
CSCI567 Machine Learning (Fall 2025)

Haipeng Luo

University of Southern California

Sep 19, 2025

1 / 46



Administration

Will discuss HW1 solutions in today discussion session.

HW2 will be released next week.

2 / 46



Outline

1 Review of Last Lecture

2 Multiclass Classification

3 Kernel methods

3 / 46



Review of Last Lecture

Outline

1 Review of Last Lecture

2 Multiclass Classification

3 Kernel methods

4 / 46



Review of Last Lecture

Linear classifiers

Linear models for binary classification:

Step 1. Model is the set of separating hyperplanes

F = {f(x) = sgn(wTx) | w ∈ RD}

5 / 46



Review of Last Lecture

Linear classifiers

Step 2. Pick the surrogate loss

perceptron loss ℓperceptron(z) = max{0,−z} (used in Perceptron)

hinge loss ℓhinge(z) = max{0, 1− z}(used in SVM and many others)

logistic loss ℓlogistic(z) = log(1+ exp(−z)) (used in logistic regression)

6 / 46



Review of Last Lecture

Linear classifiers

Step 3. Find empirical risk minimizer (ERM):

w∗ = argmin
w∈RD

F (w) = argmin
w∈RD

1

N

N∑
n=1

ℓ(ynw
Txn)

using

GD: w ← w − η∇F (w)

SGD: w ← w − η∇̃F (w) (E[∇̃F (w)] = ∇F (w))

Newton: w ← w −
(
∇2F (w)

)−1∇F (w)

7 / 46



Review of Last Lecture

Convergence guarantees of GD/SGD

GD/SGD converges to a stationary point

for convex objectives, this is all we need

for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

“good” saddle points “bad” saddle points

8 / 46



Review of Last Lecture

Perceptron and logistic regression

Initialize w = 0 or randomly.

Repeat:

pick a data point xn uniformly at random (common trick for SGD)

update parameter:

w ← w +

{
I[ynwTxn ≤ 0]ynxn (Perceptron)

ησ(−ynwTxn)ynxn (logistic regression)

9 / 46



Review of Last Lecture

A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

w∗ = argmin
w

N∑
n=1

ℓlogistic(ynw
Txn) = argmax

w

N∏
n=1

P(yn | xn;w)

where

P(y | x;w) = σ(ywTx) =
1

1 + e−ywTx

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 / 46



Multiclass Classification

Outline

1 Review of Last Lecture

2 Multiclass Classification
Multinomial logistic regression
Reduction to binary classification

3 Kernel methods

11 / 46



Multiclass Classification

Classification

Recall the setup:

input (feature vector): x ∈ RD

output (label): y ∈ [C] = {1, 2, · · · ,C}
goal: learn a mapping f : RD → [C]

Examples:

recognizing digits (C = 10) or letters (C = 26 or 52)

predicting weather: sunny, cloudy, rainy, etc

predicting image category: ImageNet dataset (C ≈ 20K)

Nearest Neighbor Classifier naturally works for arbitrary C.

12 / 46



Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {−1,+1} to {1, 2})

f(x) =

{
1 if wTx ≥ 0

2 if wTx < 0

can be written as

f(x) =

{
1 if wT

1 x ≥ wT
2 x

2 if wT
2 x > wT

1 x

= argmax
k∈{1,2}

wT
k x

for any w1,w2 s.t. w = w1 −w2

Think of wT
k x as a score for class k.

13 / 46



Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

w = (32 ,
1
6) = w1 −w2

w1 = (1,−1
3)

w2 = (−1
2 ,−

1
2)

Blue class:
{x : wTx ≥ 0}
{x : 1 = argmaxk w

T
k x}

Orange class:
{x : wTx < 0}
{x : 2 = argmaxk w

T
k x}

14 / 46



Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

w1 = (1,−1
3)

w2 = (−1
2 ,−

1
2)

w3 = (0, 1)

Blue class:
{x : 1 = argmaxk w

T
k x}

Orange class:
{x : 2 = argmaxk w

T
k x}

Green class:
{x : 3 = argmaxk w

T
k x}

15 / 46



Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =

{
f(x) = argmax

k∈[C]
wT

k x | w1, . . . ,wC ∈ RD

}

=

{
f(x) = argmax

k∈[C]
(Wx)k |W ∈ RC×D

}

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss

16 / 46



Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 −w2:

