CSCI567 Machine Learning (Fall 2025)

Haipeng Luo
University of Southern California

Sep 19, 2025

s
I
Outline
@ Review of Last Lecture

© Multiclass Classification

© Kernel methods

Administration

Will discuss HW1 solutions in today discussion session.

HW?2 will be released next week.

Review of Last Lecture

Outline

@ Review of Last Lecture

Review of Last Lecture Review of Last Lecture

Linear classifiers Linear classifiers

Linear models for binary classification: Step 2. Pick the surrogate loss

Step 1. Model is the set of separating hyperplanes 20

F={f(x) =sgn(wre) |w e RD}

@ perceptron 0ss Lperceptron(2) = max{0, —z} (used in Perceptron)
o hinge 10ss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss £jogistic(2) = log(1 4 exp(—=z)) (used in logistic regression)

Review of Last Lecture Review of Last Lecture

Linear classifiers Convergence guarantees of GD/SGD

e GD/SGD converges to a stationary point

Step 3. Find empirical risk minimizer (ERM): e for convex objectives, this is all we need
L @ for nonconvex objectives, can get stuck at local minimizers or “bad”
w”* = argmin F'(w) = argmin — Zﬁ(yanmn) saddle points (random initialization escapes “good” saddle points)
'UJERD 'LUGRD N n=1
using
e GD: w <+ w—nVF(w

)
e SGD: w + w—nVF(w)
o Newton: w + w — (VQF(w))_1 VF(w)

(E[VF(w)] = VF(w))

“good” saddle points “bad” saddle points

Review of Last Lecture

Perceptron and logistic regression
Initialize w = 0 or randomly.

Repeat:
@ pick a data point x,, uniformly at random (common trick for SGD)

@ update parameter:

[[ypwrx, < 0y Ty (Perceptron)

w —w+
{W(-yanmn)ynwn

(logistic regression)

9/ 46

Multiclass Classification

Outline

© Multiclass Classification
@ Multinomial logistic regression
@ Reduction to binary classification

11/ 46

Review of Last Lecture

A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

N N
w” = argmin Z liogistic(Yn W x,,) = argmax H P(yn | Zn;w)
w n=1 n=1
where 1
Py | o;w) = o(yw' x) =

1+ evw'e

0.9
0.8]
0.7]
0.6
0.5]
0.4]
03
0.2]

0.1

10 / 46
Classification
Recall the setup:
e input (feature vector): = € RP
e output (label): y € [C] ={1,2,--- ,C}
@ goal: learn a mapping f : RP — [C]
Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
@ predicting weather: sunny, cloudy, rainy, etc
e predicting image category: ImageNet dataset (C ~ 20K)
Nearest Neighbor Classifier naturally works for arbitrary C.
12 / 46

Gz (R et
Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

flx) =

1 ifwTz>0
2 ifwle<0

can be written as

f(@) 1 ifwlT:cszTw
€r) =
2 ifwlz>wlx

= argmax wgcc
ke{1,2}

for any w1, ws s.t. w = wi — wo
Think of w;f:c as a score for class k.

13 / 46

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

@ Blue class:
{x: 1 = argmax;, wlx}

@ Orange class:

! 1 {x : 2 = argmax;, wlx}
® Green class:
2t . : :] {x : 3 = argmax;, w} x}
2 1 o 1 2
15 / 46

GGz (R et
Linear models: from binary to multiclass

.-—'"_--.-_-.#
1
2k, n
2 1 a 1 2 3 1
2 w:(§76):wl—u7)
_ 1
wy = (:i—g)l
. w2 = (—3,—3)
@ Blue class:
4_-_'-'_' —
14 / 46
T L — 2 T
{z : 1 = argmax;, w;, =}
_]

Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(x) = argmax wj z | wi,..
ke[C]

., we ERD}

= {f(a:) = argmax (Wax), | W €]RCXD}
ke[C]

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss

16 / 46

Multinomial logistic regression: a probabilistic view
Observe: for binary logistic regression, with w = w; — wo:

T
T 1 e'wlaz
x) = = x e

T T T wrlrm
]__|_6*wm 6w1w+ew2w

Ply=1|z;,w) =o(w

Naturally, for multiclass:

T
e’UJk xr

softmax(Wz), =Py =k | x; W) = Qg & Wi ®
Zk’e[c] e

Important operator: softmax function (or really, “softargmax’)

651 GSC
For a vector s € RS, softmax(s) = < >

Dkeiq e Zke[q ek

17 / 46

Step 3: Optimization
Apply SGD: what is the gradient of

Fu(W)=In {1+ Y elww=wm)an |2
k' #yn

It's a C x D matrix. Let’'s focus on the k-th row:

If k # yp:

e(wk —Wyp,)Tmn

— T _ . T
vwEFn(W) 1+ Dk L e(wyr—wy,)Tz, Py = Pk | 2n; W)a,

T

_ (Zklyéyn e(wk/—wyn) mn)

w = _ T zcg = P(yn | Tn; W) — 1) x)
k 14+ Ek’;éy e(wp —wy,) Txn

19 / 46

Multinomial logisic regression
Applying MLE again

Maximize probability of seeing labels y1,...,yn given x1,..., N

N T

N wyn
PW) =[] Py | @ W) = [] =
n=1

wle,
nel Zke[c] ek

Ln

By taking negative log, this is equivalent to minimizing

Zl (Zkel[f]i:) Zln 1"’2 (wi—wy,) T,

y
e k#yn

This is the multiclass logistic loss, a.k.a. cross-entropy loss.

When C = 2, this is the same as binary logistic loss.

Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

Ply=1|x,; W)
W—W-—-n| Ply=yp | x,; W) -1 a:g
Ply=C|zy W)

Think about why the algorithm makes sense intuitively.

18 / 46

20 / 46

DL Tl [iz
A note on prediction

Having learned W, we can either
® make a deterministic prediction argmaxycic; wix

@ make a randomized prediction drawn from softmax(W)

21/ 46

Reduction to binary classification
Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.
e one-versus-all (one-versus-rest, one-against-all, etc.)
@ one-versus-one (all-versus-all, etc.)

@ tree-based reduction

23 / 46

Multiclass Classification Multinomial logistic regression

Generalization of cross-entropy loss

Given a general model class:
F =< f(x) = argmax s(x)g
ke[C]

where 5 : RP — R€ is a “scoring” function.

The cross-entropy loss of f for a training sample (x,y) is

s5(x)y

e

—In(softmax(s(z))y) = —In | =—————— | =In [1+ Y s@r—s@)y
! 2 ke(d] es(®@k ,;

22 / 46

Reduction to binary classification
One-versus-all (OvA)

(picture credit: link)
Idea: train C binary classifiers to learn “is class k& or not?" for each k.

Training: for each class k € [C],
o relabel examples with class k as +1, and all others as —1

@ train a binary classifier hj using this new dataset

| | [
X1 X1 X1 + | x1 X1
x> N X2 X2 X 4+ | X2
x3 W = | x3 X3 X3 x3 +
X4 X4 Xe + | Xa X4
X5 | X5 + | X5 X5 X5
U Y Y Y
hy ho h3 hg

24 / 46

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example
@ ask each hy: does this belong to class k? (i.e. hi(x))

e randomly pick among all £'s s.t. hi(x) = +1.

Issue: will (probably) make a mistake as long as one of hy, errs.

25 / 46
One-versus-one (OvO)
Prediction: for a new example
o ask each classifier iy 1 to vote for either class k or K
@ predict the class with the most votes (break tie in some way)
More robust than one-versus-all, but slower in prediction.
27 / 46

Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picture credit: link)

Idea: train (g) binary classifiers to learn “is class k or k'?".

Training: for each pair (k, k'),
o relabel examples with class k as +1 and examples with class k" as —1
@ discard all other examples

e train a binary classifier i /) using this new dataset

M vs. HMvs. B | Wvs. W | Wvs. Mvs. W | Hvs.
X1 X1 X1 X1
x> W X2 X2 4 Xo 4
x3 B = X3 x3 + | X3
X4 X4 X4 X4
x; M X5 + | X5 + X5 +

! I I 4 I I
h(1,2) h(13) 3.4 ha2) h1.4) h(3.2)

26 / 46

Reduction to binary classification
Tree based method

Idea: train = C binary classifiers to learn “belongs to which half?".

