more like a heuristic
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Linear Classifiers and Surrogate Losses
Outline

© Linear Classifiers and Surrogate Losses
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Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTa?

Sign of w™a predicts the label:

. T +1 ifwlx >0
Sign(W ) =\ 1 if T < 0

(Sometimes use sgn for sign too.)
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The models The models
The set of (separating) hyperplanes:
F=i(2) = sgn(wT:c) |we RD} Still makes sense for “almost” linearly separable data
Good choice for linearly separable data, i.e., Jw s.t.
sgn(wle,) =y, or yywle, >0

for all n € [N].
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The models 0-1 Loss
H /
Step 2. Define error/loss L(y',y).
For clearly not linearly separable data, o , ,
Most natural one for classification: 0-1 loss L(y/,y) = L[y’ # y]
W g e s For classification, more convenient to look at the loss as a function of
Fo e B RIGY s .. o
: S;:ﬁfi:ﬁ z*;;*},%{ W e . ywTax. That is, with
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Again can apply a nonlinear mapping ®:
F={f(z) =sgn(w' ®(z)) | w € R}
More discussions in future lectures. : : ’ ' :
the loss for hyperplane w on example (x,y) is £o.1 (yw T x)
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Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

Even worse, minimizing 0-1 loss is NP-hard in general.

s
ML becomes convex optimization

Step 3. Find ERM:
N | X
w” = argmin Z ((ypwTa,) = argmin — Z ((ypwTax,)
weRP n=1 weRP N n=1
where /(-) can be perceptron/hinge/logistic loss
@ no closed-form in general (unlike linear regression)

@ can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.

Surrogate Losses

Solution: find a convex surrogate loss
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@ perceptron 0ss £perceptron(2) = max{0, —z} (used in Perceptron)

INZE 1055 Lhinge(2) = mMax{u, L — zj(used in and many otner:
used in logistic regression;

o
A Detour of Numerical Optimization Methods

Outline

© A Detour of Numerical Optimization Methods
@ First-order methods
@ Second-order methods



A Detour of Numerical Optimization Methods

Numerical optimization

Problem setup
e Given: a function F'(w)

@ Goal: minimize F'(w) (approximately)
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s
Gradient Descent (GD)

GD: keep moving in the negative gradient direction
Start from some (random) w(®. For t = 0,1,2,...
w — w® — pVF(w®)

where 1 > 0 is called step size or learning rate

@ in theory 7 should be set in terms of some parameters of F

@ in practice we often try different small values

Stop when F(w(") does not change much or ¢ reaches a fixed number
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A Detour of Numerical Optimization Methods BETE R SR G

First-order optimization methods

Two simple yet extremely popular methods
e Gradient Descent (GD): simple and fundamental

e Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems

Gradient is sometimes referred to as first-order information of a function.
Therefore, these methods are called first-order methods.
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A Detour of Numerical Optimization Methods BETE R SAGEH T

Why GD?

Intuition: by first-order Taylor approximation

F(w)~ F(w(t)) + VF(w(t))T('w — 'w(t))

GD ensures  F(w'™V) ~ F(w®) + VF(w®)T (w+) — w®)
= F(w") = | VF(w)]3 < F(w")

reasonable 77 decreases function value but large 7 is unstable

See Colab Example 1
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A Detour of Numerical Optimization Methods BETE R SR G

More on learning rate

Learning rate n might need to be changing over iterations

e often decreasing, according to some schedule (e.g., n ~ % or %)

e think F(w) = |w|

Adaptive and automatic step size tuning is an active research area
@ notable examples: AdaGrad, Adam, etc.

@ ideas: tune n based on past gradient information
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A Detour of Numerical Optimization Methods BETE R SAGEH T

Convergence guarantees — convex objectives

Many for both GD and SGD on convex objectives.
They tell you how many iterations ¢ (in terms of €) needed to achieve

Fw®) — F(w*) < e

@ usually SGD needs more iterations

@ but again each iteration takes less time

27 / 55

A Detour of Numerical Optimization Methods BETE R SR G

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction
SGD: keep moving in some noisy negative gradient direction
wtD  w® — U@F(w(t))
where VF(w®) is a random variable (called stochastic gradient) s.t.

E [@F(w(t))} = VF(w®)  (unbiasedness)

See Colab Example 1.