P(y = 1 | x;w) = σ(wTx) =
1

1 + e−wTx
=

ew
T
1 x

ew
T
1 x + ew

T
2 x
∝ ew

T
1 x

Naturally, for multiclass:

softmax(Wx)k = P(y = k | x;W ) =
ew

T
k x∑

k′∈[C] e
wT

k′x
∝ ew

T
k x

Important operator: softmax function (or really, “softargmax”)

For a vector s ∈ RC, softmax(s) =

(
es1∑

k∈[C] e
sk
, · · · , esC∑

k∈[C] e
sk

)

17 / 46



Multiclass Classification Multinomial logistic regression

Applying MLE again

Maximize probability of seeing labels y1, . . . , yN given x1, . . . ,xN

P (W ) =

N∏
n=1

P(yn | xn;W ) =

N∏
n=1

ew
T
yn

xn∑
k∈[C] e

wT
k xn

By taking negative log, this is equivalent to minimizing

F (W ) =

N∑
n=1

ln

(∑
k∈[C] e

wT
k xn

ew
T
ynxn

)
=

N∑
n=1

ln

1 +
∑
k ̸=yn

e(wk−wyn )
Txn


This is the multiclass logistic loss, a.k.a. cross-entropy loss.

When C = 2, this is the same as binary logistic loss.

18 / 46



Multiclass Classification Multinomial logistic regression

Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W ) = ln

1 +
∑
k′ ̸=yn

e(wk′−wyn )
Txn

?

It’s a C× D matrix. Let’s focus on the k-th row:

If k ̸= yn:

∇wT
k
Fn(W ) =

e(wk−wyn )
Txn

1 +
∑

k′ ̸=yn
e(wk′−wyn )

Txn
xT
n = P(k | xn;W )xT

n

else:

∇wT
k
Fn(W ) =

−
(∑

k′ ̸=yn
e(wk′−wyn )

Txn

)
1 +

∑
k′ ̸=yn

e(wk′−wyn )
Txn

xT
n = (P(yn | xn;W )− 1)xT

n

19 / 46



Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

1 pick n ∈ [N] uniformly at random

2 update the parameters

W ←W − η


P(y = 1 | xn;W )

...
P(y = yn | xn;W )− 1

...
P(y = C | xn;W )

xT
n

Think about why the algorithm makes sense intuitively.

20 / 46



Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W , we can either

make a deterministic prediction argmaxk∈[C] w
T
k x

make a randomized prediction drawn from softmax(Wx)

21 / 46



Multiclass Classification Multinomial logistic regression

Generalization of cross-entropy loss

Given a general model class:

F =

{
f(x) = argmax

k∈[C]
s(x)k

}

where s : RD → RC is a “scoring” function.

The cross-entropy loss of f for a training sample (x, y) is

− ln (softmax(s(x))y) = − ln

(
es(x)y∑

k∈[C] e
s(x)k

)
= ln

1 +
∑
k ̸=y

es(x)k−s(x)y



22 / 46



Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.

one-versus-all (one-versus-rest, one-against-all, etc.)

one-versus-one (all-versus-all, etc.)

tree-based reduction

23 / 46



Multiclass Classification Reduction to binary classification

One-versus-all (OvA) (picture credit: link)

Idea: train C binary classifiers to learn “is class k or not?” for each k.

Training: for each class k ∈ [C],

relabel examples with class k as +1, and all others as −1
train a binary classifier hk using this new dataset

24 / 46

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf


Multiclass Classification Reduction to binary classification

One-versus-all (OvA)

Prediction: for a new example x

ask each hk: does this belong to class k? (i.e. hk(x))

randomly pick among all k’s s.t. hk(x) = +1.

Issue: will (probably) make a mistake as long as one of hk errs.

25 / 46



Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picture credit: link)

Idea: train
(C
2

)
binary classifiers to learn “is class k or k′?”.

Training: for each pair (k, k′),

relabel examples with class k as +1 and examples with class k′ as −1
discard all other examples

train a binary classifier h(k,k′) using this new dataset

26 / 46

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf


Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x

ask each classifier h(k,k′) to vote for either class k or k′

predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

27 / 46



Multiclass Classification Reduction to binary classification

Tree based method

Idea: train ≈ C binary classifiers to learn “belongs to which half?”.

