CSCI567 Machine Learning (Fall 2025)

Haipeng Luo
University of Southern California

Sep 26, 2025

e
I
Outline
@ Review of Last Lecture

© Neural Nets

© Convolutional neural networks (ConvNets/CNNs)

Administration

HW?2 available now. Due on Oct 8th.

Review of Last Lecture

Outline

@ Review of Last Lecture

Review of Last Lecture

Linear models: from binary to multiclass

@ Blue class:

{x: 1 = argmax, wyz}
o
1 1 {x:
@ Green class:

b, . ‘ :] {x : 3 = argmax;, w] z}
2 1 1] 1 2

= argmax;, w, ¢}

F =1 f(x) = argmax wiz|wi,..., wc € RP
ke(C]

5/ 47

Kernel functions

Definition: a function k : RP x RP — R is called a kernel function if
there exists a function ¢ : RP — RM so that for any z, 2’ € RP,

k(z,z') = ¢p(x)" p(x)

Examples we have seen

k(x,x") = (:I:Ta:')2

(polynomial kernel)

(Gaussian/RBF kernel)

7/ 47

Softmax + MLE = minimizing cross-entropy loss

Maximize probability of see labels y1,...,yn given 1,..., TN
N N N oW @
PW) =[] Pyn | #n; W) = [] softmax(Wy,),, =

’UJTm
et 2okelc) €T

n=1 n=1
By taking negative log, this is equivalent to minimizing

Zl <Zk¢€1[UC]€mn) Zln 1+Z (wg—wy,) Txn

Y
e k#yn

This is the multiclass logistic loss, a.k.a cross-entropy loss.

6/ 47

Kernelizing ML algorithms

Key idea: rewrite the algorithm so that its dependence on the transformed
dataset @ is only through the Gram matrix K = ®®".

Perceptron (primal form with ¢) issue: time/space linear in M

Initialize w = 0 € RM
Repeat:

@ Pick a data point index n uniformly at random
o If sgn(wp(x,)) # yn, update w w + Y ()

Kernelized Perceptron independent of M

Initialize v, = 0 for all m € [N]
Repeat:

@ Pick a data point index n uniformly at random

o If sgn(z

1 Omk(®m,) # yn, update o, < o + Yn

8 / 47

Outline

D<o
Linear models are not always adequate

© Neural Nets
@ Definition
@ Backpropagation
@ Preventing overfitting

We can use a nonlinear mapping as discussed:

¢(x):x € RP — z ¢ RM

Instead of manually picking ¢ or kernel k, can we learn this nonlinear
mapping from data?

The most popular nonlinear models nowadays: neural nets

9 /47 10 / 47

Linear model as a one-layer neural net

B
More output nodes

h(a) = a for linear model

4|
X2 o=h(We)
Activation funct‘ions
To create non-linearity, can use T3
@ Rectified Linear Unit (ReLU): Q
h(a) = max{0,a} w
e sigmoid function: h(a) = ——] 7
& ea—e(a) Ite /' W e R4X3, h:R* > RYso h(a) = (h1 (al), hg(ag), h3(6L3), h4(a4))
@ TanH: h(a) = cife—a o / —— Sigmoid i) . .
e many more IR " Can think of this as a nonlinear mapping: ¢(x) = h(Wx)

2 4
11/ 47

BT
More layers

Becomes a network:

@ each node is called a neuron input ayer hiddenlayer1 hidden layer 2 output layer

@ h is called the activation function

e can use h(a) =1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) =a

o #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)
@ deep neural nets can have many layers and millions of parameters

e this is a feedforward, fully connected neural net, there are many
variants (convolutional nets, recurrent nets, transformers, etc.)

13 / 47

Definition
Math formulation

An L-layer neural net can be written as

f(x)=hL(WrhL1 (WL hi (Wiz)))

input layer hidden layer 1 hidden layer 2 output layer

To ease notation, for a given input @, define recursively

Oy =@, ay = WgOg_l, Oy = hg(ag) (f = 1,. ,L)
where
o W, € RPxPe-1 js the weights between layer £ — 1 and ¢
@ Do =D,Dyq,...,DL are numbers of neurons at each layer
o ay € RP is input to layer ¢
e o, € RP! is output of layer ¢
o h,:RP¢ — RP¢ is activation functions at layer ¢

15 / 47

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

o for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

Demo: http://playground.tensorflow.org

14 / 47

LRI
Learning the model

No matter how complicated the model is, our goal is the same: minimize

N

F(Wi, ..., W)= =Y F(Wh,...,W)

for regression

— 2
F,(Wy,...,W,) = {”f(wn) Ynll3

In <1 + D ket ef(w”)k*f(“’”)yn) for classification

16 / 47

http://playground.tensorflow.org

EEREICEEE
How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

e for a composite function f(g(w))

of _0f dg
ow 89 ow

e for a composite function f(g1(w), .

