CSCI567 Machine Learning (Fall 2025)

Haipeng Luo
University of Southern California

Sep 19, 2025

Administration

Will discuss HW1 solutions in today discussion session.

HW?2 will be released next week.

Outline

@ Review of Last Lecture
© Muilticlass Classification

© Kernel methods

Outline

© Review of Last Lecture

Review of Last Lecture

Linear classifiers

Linear models for binary classification:
Step 1. Model is the set of separating hyperplanes

F={f(z) = sgn(w"z) | w € R"}

5/ 46

Review of Last Lecture

Linear classifiers

Step 2. Pick the surrogate loss

@ perceptron 10ss lperceptron(2) = max{0, —z} (used in Perceptron)
o hinge loss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss ogistic(2) = log(1 + exp(—z)) (used in logistic regression)

Review of Last Lecture

Linear classifiers

Step 3. Find empirical risk minimizer (ERM):

w* = argmin F(w) = argmln— ZE (ypwTax,)

weRP weRP
using
e GD: w4+ w—nVEF(w)
e SGD: w + w — nVF(w) (E[VF(w)] = VF(w))

o Newton: w <+ w — (VQF(w))_1 VF(w)

7/46

Convergence guarantees of GD/SGD

e GD/SGD converges to a stationary point
@ for convex objectives, this is all we need

@ for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

“good” saddle points "bad” saddle points

Review of Last Lecture

Perceptron and logistic regression
Initialize w = 0 or randomly.

Repeat:
@ pick a data point x,, uniformly at random (common trick for SGD)

@ update parameter:

Iy, wTx, < 0ly,x, (Perceptron)

w4 w+ T o _
No(—YnW " Tr)YnTn (logistic regression)

9/ 46

Review of Last Lecture

A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

N N
w™ = argmin Z&ogistic(yanmn) = argmax H Py, | Tn;w)
w n=1 n=1
where 1
. — Tr) = _
Ply | 2;w) =o(yw @) = =

10 / 46

Outline

© Multiclass Classification
@ Multinomial logistic regression
@ Reduction to binary classification

Multiclass Classification

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
@ predicting weather: sunny, cloudy, rainy, etc
e predicting image category: ImageNet dataset (C ~ 20K)

Nearest Neighbor Classifier naturally works for arbitrary C.

12 / 46

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})
1 ifwlz>0
-]

2 ifwfz <0

can be written as

T

fla) = 1 ifwimesz
2 fwyx >wizx

= argmax wgac
ke{1,2}

for any wi,ws s.t. w = w; — wq
Think of wlz as a score for class k.

13 / 46

Multiclass Classification

Linear models: from binary to multiclass

_%7 %)

@ Blue class:

Multiclass Classification

Linear models: from binary to multiclass

’ w1 = (17_%)
wy = (*%7*%)
1 w3 = (071)

@ Blue class:
{x : 1 = argmax, wlz}
@ Orange class:
-1 i { . 2 — T
x 12 = argmax, w; T}
@ Green class:
b , ‘] {x : 3 = argmax, 'wgm}

Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(x) = argmax wix | wi,...,wc € RP
kelC]

={ f(x) = argmax (W), | W € RSP
ke[C]

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss

16 / 46

Multinomial logistic regression: a probabilistic view
Observe: for binary logistic regression, with w = w1 — ws:

T
wq T
1
]‘ € w;rcc

_ . _ T _
P(y =1 | (IZ,’U)) - U(w w) - 1—|—€_me o ewrlrm +ew2Tm

Naturally, for multiclass:

T
Wy

softmax(Wa), =Py =k | x; W) = B

T
- o ewka:
Z ewk,m
k'e[C]

Important operator: softmax function (or really, “softargmax”)

es1 esc
For a vector s € RS, softmax(s) = —, -
> kelc) €* 2 kelc) €

17 / 46

Multinomial logstic regression
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N
N N R
PW) = [[Pyn | @; W) = H—wTwn
n=1 nl 2kelc) €

By taking negative log, this is equivalent to minimizing

Zl (Zkeu(,:]emnk) Zln 1+Zewk Wy,) Te,

k#yn

This is the multiclass logistic loss, a.k.a. cross-entropy loss.

When C = 2, this is the same as binary logistic loss.

18 / 46

Eenalloes v
Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk’*wyn)Tzn ?
k' #yn

It's a C x D matrix. Let's focus on the k-th row:

If k& # yn:
(wk_wyn)Txn
e
F (W) = T —Pk| ap; W)t
ng W) L4+ sy e(Wy —wy,)T Tn Tn (k| @ W),
else:
_ Zk’ ; e(wk’_wyn)Twn
Var Fa(W) = (Zva 1 (Blyn | 2 W) — 1)]!

1+ Zk'#yn e(wp —wy,)Tan In

19 / 46

Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

Ply=1|zn; W)

39

WW-—n| Py=yn |z W)—-1 |z
Ply=C|ax,;, W)

Think about why the algorithm makes sense intuitively.