More examples coming soon. Key point: it could be much faster to obtain
a stochastic gradient!
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Convergence guarantees — nonconvex objectives
Even for nonconvex objectives, some guarantees exist: e.g. how many
iterations ¢ (in terms of €) needed to achieve
IVF(w®)] < e
e that is, how close w(® is as an approximate stationary point
@ for convex objectives, stationary point = global minimizer
e for nonconvex objectives, what does it mean?
28 / 55



A Detour of Numerical Optimization Methods

Convergence guarantees — nonconvex objectives

A stationary point can be a local minimizer or even a local/global
maximizer (but the latter is not an issue for GD/SGD).

A Detour of Numerical Optimization Methods

Convergence guarantees — nonconvex objectives

But not all saddle points look like a “saddle” ...
o flw) = w?+u
o Vf(w)= (2w, 3w3)
e so w = (0,0) is stationary

@ not local min/max for blue direction
(’Ll)l == 0)

@ GD gets stuck at (0,0) for any initial
point with wy > 0 and small n (Colab
Example 3)

Even worse, distinguishing local min and saddle point is generally NP-hard.

A Detour of Numerical Optimization Methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer! This is called a saddle point.

o flaw) =l — ]

o Vf(w)= (2w, —2wy)

e so w = (0,0) is stationary

@ local max for blue direction (w; = 0)
@ local min for green direction (wg = 0)

@ but GD gets stuck at (0,0) only if
initialized along the green direction

@ so not a real issue especially when
initialized randomly (Colab Example 2)

s
Convergence guarantees

Summary:
e GD/SGD converges to a stationary point
@ for convex objectives, this is all we need

@ for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

@ recent research shows that many problems have no “bad” saddle
points or even “bad” local minimizers

e justify the practical effectiveness of GD/SGD (default method to try)



A Detour of Numerical Optimization Methods BESICel T BT IS

Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

F(w) =~ F('w(t)) + VF('w(t))T('w — 'w(t))

What if we look at second-order Taylor approximation?
1
F(w) ~ F(w®) + VF (w7 (w — w®) + 5w = wNTHy(w — w®)

where H; = V2F(w®) € RP*D is the Hessian of F at w®, i.e.,

02 F(w)
H, .. =
bij 8wi8wj w=w®)

(think “second derivative” when D = 1)
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Comparing GD and Newton
w) — w® — pVF(w®) (GD)
w — w® — H'VF(w®) (Newton)

Both are iterative optimization procedures, but Newton method

@ has no learning rate 7 (so no tuning needed!)
@ converges super fast in terms of #iterations (for convex objectives)

e e.g. how many iterations needed when applied to a quadratic?

computing Hessian in each iteration is very slow though

@ does not really make sense for nonconvex objectives
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A Detour of Numerical Optimization Methods BESICel T BT IS

Newton method
If we minimize the second-order approximation (via “complete the square”)
F(w)
~ Fw®) + VF(w®)T (w — w®) + %(w — )T Hy(w — w®)
= % ('w —w® + Ht_1VF('w(t))>T H, ('w —w® + Ht_1VF('w(t))) + cnt.

for strictly convex F' (so H; is positive
definite), we obtain Newton method:

w ) — w® — Ht_IVF(w(t))

wht WA{t+1}
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Outline
@ Perceptron
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Recall the perceptron loss

N
1
F(w) = N Z Cperceptron (yanxn)

n=1

N
1
=5 > max{0, —yhw  x,}

n=1

Let's approximately minimize it with GD/SGD.
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Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —]I[yanar:n < Olypxn

clearly unbiased (convince yourself).

SGD update:
w < w A+ nH[yanwn < O]ynwn

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!
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Applying GD to perceptron loss

Objective
N

1
F(w) = N Z max{0, —y,w  x,}

n=1

Gradient (or really sub-gradient) is

N
1
= Z [ynw' 2, < Olynz,

(only misclassified examples contribute to the gradient)
GD update

N
w+— w+ % ZI[[yn'wT:cn < Olynxn,

n=1

Slow: each update makes one pass of the entire training set!

The Perceptron Algorithm

Perceptron algorithm is SGD with = 1 applied to perceptron loss:

Repeat:

@ Pick a data point x,, uniformly at random

o If sgn(w@,) # yn
W W+ YnTy

Note:
@ w is always a linear combination of the training examples

@ why 1 =17 Does not really matter in terms of prediction of w
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Why does it make sense?