- ga(w))
af 3gz
Z dg; ow
the simplest example f(g1(w), g2(w)) = g1(w)ga(w)
17 / 47

Computing the derivative

Adding the subscript for layer:

oF, _ or,
6w£,z’j 3ae,z'

i | hyi(ae;
8aez (Z Oapy1, kweﬂ’k) ¢i(aei)

For the last layer, for square loss

Op—1,5

OF, O(hLilaLs) — yni)?
- = —— = 2(hri(aL:) —
Oay ; day i (Puilas)

Yn,i)hi i(aL:)

Exercise: try to do it for cross-entropy loss yourself.

19 / 47

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

8Fn - 8Fn 8ai _ 8Fn 8(wijoj) o 8Fn0'
8wij - 8ai 6wij - 8@2' 8wz-j - 80,1' J

aFn . aFn 801, - aF 8ak , o % ' "
(9ai - 802' 3@1 (Z aak 802> h az) - (- aak UHcl) hi(az)

18 / 47

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

aFn 8Fn T D D
- " R ¢ XDy—1
oW, ~ da, 1 ©
oF, _ [(Whid)ohjla) ifr<L
da; 2(h(aL) — yn) o bl (ay) else
where v] o vy = (v11V21, - -

,V1DV2p) is the element-wise product (a.k.a.
Hadamard product).

Verify yourself! (But no need to remember this formula.)

20 / 47

EEREICEEE
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W1, ..., W| randomly. Repeat:

© randomly pick one data point n € [N]

@ forward propagation: for each layer / =1,... L
o compute ay = Wyo,_1 and o, = hy(ay)

© backward propagation: foreach / =L,... 1
e compute

oF, _ [(WhiEE)oha) i<t
dac 2(hi(aL) —yn)oh{(a) else
o update weights

OF, OF,
W, « W, — " =W, -n——o,
¢ Wy nan ¢ Uaaloeq
(Important: should W, be overwritten immediately in the last step?)
21 / 47
SGD with momentum (a simple version)
Initialize wq and velocity v =0
Fort=1,2,...
e form a stochastic gradient gy
@ update velocity v < av + g¢ for some discount factor « € (0, 1)
@ update weight w; < wy_1 — nv
Updates for first few rounds:
® wy = wo — Ng1
® w2 = wy — ang1 — 1g2
o w3y =ws — a’ng1 — angz — 1gs
° .« e
Adam (most popular) ~ SGD + adaptive learning rate + momentum
23 / 47

Important tricks to optimize neural nets

Many important tricks on top on Backprop

@ mini-batch: randomly sample a batch of examples to form a
stochastic gradient (common batch size: 32, 64, 128, etc.)

@ batch normalization: normalize the inputs of each neuron over the
mini-batch (to zero-mean and one-variance; c.f. Lec 1)

@ adaptive learning rate: scale the learning rate of each parameter
based on some moving average of the magnitude of the gradients

e momentum: make use of previous gradients (taking inspiration from
physics)

22 / 47

Overfitting

Overfitting is very likely since neural nets are too powerful.

Methods to overcome overfitting:

data augmentation
regularization
dropout

early stopping

24 / 47

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data

Affine . Elastic
Distortion Noise Deformation

Random
Translation

ey

Hue Shift

WEMEIRVEES Preventing overfitting

Dropout

Independently delete each neuron with a fixed probability (say 0.5),

during each iteration of Backprop (only for training, not for testing)

AN \'.J] ; \l‘.

.