20 / 46

Multiclass Classification

A note on prediction

Having learned W, we can either
@ make a deterministic prediction argmaxye|c wiz

@ make a randomized prediction drawn from softmax(Wz)

Multiclass Classification Multinomial logistic regression

Generalization of cross-entropy loss

Given a general model class:

= {0 =g

where s : RP — RC is a “scoring” function.

The cross-entropy loss of f for a training sample (x,y) is

es(@)y
— In (softmax(s(x)),) = <Z = > In 1+Ze Je=s(@)y
ke[C]

22 / 46

Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.
o one-versus-all (one-versus-rest, one-against-all, etc.)
@ one-versus-one (all-versus-all, etc.)

@ tree-based reduction

23/ 46

Multiclass Classification Reduction to binary classification

One-versus-all (OvA)

Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.

Training: for each class k € [C],
@ relabel examples with class k as +1, and all others

@ train a binary classifier hj using this new dataset

as —1

(picture credit: link)

| | |
X1 X1 X1 X1 X1
x N X2 X2 X2 X2
x3 B = | x3 X3 X3 X3
X4 X4 X4 X4 X4
x; M X5 X5 X5 X5

4 4 4 Y

hy hy h3 hy

24 / 46

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x
@ ask each hy: does this belong to class k7 (i.e. hi(x))

e randomly pick among all k's s.t. hgx(x) = +1.

Issue: will (probably) make a mistake as long as one of hy, errs.

25 / 46

Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picture credit: link)
Idea: train (g) binary classifiers to learn “is class k or k'?".

Training: for each pair (k, k),
@ relabel examples with class k as +1 and examples with class &’ as —1
@ discard all other examples

e train a binary classifier iy, ;) using this new dataset

M vs. Myvs. B | Wvs W | Wvs. Mvs. B | Hvs.
X1 X1 X1 X1
x> N X2 Xo + X2 +
x3 W = X3 x3 + | x3
X4 X4 X4 X4
x; W x5 + | x5 + X5 +

2 3 3 4 3 3
ha) h) hes.4) hiaz) heva) h(.2)

26 / 46

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x
e ask each classifier (3 1) to vote for either class £ or K

@ predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

27 / 46

Reduction to binary classification
Tree based method

Idea: train &~ C binary classifiers to learn “belongs to which half?".

Training: see pictures

.vs

= [3 [o hy
X1 X1+ | X1 | I |
x N X X + [|
x3 W = | x3 — X3
X4 X4 + | Xa / \
x; M X5 + | X5 4 h2 h3

Prediction is also natural, but is very fast! (think ImageNet where
C ~ 20K)

28 / 46

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra.ining pre(?iction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
Tree O((logy CO)N) | O(log, C) good for “extreme classification”

X1
x W
x3 W =

X1
x2
X3

X1+
x2
X3

X1
X2+
X3

X1
X2
X3+

29 / 46

Outline

© Kernel methods
@ Motivation
@ Example: Perceptron
@ Kernel Trick
@ Kernelized Perceptron

Kernel methods Motivation

Motivation

Recall: when linear models are not good enough, we can use a nonlinear
feature map ¢ : R — RM to transform all x to ¢(x).

Issue: what if M is huge, or even infinity?

Solution: kernel methods

31/ 46

Kernel methods Example: Perceptron

Case study: Perceptron for binary classification

Perceptron
Initialize w =0
Repeat:
@ Pick a data point index n uniformly at random

o If sgn(w™x,) # y,, update w < w + y,x,

Observation: w is a linear combination of training data

N
w = g A Tm
m=1

where a;, = Y, X number of times x,,, has been misclassified

32/ 46

Dual form of Perceptron

Perceptron (primal form)

Initialize w =0
Repeat:

@ Pick a data point index n uniformly at random
o If sgn(wTx,) # y,, update w < w + y,x,

How to update o, ...,ayN so that 251:1 Ty = w holds always?

Perceptron (dual form)

Initialize oy, = 0 for all m € [N]
Repeat:

@ Pick a data point index n uniformly at random

o If sgn(Z:\T'L:1 AT r) # Yn, update oy, ¢ iy + Yn

ol R
Applying a feature map

Perceptron (primal form with ¢) issue: time/space linear in M
Initialize w = 0 € RM
Repeat:

@ Pick a data point index n uniformly at random

o If sgn(wT () # Yo, update w < w + ()

Perceptron (dual form with ¢)

Initialize o, = 0 for all m € [N]
Repeat:

@ Pick a data point index n uniformly at random
o If sgn(ZE‘lz1 am®(x,,) P(x,)) # yn, update oy, < oy + Yn

V.

If we can compute ¢(x,,) " ¢(x,,) without explicitly evaluating ¢(x,,) and
¢(x,,), then time/space is independent of M!
34 /46

NI
Example

Consider the following polynomial basis ¢ : R? — R3:

What is the inner product between ¢(x) and ¢(z')?

2 2
o(x) p(x') = x1%2) " + 2z w02 2y + 2027

= (217} + 222%)% = (zT2)?

Therefore, the inner product in the new space is simply a function of the
inner product in the original space.