If the current weight w makes a mistake
yn'wan <0

then after the update w’ = w + y,,x,, we have

/T _ T 2. T T
YW Ty = YpW Ty + YnZpTn 2 YnpW ™= Ty,
Thus it is more likely to get it right after the update.
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Example: Perceptron for lris Dataset
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Example: Iris Dataset

Iris Dataset Scatter Plot (Setosa vs Non-Setosa)
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Any theory?

sepal length (cm)

If training set is linearly separable

@ Perceptron converges in a finite number

of steps

@ training error is 0
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There are also guarantees when the data are not linearly separable.
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Outline

e Logistic Regression
@ A probabilistic view
@ Algorithms
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Predicting probability
Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities
One way: sigmoid function + linear model
Ply = +1 | z;w) = o(w'x)
where ¢ is the sigmoid function:
1 e
o\z) = 05,
=) I+e~
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Logistic Regression

A simple view

In one sentence: find the minimizer of
1 N
= N Zglogistic(yanmn)

n=1

F(w)

1 N T
= D In(1 e
n=1

Before optimizing it: why logistic loss? and why “regression”?
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e
Properties

1

Properties of sigmoid 0(2) = 17—

@ between 0 and 1 (good as probability) ‘

° a('wTa:) > 0.5 < wrx > 0, consistent 07

with predicting the label with sgn(wTx)
o larger wlx = larger o(w'x) = higher ”
confidence in label 1 o1

@ 0(z)+o0(—z)=1forall z
The probability of label —1 is naturally
1-Ply=+1|z;w)=1—-oc(w'z) =c(—w'z)

and thus
1

. — Ty — I
Ply | @iw) = olyw’e) =
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Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view
@ assume data is independently generated in this way by some w

@ perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1,--- ,y, given

r1, -+, Ty, as a function of some w?

N
P(w) = H ]P(yn | wn?'w)
n=1

MLE: find w* that maximizes the probability P(w)
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Aleexitins
Back to algorithms: apply SGD again

w — w — nVF(w)

=w - nvwelogistic<yn'men) ('I‘L € [N] is drawn u.a.r.)

6Elogistic(z)
=w-—n ( R YnTn
—€

0z
XL
1+e 2 z:yanmn) Ynin

—z
=w+ na(_yaniBn)ynmn
(

I

g

|

3
/~

=w + NP(=yn | Tp; W)YnTn
This is a soft version of Perceptron! o
P(—yp|zn; w) versus Iy, # sgn(w’x,)]
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A probabilstic view
The MLE solution

N
w”* = argmax P(w) = argmax H P(yn | @n;w)

w n=1
N N
= argmaxz InP(y, | Tn;w) = argmin Z —InP(y, | zn;w)
w n=1 w n=1
N N
= argmin Z In(1 + eiyanmn) = argmin Z Elogistic(yanmn)
w n=1 w n=1
= argmin F(w)
w

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!
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Applying Newton to logistic loss
v'wglogistic(yn'walf'n) = _U(_ynw xn)ynfcn
Oo(z
vi;glogistic(yn'men) = < a( ) T )yixnx;l;
V4 Z=—Ynpw" Tn
e ” T
= Tnx
((1+€ 2)2 z—yanwn> ndn
= U(ynw Tn) (1 - U(yanwn)) xnx;g
Exercises:
@ why is the Hessian of logistic loss positive semidefinite?
@ can we apply Newton method to perceptron/hinge loss?
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Logistic Regression

Summary

Linear models for classification:
Step 1. Model is the set of separating hyperplanes

F={f(x) =sgn(w z) | w € RP}

Logistic Regression

Step 3. Find empirical risk minimizer (ERM):

N
1 T
w* = argmin — » {(y,w x,)
werp IV ;
using
e GD: w <+ w —NVF(w)
0 SGD:  w ¢+ w—nVF(w) (E[VF(w)] = VF(w))

o Newton: w + w — (VQF(w))_1 VF(w)

Logistic Regression

Step 2. Pick the surrogate loss

@ perceptron 0ss £perceptron(2) = max{0, —z} (used in Perceptron)

o hinge 10ss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss £jogistic(2) = log(1 4 exp(—z)) (used in logistic regression)
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