Very effective, makes training faster as well

Regularization

L2 regularization: minimize

L
F'(Wy,..., W) = F(Wh,..., W) + A |Wi|f3
/=1

Simple change to the gradient:

OF’ oF
= —— + 2)\wjj
8wij 8wij + Wij

Introduce weight decaying effect

26 / 47

e G
Early stopping

Stop training when the performance on validation set stops improving

/ Early stopping
0.20

e—e Training set loss

0.15 — Validation set loss H

0.10

0.05

Loss (negative log-likelihood)

0.00

. " .
0 50 100 150 200 250
Time (epochs)

28 / 47

Preventing overfitting Convolutional neural networks (ConvNets/CNNs)

Conclusions for neural nets Outline

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a ot of data to work well

@ take a /ot of time to train (need GPUs for massive parallel computing) © Convolutional neural networks (ConvNets/CNNs)
@ Motivation
@ Architecture

take some work to select architecture and hyperparameters

are still not well understood in theory

29 / 47 30 / 47

Convolutional neural networks (ConvNets/CNNs)

Acknowledgements

Image Classification: A core task in Computer Vision

Not much math, a lot of empirical intuitions) ,
(assume given set of discrete labels)

{dog, cat, truck, plane, ...}
The materials borrow heavily from the following sources:

e Stanford Course CS231n: http://cs231n.stanford.edu/

- cat

@ Dr. lan Goodfellow’s lectures on deep learning:
http://deeplearningbook.org

Both website provides tons of useful resources: notes, demos, videos, etc.

Also, demo from https://poloclub.github.io/cnn-explainer/

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 6 April 6, 2017

31/ 47

http://cs231n.stanford.edu/
http://deeplearningbook.org
https://poloclub.github.io/cnn-explainer/

The Problem: Semantic Gap TR T IR RS Challenges: Viewpoint variation

1
5 104 79 98 103 99 105 123 136 110 105 94 85
76 85 90 105 128 105 87 96 95 99 115 112 106 103 99 85,
99 81 81 93120 131 127 100 95 98 102 99 96 93 101 94
91 61 64 69 91 88 85 101107 109 98 75 B4
114 108 85 55 55 69 64 54 6 7
133137 147 103 65 B1 80 65 52 54 74 84102 93 85 62
— 128 137 144 140 109 95 85 70 62 65 63 63 60 73 86 101
125 133 148 137 119 121 117 94 65 79 80 65 54 64

127 125 131 147 133 127 126 131 111 96 89 75 61 64
115 114 109 123 150 148 131 116 113 109 100 3 65 72 78,
89 93 90 97 108 147 131 118 113 114 113 109 106 95 77 80
8 81 77 79 102 123 117 115 117 125 125 130 115 87
82 89 78 71 80 101 124 126 119 101 107 114 131 119

63 65 75 88 89 71 62 61120 138 135 105 81 08 1
87 65 71 87 106 95 63 45 76 130 126 107 52 94 105 112
8 117 123 116 66 41 51 95 03 89 95 102 107

[

4 87 112 120 98

122 164 148 103 71 56 78 83 03 103 119 139 102 61 69 8411

What the computer sees

An image is just a big grid of
numbers between [0, 255]: All pixels change when
the camera moves!
e.g. 800 x 600 x 3

Insinaus b kia s (3 channels RGB)

This image by Nikita is
licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 7 April 6, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 8 April 6, 2017

Challenges: lllumination Challenges: Deformation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 9 April 6, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 10 April 6, 2017

Challenges: Occlusion

Challenges: Background Clutter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 11 April 6, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 12 April 6, 2017

Convolutional neural networks (ConvNets/CNNs) BRVISVET)

Fundamental problems in vision
Challenges: Intraclass variation

The key challenge
How to train a model that can tolerate all those variations?

Main ideas

@ need a lot of data that exhibits those variations

@ need more specialized models to capture the invariance

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 13 April 6, 2017

32 /47

Convolutional neural networks (ConvNets/CNNs) SRVITEVELEL]

Issues of standard NN for image inputs

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
Wz —
1l) 10 x 3072 !
3072 x /4 10
weights

1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5-27 April 18, 2017

Spatial structure is lost!

33 /47

Convolutional neural networks (ConvNets/CNNs) Bz TS

Convolution layer

Arrange neurons as a 3D volume naturally

Convolution Layer

32x32x3 image -> preserve spatial structure

7

32 height

3 depth

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5-28 April 18, 2017

35 / 47

Convolutional neural networks (ConvNets/CNNs) SRVITEVELEL]

Solution: Convolutional Neural Net (ConvNet/CNN)

A special case of fully connected neural nets

@ usually consist of convolution layers, ReLU layers, pooling layers,
and regular fully connected layers

o key idea: learning from low-level to high-level features

ELU RELU RELU RELU RELU RELU
CONV lCONVl CONV lCONVl CONV lCONVl
~|s[a]=
=
=

car
fruck
aifplane
ship
Worse

34 / 47

Convolutional neural networks (ConvNets/CNNs) Bz TS

Convolution

2D Convolution

Input

Kernel
! ' ‘
e f g —1—
Y
' ’ ' -

— (filter/receptive field)

f Output
aw + br + bw 4+ e + cw + dr +
ey + fz fy + gz 9y + hz

ew + fxr + fw + gz + gw + hxr +
iy o+ jz jy o+ k2 ky + Iz

36 / 47

Convolutional neural networks (ConvNets/CNNs) BVAZe TS

Why convolution makes sense?