35/ 46

NI
Another example

¢ : RP — R?P s parameterized by 6:

cos(fx1)
sin(fz1)
Po(x) = :
cos(0xp)
sin(fzp)
What is the inner product between ¢y(x) and ¢y(x’)?

D
oo(x) T po(x') = Z cos(0z4) cos(0z);) + sin(fz,) sin(fz;)
d=1
D
= Z cos(0(zq — z}))) (trigonometric identity)
d=1

Once again, the inner product in the new space is a simple function of the
features in the original space.
36 / 46

Kernel methods Kernel Trick

More complicated example

Based on ¢y, define ¢;, : RP — RZP(ZAD) for some integer L:

L

$o(z)
p2n ()
r(@)= | P23 (@
¢L2T’T(m)
What is the inner product between ¢ (x) and ¢ (2')?
L
pL(@) dL(@) =D Dot () dane (2)

L
L D
2ml
= Z Zcos <z(a:d - x&))
(=0 d=1

37 /46

Kernel methods Kernel Trick

Infinite dimensional mapping

When L — oo, even if we cannot compute ¢(z), a vector of infinite
dimension, we can still compute inner product:

¢oo() ¢oo —/ ZCOS xd—xd))dé?

D sin(2m(zq — x)))

g — x)

i
)

Again, a simple function of the original features.

Note that using this mapping in linear classification, we are learning a
weight w with infinite dimension!

38 /46

Kernel methods Kernel Trick

Kernel functions

Definition: a function k : RP x RP — R is called a kernel function if
there exists a function ¢ : R® — RM so that for any x, 2’ € RP,

k(z,2') = ¢(z)" (')
Can be seen as a kind of similarity measure.

Examples we have seen

k(x,x') = (x'2')?

D . ’
]{7(113,.’131) _ Z Sll’l(27T($Cd — xd))

= 7
Tg—T
d—1 d = %q

39 /46

Kernel methods Kernel Trick

Composing kernels

Creating more kernel functions using the following rules:

If k1(-,-) and ka(-,-) are kernels, the followings are kernels too
e conical combination: ak;(-,-) + Bka(-,-) if a,5 >0
e product: ki(-,-)ka(-,-)
e exponential: ¢*(+)

Verify using the definition of kernel!

40 / 46

Kernel methods Kernel Trick

Common kernel functions

Two most commonly used kernel functions in practice:

Polynomial kernel
k(xz,x') = (T2’ + ¢)?
for c > 0 and d is a positive integer.

Gaussian kernel or Radial Basis Function (RBF) kernel

llz—=I13
, _lz—="li3
k(x,x') =e 252

for some o > 0.

Think about what the corresponding ¢ is for each kernel.

41/ 46

Kernel methods Kernelized Perceptron

Back to Perceptron

Perceptron (dual form with ¢)

Initialize o, = 0 for all m € [N]
Repeat:

@ Pick a data point index n uniformly at random
o If sgn(zylzl am® () P(x,)) # yn, update oy, < a4+ Yn

v

Instead of choosing ¢ : RP — RM explicitly, we choose a kernel function k.

Kernelized Perceptron

Initialize o, = 0 for all m € [N]
Repeat:

@ Pick a data point index n uniformly at random

o If sgn(Z'T\'n:1 QU k(Tyn, 0)) 7 Yn, update oy, < ay + Yn

Completely M-independent, becomes a non-parametric method
42 / 46

Kernel methods Kernelized Perceptron

Gram /kernel matrix

When N is small, can precompute all inner products as a Gram matrix

llz(ml,ml) k(zy,zs) - k(z,zy)
P ($2:’m1) k‘(wz:,$2) k:(wg:,a:N) o7
Kan. 1) k@, @) - @y, zy)
e
Recall: & = :2) € RVxM
¢($.N)T

43 / 46

Kernel methods Kernelized Perceptron

Gram matrix vs covariance matrix

dimensions entry (i,7) property
PP N x N ¢(~’Bz‘)T¢($j) both are symmetric and
&TPH M x M 271:7:1 O(@0)id(®n); positive semidefinite

44 / 46

Kernel methods Kernelized Perceptron

Mercer Theorem

k:RP x RP — R is a kernel function if and only if the Gram matrix K
for any N and any x|, 2, ..., &y is positive semidefinite.

o useful for showing that a function is not a kernel

Example:
k(z,a') = |z —2'|3

is not a kernel, why?

If it is a kernel, the kernel matrix for two data points @1 and xs:

K:(0 , Hfﬁl—@ll%)
|21 — 2|3 0

must be positive semidefinite, but it is not (contradiction).

45 / 46

Kerelized Perceptron
Kernelizing ML algorithms

Many other ML algorithms can be kernelized:
@ nearest neighbor classifier

@ linear regression

logistic regression
e SVM

Key idea: rewrite the algorithm so that its dependence on the transformed
dataset @ is only through the Gram matrix K = ®®7.

46 / 46

	Review of Last Lecture
	Multiclass Classification
	Kernel methods