Training: see pictures

Prediction is also natural, but is very fast! (think ImageNet where
C ≈ 20K)

28 / 46



Multiclass Classification Reduction to binary classification

Comparisons

Reduction
training
time

prediction
time

remark

OvA CN C not robust

OvO (C− 1)N O(C2) can achieve very small training error

Tree O((log2 C)N) O(log2 C) good for “extreme classification”

training time: how many

training points are created

prediction time: how many
binary predictions are made

29 / 46



Kernel methods

Outline

1 Review of Last Lecture

2 Multiclass Classification

3 Kernel methods
Motivation
Example: Perceptron
Kernel Trick
Kernelized Perceptron

30 / 46



Kernel methods Motivation

Motivation

Recall: when linear models are not good enough, we can use a nonlinear
feature map ϕ : RD → RM to transform all x to ϕ(x).

Issue: what if M is huge, or even infinity?

Solution: kernel methods

31 / 46



Kernel methods Example: Perceptron

Case study: Perceptron for binary classification

Perceptron

Initialize w = 0
Repeat:

Pick a data point index n uniformly at random

If sgn(wTxn) ̸= yn, update w ← w + ynxn

Observation: w is a linear combination of training data

w =

N∑
m=1

αmxm

where αm = ym × number of times xm has been misclassified

32 / 46



Kernel methods Example: Perceptron

Dual form of Perceptron

Perceptron (primal form)

Initialize w = 0
Repeat:

Pick a data point index n uniformly at random

If sgn(wTxn) ̸= yn, update w ← w + ynxn

How to update α1, . . . , αN so that
∑N

m=1 αmxm ≡ w holds always?

Perceptron (dual form)

Initialize αm = 0 for all m ∈ [N]
Repeat:

Pick a data point index n uniformly at random

If sgn(
∑N

m=1 αmxT
mxn) ̸= yn, update αn ← αn + yn

33 / 46



Kernel methods Example: Perceptron

Applying a feature map

Perceptron (primal form with ϕ) issue: time/space linear in M

Initialize w = 0 ∈ RM

Repeat:

Pick a data point index n uniformly at random

If sgn(wTϕ(xn)) ̸= yn, update w ← w + ynϕ(xn)

Perceptron (dual form with ϕ)

Initialize αm = 0 for all m ∈ [N]
Repeat:

Pick a data point index n uniformly at random

If sgn(
∑N

m=1 αmϕ(xm)Tϕ(xn)) ̸= yn, update αn ← αn + yn

If we can compute ϕ(xm)Tϕ(xn) without explicitly evaluating ϕ(xm) and
ϕ(xn), then time/space is independent of M!

34 / 46



Kernel methods Kernel Trick

Example

Consider the following polynomial basis ϕ : R2 → R3:

ϕ(x) =

 x21√
2x1x2
x22


What is the inner product between ϕ(x) and ϕ(x′)?

ϕ(x)Tϕ(x′) = x1
2x′1

2
+ 2x1x2x

′
1x

′
2 + x2

2x′2
2

= (x1x
′
1 + x2x

′
2)

2 = (xTx′)2

Therefore, the inner product in the new space is simply a function of the
inner product in the original space.

35 / 46



Kernel methods Kernel Trick

Another example

ϕ : RD → R2D is parameterized by θ:

ϕθ(x) =


cos(θx1)
sin(θx1)

...
cos(θxD)
sin(θxD)


What is the inner product between ϕθ(x) and ϕθ(x

′)?

ϕθ(x)
Tϕθ(x

′) =

D∑
d=1

cos(θxd) cos(θx
′
d) + sin(θxd) sin(θx

′
d)

=

D∑
d=1

cos(θ(xd − x′d)) (trigonometric identity)

Once again, the inner product in the new space is a simple function of the
features in the original space.

36 / 46



Kernel methods Kernel Trick

More complicated example

Based on ϕθ, define ϕL : RD → R2D(L+1) for some integer L:

ϕL(x) =


ϕ0(x)
ϕ 2π

L
(x)

ϕ2 2π
L
(x)
...

ϕL 2π
L
(x)


What is the inner product between ϕL(x) and ϕL(x

′)?