Main idea: if a filter is useful at one location, it should be useful at ConVOIUtion Layer
other locations.

32x32x3 image

A simple example why
filtering is useful / 5x5x3 filter
32 74
Il Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”
A

/

3
: |4 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-29 April 18, 2017
Kernel
37 / 47

depth of the input volume

__— 32x32x3 image

32x32x3 image _
/ / " 5x5x3 filter w
5x5x3 filter .

% 1 >O
I Convolve the filter with the image ~_ 1 number:
i.e. “slide over the Image spatially, the result of taking a dot product between the
computing dot products filter and a small 5x5x3 chunk of the image
32 L 32 (i.e. 5*5*3 = 75-dimensional dot product + bias)
3
wlz +b

w|

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-30 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 31 April 18, 2017

Convolution Layer

___— 32x32x3 image

/ 5x5x3 filter
32

28

activation map
convolve (slide) over all

spatial locations

32 28

|
—

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 32 April 18, 2017

Convolution Layer consider a second, green filter

activation maps

___— 32x32x3 image

5x5x3 filter
32
@ 28
convolve (slide) over all
spatial locations
32 28

w|
-_—

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-33 April 18, 2017

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

ya

activation maps

Convolution Layer

32 28

3 6

We stack these up to get a “new image” of size 28x28x6!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-34 April 18, 2017

Preview: ConvNet is a sequence of Convolution Layers, interspersed with

activation functions
/ % / 28

CONV,
RelLU
eg.6
5x5x3
filters

32 28

|
o)}

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5-35 April 18, 2017

Convolutional neural networks (ConvNets/CNNs) BVAZe TS Convolutional neural networks (ConvNets/CNNs) Bz TS

Connection to fully connected NNs

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32 28 24
CONV, CONV, CONV, A convolution layer is a special case of a fully connected layer:
ReLU RelU RelU
e.g.6 e.g. 10
5X95X3 5X95X6 o filter = weights with sparse connection
32 filters 28 filters 24
3 6 10

Lecture 5-36 April 18, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung

Demo: https://poloclub.github.io/cnn-explainer

38 /47 39 / 47

Sparse connectivity: being
affected by less

Local Receptive Field Leads to
Sparse Connectivity (affects less)

Sparse Sparse ° ° ° ° @
connections ° G ° connections
due to small due to small '
convolution convolution

kernel kernel

Dense Dense

connections

(Goodfellow 2016)

connections

Figure 9.3

(Goodfellow 2016)

https://poloclub.github.io/cnn-explainer

Convolutional neural networks (ConvNets/CNNs) BVAZe TS

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:
o filter = weights with sparse connection

@ parameters sharing

Convolutional neural networks (ConvNets/CNNs) Bz TS

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:
o filter = weights with sparse connection
@ parameters sharing

Much fewer parameters! Example (ignore bias terms):
o FC: (32 x32x 3) x (28 x 28) ~ 2.4M

@ CNN: 5 x5%x3=175
32x32x3 image

5x5x3 filter
32

28

convolve (slide) over all
spatial locations

32 28

40 / 47

41 / 47

Parameter Sharing

Convolution @ e @ @
shares the same
parameters
across all spatial ° °
locations
Traditional @ @ @ @
matrix

multiplication
s O O ©
any parameters

Fig U re 9 . 5 (Goodfellow 2016)

Convolutional neural networks (ConvNets/CNNs) Bz TS

Spatial arrangement: stride and padding

A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-42 April 18, 2017

42 / 47

A closer look at spatial dimensions: A closer look at spatial dimensions:

7 7
7X7 input (spatially) 7X7 input (spatially)
assume 3x3 filter assume 3x3 filter
7 7
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-43 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-44 April 18, 2017
A closer look at spatial dimensions: A closer look at spatial dimensions:
7 7
7X7 input (spatially) 7X7 input (spatially)
assume 3x3 filter assume 3x3 filter
=> 5x5 output
7 7