Training: see pictures

u v = | B | S hl

X1 X1 + | X1 | .

x W X2 X2 + [|

x3 W = | x3 X3

X4 X4 + | Xa

|

X5 X5 + | X5 + h2 h3
‘Ur U’ lJ/ . Vs . Vs .
hy ho h3

Prediction is also natural, but is very fast! (think ImageNet where
C =~ 20K)

28 / 46

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification
Comparisons

training

prediction

Reduction time time remark
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
Tree O((loga C)N) | O(log, C) good for “extreme classification”

a___® _* _ __ a® __ _ 1

training points are created

X1
X2
X3

)

X1 X1 +

X2 X2

[I

X3 X3

Motivation
Motivation

Recall: when linear models are not good enough, we can use a nonlinear
feature map ¢ : R® — RM to transform all x to ¢(x).

Issue: what if M is huge, or even infinity?

Solution: kernel methods

31/ 46

Outline

© Kernel methods
Motivation

@ Example: Perceptron
o Kernel Trick

@ Kernelized Perceptron

L
Case study: Perceptron for binary classification

Perceptron

Initialize w = 0
Repeat:

@ Pick a data point index n uniformly at random

o If sgn(wrx,) # y,, update w + w + Yz,

30 / 46

Observation: w is a linear combination of training data

N
w = g AL,
m=1

where o, = Y X number of times x,,, has been misclassified

32/ 46

22 [z
Dual form of Perceptron

Perceptron (primal form)

Initialize w = 0
Repeat:

@ Pick a data point index n uniformly at random
o If sgn(w'x,) # y,, update w + w + y,x,

How to update o, ..., ayN so that Zi\,'lzl ATy = w holds always?

Perceptron (dual form)

Initialize v, = 0 for all m € [N]
Repeat:

@ Pick a data point index n uniformly at random

o If sgn(Z:;'%:l AT LX) # Yn, update ay, < oy + Yn

33 / 46

[CEGENGELIE Kernel Trick

Example

Consider the following polynomial basis ¢ : R? — R3:

What is the inner product between ¢(x) and ¢(x')?

2 2
d(x) p(x)) = 21%2)" + 2z 1m0 2y + 0%

= (r12] + 201h)” = (¢" ')

Therefore, the inner product in the new space is simply a function of the
inner product in the original space.

35 / 46

Example: Perceptron
Applying a feature map

Perceptron (primal form with ¢) issue: time/space linear in M

Initialize w = 0 € RM
Repeat:
@ Pick a data point index n uniformly at random

o If sgn(w' ¢(x,,)) # yn, update w w + y,P(x,)

Perceptron (dual form with ¢)

Initialize a,, = 0 for all m € [N]
Repeat:

@ Pick a data point index n uniformly at random
o If Sgn(zgzl O‘m(b(xm)Td)(wn)) # Yn, update o, < ap +Yp

y

If we can compute ¢(x,,) " ¢(x,,) without explicitly evaluating ¢(x,,) and
¢(x,,), then time/space is independent of M!

34 / 46

G T
Another example

¢ : RP — R?P is parameterized by 6:

cos(0z1)
sin(0x1)
Po(x) = :
cos(fzp)
sin(fzp)
What is the inner product between ¢y (x) and ¢g(x’)?
D
do(x)Tdp(a) = Z cos(0z4) cos(0xl;) + sin(fz4) sin(0z))
d=1

D
= Z cos(0(zq —) (trigonometric identity)
d=1
Once again, the inner product in the new space is a simple function of the
features in the original space.
36 / 46

Kernel methods Kernel Trick

More complicated example

Based on ¢y, define ¢z, : RP — R2P(L+D) for some integer L:

$o(x)
G2 ()
or(z) = | Poz=(T)
¢L2T’T(w)
What is the inner product between ¢ (x) and ¢r(x')?
L
T A T !
S(@) prL(a) = Y Pues (2) Pame (@)
£=0
= iicos 27%(1: —ah)
L
(=0 d=1
37 / 46
Kernel functions
Definition: a function k : RP x RP — R is called a kernel function if
there exists a function ¢ : RP — RM so that for any =, 2’ € RP,
k(z, 2') = ¢(z)" (')
Can be seen as a kind of similarity measure.
Examples we have seen
k(x,z') = (xTa')?
D .
sin(2m(xq — 27)))
k(z,a') = d
(m.at) = 3 L
d=1
39 / 46

Kernel methods Kernel Trick

Infinite dimensional mapping

When L — oo, even if we cannot compute ¢(x), a vector of infinite
dimension, we can still compute inner product:

or D
Poo(@) " Poo(@) cos(6(zq — x)) df

d=1

I
S—

sin(2m(zq — 7))

I
NE

Ty — x,

T
)

Again, a simple function of the original features.
Note that using this mapping in linear classification, we are learning a

weight w with infinite dimension!

38 / 46

Kernel methods Kernel Trick

Composing kernels

Creating more kernel functions using the following rules:

If k1(+,-) and ka(-,) are kernels, the followings are kernels too
@ conical combination: ak;(-,-) + Bka(:,-) if a, 5 >0
e product: kq(-,)ka(-,-)
e exponential: ()

Verify using the definition of kernel!

40 / 46

Kernel methods Kernel Trick

Common kernel functions

Two most commonly used kernel functions in practice:

Polynomial kernel
kiz,x') = (xTa' + ¢)?

for ¢ > 0 and d is a positive integer.

Gaussian kernel or Radial Basis Function (RBF) kernel

, _llz—='113
k(x,x') =e 202

for some o > 0.

Think about what the corresponding ¢ is for each kernel.

41 / 46

Kernel methods Kernelized Perceptron

Gram /kernel matrix

When N is small, can precompute all inner products as a Gram matrix

k(xy,x1) k(xy,x2) k(xy,zN)
o 1{3(332., x1) k(iEg', x2) : k(wg, TN) _ oaT
k(CCN,:Bl) k(ZI}N,CCQ) k(CCN,:BN)

Recall;: & =

43 / 46

Kernel methods Kernelized Perceptron

Back to Perceptron

Perceptron (dual form with ¢)

Initialize v, = 0 for all m € [N]
Repeat:

@ Pick a data point index n uniformly at random
o If sgn(X i am@(@) ¢ (1)) # yn, update v < ap + yn

Instead of choosing ¢ : RP — RM explicitly, we choose a kernel function .

Kernelized Perceptron

Initialize v, = 0 for all m € [N]
Repeat:

@ Pick a data point index n uniformly at random

o If sgn(Z'T\ln:1 amk(Tm, Tn)) # yn, update ay, < ap + Yn

Completely M-independent, becomes a non-parametric method
42 / 46

Kernel methods Kernelized Perceptron

Gram matrix vs covariance matrix

dimensions
T N x N
TP M x M

entry (i,7)
¢ ()T ()
Yooy O(@n)id(@n);

property

both are symmetric and
positive semidefinite

44 / 46

Kernel methods Kernelized Perceptron Kernel methods Kernelized Perceptron

Mercer Theorem Kernelizing ML algorithms

k:RP x RP — R is a kernel function if and only if the Gram matrix K

for any N and any a1, xo, ..., x is positive semidefinite. Many other ML algorithms can be kernelized:
@ useful for showing that a function is not a kernel @ nearest neighbor classifier
Example: @ linear regression

k(z,2') = ||z - ZUIH% @ logistic regression

is not a kernel, why?

e SVM
If it is a kernel, the kernel matrix for two data points x; and xs: @ ---
0 |21 — 5'32||2 .)))
K = H 12 N 2 Key idea: rewrite the algorithm so that its dependence on the transformed
L1 — 2|9

dataset @ is only through the Gram matrix K = ®®7.

must be positive semidefinite, but it is not (contradiction).

45 / 46 46 / 46

	Review of Last Lecture
	Multiclass Classification
	Kernel methods