ϕL(x)
TϕL(x

′) =

L∑
ℓ=0

ϕ 2πℓ
L
(x)Tϕ 2πℓ

L
(x′)

=

L∑
ℓ=0

D∑
d=1

cos

(
2πℓ

L
(xd − x′d)

)
37 / 46



Kernel methods Kernel Trick

Infinite dimensional mapping

When L→∞, even if we cannot compute ϕ(x), a vector of infinite
dimension, we can still compute inner product:

ϕ∞(x)Tϕ∞(x′) =

∫ 2π

0

D∑
d=1

cos(θ(xd − x′d)) dθ

=

D∑
d=1

sin(2π(xd − x′d))

xd − x′d

Again, a simple function of the original features.

Note that using this mapping in linear classification, we are learning a
weight w with infinite dimension!

38 / 46



Kernel methods Kernel Trick

Kernel functions

Definition: a function k : RD × RD → R is called a kernel function if
there exists a function ϕ : RD → RM so that for any x,x′ ∈ RD,

k(x,x′) = ϕ(x)Tϕ(x′)

Can be seen as a kind of similarity measure.

Examples we have seen

k(x,x′) = (xTx′)2

k(x,x′) =
D∑

d=1

sin(2π(xd − x′d))

xd − x′d

39 / 46



Kernel methods Kernel Trick

Composing kernels

Creating more kernel functions using the following rules:

If k1(·, ·) and k2(·, ·) are kernels, the followings are kernels too

conical combination: αk1(·, ·) + βk2(·, ·) if α, β ≥ 0

product: k1(·, ·)k2(·, ·)

exponential: ek(·,·)

· · ·

Verify using the definition of kernel!

40 / 46



Kernel methods Kernel Trick

Common kernel functions

Two most commonly used kernel functions in practice:

Polynomial kernel
k(x,x′) = (xTx′ + c)d

for c ≥ 0 and d is a positive integer.

Gaussian kernel or Radial Basis Function (RBF) kernel

k(x,x′) = e−
∥x−x′∥22

2σ2

for some σ > 0.

Think about what the corresponding ϕ is for each kernel.

41 / 46



Kernel methods Kernelized Perceptron

Back to Perceptron

Perceptron (dual form with ϕ)

Initialize αm = 0 for all m ∈ [N]
Repeat:

Pick a data point index n uniformly at random

If sgn(
∑N

m=1 αmϕ(xm)Tϕ(xn)) ̸= yn, update αn ← αn + yn

Instead of choosing ϕ : RD → RM explicitly, we choose a kernel function k.

Kernelized Perceptron

Initialize αm = 0 for all m ∈ [N]
Repeat:

Pick a data point index n uniformly at random

If sgn(
∑N

m=1 αmk(xm,xn)) ̸= yn, update αn ← αn + yn

Completely M-independent, becomes a non-parametric method
42 / 46



Kernel methods Kernelized Perceptron

Gram/kernel matrix

When N is small, can precompute all inner products as a Gram matrix

K =


k(x1,x1) k(x1,x2) · · · k(x1,xN )
k(x2,x1) k(x2,x2) · · · k(x2,xN )

...
...

...
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN )

 = ΦΦT

Recall: Φ =


ϕ(x1)

T

ϕ(x2)
T

...
ϕ(xN )T

 ∈ RN×M

43 / 46



Kernel methods Kernelized Perceptron

Gram matrix vs covariance matrix

dimensions entry (i, j) property

ΦΦT N× N ϕ(xi)
Tϕ(xj) both are symmetric and

positive semidefiniteΦTΦ M×M
∑N

n=1 ϕ(xn)iϕ(xn)j

44 / 46



Kernel methods Kernelized Perceptron

Mercer Theorem

k : RD × RD → R is a kernel function if and only if the Gram matrix K
for any N and any x1, x2, . . ., xN is positive semidefinite.

useful for showing that a function is not a kernel

Example:
k(x,x′) = ∥x− x′∥22

is not a kernel, why?

If it is a kernel, the kernel matrix for two data points x1 and x2:

K =

(
0 ∥x1 − x2∥22

∥x1 − x2∥22 0

)
must be positive semidefinite, but it is not (contradiction).

45 / 46



Kernel methods Kernelized Perceptron

Kernelizing ML algorithms

Many other ML algorithms can be kernelized:

nearest neighbor classifier

linear regression

logistic regression

SVM

· · ·

Key idea: rewrite the algorithm so that its dependence on the transformed
dataset Φ is only through the Gram matrix K = ΦΦT.

46 / 46


	Review of Last Lecture
	Multiclass Classification
	Kernel methods