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-45 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-46 April 18, 2017

A closer look at spatial dimensions: A closer look at spatial dimensions:

7 7
7X7 input (spatially) 7X7 input (spatially)
assume 3x3 filter assume 3x3 filter
applied with stride 2 applied with stride 2
7 7

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-47 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-48 April 18, 2017

A closer look at spatial dimensions: A closer look at spatial dimensions:
7 . . 7 : .
7X7 input (spatially) 7X7 input (spatially)
assume 3x3 filter assume 3x3 filter
applied with stride 2 applied with stride 3?
=> 3x3 output!
7 7

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-49 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-50 April 18, 2017

A closer look at spatial dimensions: N

. Output size:
7x7 input (spatially) = (N - F) / stride +1
assume 3x3 filter _ e
applied with stride 3? N eg.N=7,F=3
F stride 1=>(7-3)1+1=5
e stride2=>(7-3)/2+1=3
7 doesn’t fit! _ stride 3=>(7-3)/3+1=2.33:\
cannot apply 3x3 filter on
7X7 input with stride 3.
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-51 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-52 April 18, 2017
In practice: Common to zero pad the border In practice: Common to zero pad the border
010]9]0/0 e.g. input 7x7 010]9]0/0 e.g. input 7x7

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

oO|o|o|o| o
oO|o|o|o| o

(recall:)
(N -F)/ stride + 1

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-53 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-54 April 18, 2017

In practice: Common to zero pad the border

010]9]0/0 e.g. input 7x7

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

oO|o|o|o| oo

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =5 => zero pad with 2

F =7 => zero pad with 3

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-55 April 18, 2017

Convolutional neural networks (ConvNets/CNNs) Bz TS

Summary for convolution layer
Input: a volume of size W7 x Hy x Dq

Hyperparameters:
o K filters of size FF x F
@ stride S

@ amount of zero padding P (for one side)

Output: a volume of size Wy x Hy X Dy where
o Wo= (W1 +2P—-F)/S+1
e Hy=(H1+2P—-F)/S+1
e Dy=K

#parameters: (F' x F x D; + 1) x K weights
Common setting: F=3,S=P=1

43 / 47

Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

A A A

CONV, CONV, CONV,
RelLU RelLU RelLU

eg.6 e.g. 10
5x5x3 5x5x6
32 fiers |) 28 filters 24

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5-56 April 18, 2017

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 57 April 18, 2017

Examples time: Examples time:

Input volume: 32x32x3 Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2 10 5x5 filters with stride 1, pad 2
Output volume size: Number of parameters in this layer?
(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-58 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-59 April 18, 2017

Convolutional neural networks (ConvNets/CNNs) Bz TS

Another element: pooling

Examples time:
Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Input volume: 32x32x

224x224x64

10 5x5 filters with stride 1, pad 2 | ez
Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params (+1 for bias) !

=>76*10 = 760 224 gr— L

224

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-72 April 18, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-60 April 18, 2017

44 | 47

Convolutional neural networks (ConvNets/CNNs) BVAZe TS

Pooling

Similar to a filter, except

@ depth is always 1

o different operations: average, L2-norm, max
@ no parameters to be learned

Max pooling with 2 x 2 filter and stride 2 is very common

MAX POOLING
Single depth slice
X 17112 4
max pool with 2x2 filters
5(6 |7 |8 and stride 2 6 | 8
32110 3|4
112|3 |4
y

Convolutional neural networks (ConvNets/CNNs) Bz TS

How to train a CNN?

How do we learn the filters/weights?

Essentially the same as FC NNs: apply SGD /backpropagation

45 / 47

47 / 47

Convolutional neural networks (ConvNets/CNNs) Bz TS

Putting everything together

Typical architecture for CNNs:

Input — [[Conv — ReLU]*N — Pool?]*M — [FC — ReLU]*Q — FC

Common choices: N <5,Q <2, M is large

Well-known CNNs: LeNet, AlexNet, ZF Net, GoogleNet, VGGNet, etc.

All achieve excellent performance on image classification tasks.

Demo: https://poloclub.github.io/cnn-explainer

46 / 47

https://poloclub.github.io/cnn-explainer

	Review of Last Lecture
	Neural Nets
	Convolutional neural networks (ConvNets/CNNs)

