
CSCI567 Machine Learning (Fall 2025)

Haipeng Luo

University of Southern California

Sep 26, 2025

1 / 47

Administration

HW2 available now. Due on Oct 8th.

2 / 47

Outline

1 Review of Last Lecture

2 Neural Nets

3 Convolutional neural networks (ConvNets/CNNs)

3 / 47

Review of Last Lecture

Outline

1 Review of Last Lecture

2 Neural Nets

3 Convolutional neural networks (ConvNets/CNNs)

4 / 47

Review of Last Lecture

Linear models: from binary to multiclass

w1 = (1,−1
3)

w2 = (−1
2 ,−1

2)
w3 = (0, 1)

Blue class:
{x : 1 = argmaxk w

T
k x}

Orange class:
{x : 2 = argmaxk w

T
k x}

Green class:
{x : 3 = argmaxk w

T
k x}

F =

{
f(x) = argmax

k∈[C]
wT

k x | w1, . . . ,wC ∈ RD

}

5 / 47

Review of Last Lecture

Softmax + MLE = minimizing cross-entropy loss

Maximize probability of see labels y1, . . . , yN given x1, . . . ,xN

P (W) =

N∏
n=1

P(yn | xn;W) =

N∏
n=1

softmax(Wxn)yn =

N∏
n=1

ew
T
ynxn∑

k∈[C] e
wT

k xn

By taking negative log, this is equivalent to minimizing

F (W) =
N∑

n=1

ln

(∑
k∈[C] e

wT
k xn

ew
T
yn

xn

)
=

N∑
n=1

ln

1 +
∑
k ̸=yn

e(wk−wyn)
Txn


This is the multiclass logistic loss, a.k.a cross-entropy loss.

6 / 47

Review of Last Lecture

Kernel functions

Definition: a function k : RD × RD → R is called a kernel function if
there exists a function ϕ : RD → RM so that for any x,x′ ∈ RD,

k(x,x′) = ϕ(x)Tϕ(x′)

Examples we have seen

k(x,x′) = (xTx′)2

k(x,x′) =
D∑

d=1

sin(2π(xd − x′d))

xd − x′d

k(x,x′) = (xTx′ + c)d (polynomial kernel)

k(x,x′) = e−
∥x−x′∥22

2σ2 (Gaussian/RBF kernel)

7 / 47

Review of Last Lecture

Kernelizing ML algorithms

Key idea: rewrite the algorithm so that its dependence on the transformed
dataset Φ is only through the Gram matrix K = ΦΦT.

Perceptron (primal form with ϕ) issue: time/space linear in M

Initialize w = 0 ∈ RM

Repeat:

Pick a data point index n uniformly at random

If sgn(wTϕ(xn)) ̸= yn, update w ← w + ynϕ(xn)

Kernelized Perceptron independent of M

Initialize αm = 0 for all m ∈ [N]
Repeat:

Pick a data point index n uniformly at random

If sgn(
∑N

m=1 αmk(xm,xn)) ̸= yn, update αn ← αn + yn

8 / 47

Neural Nets

Outline

1 Review of Last Lecture

2 Neural Nets
Definition
Backpropagation
Preventing overfitting

3 Convolutional neural networks (ConvNets/CNNs)

9 / 47

Neural Nets Definition

Linear models are not always adequate

We can use a nonlinear mapping as discussed:

ϕ(x) : x ∈ RD → z ∈ RM

Instead of manually picking ϕ or kernel k, can we learn this nonlinear
mapping from data?

The most popular nonlinear models nowadays: neural nets

10 / 47

Neural Nets Definition

Linear model as a one-layer neural net

h(a) = a for linear model

To create non-linearity, can use

Rectified Linear Unit (ReLU):
h(a) = max{0, a}
sigmoid function: h(a) = 1

1+e−a

TanH: h(a) = ea−e−a

ea+e−a

many more

11 / 47

Neural Nets Definition

More output nodes

W ∈ R4×3, h : R4 → R4 so h(a) = (h1(a1), h2(a2), h3(a3), h4(a4))

Can think of this as a nonlinear mapping: ϕ(x) = h(Wx)

12 / 47

Neural Nets Definition

More layers

Becomes a network:

each node is called a neuron

h is called the activation function
can use h(a) = 1 for one neuron in each layer to incorporate bias term
output neuron can use h(a) = a

#layers refers to #hidden layers (plus 1 or 2 for input/output layers)

deep neural nets can have many layers and millions of parameters

this is a feedforward, fully connected neural net, there are many
variants (convolutional nets, recurrent nets, transformers, etc.)

13 / 47

Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

Demo: http://playground.tensorflow.org

14 / 47

Neural Nets Definition

Math formulation

An L-layer neural net can be written as

f(x) = hL (WLhL−1 (WL−1 · · ·h1 (W1x)))

To ease notation, for a given input x, define recursively

o0 = x, aℓ = Wℓoℓ−1, oℓ = hℓ(aℓ) (ℓ = 1, . . . , L)

where

Wℓ ∈ RDℓ×Dℓ−1 is the weights between layer ℓ− 1 and ℓ

D0 = D,D1, . . . ,DL are numbers of neurons at each layer

aℓ ∈ RDℓ is input to layer ℓ

oℓ ∈ RDℓ is output of layer ℓ

hℓ : RDℓ → RDℓ is activation functions at layer ℓ
15 / 47

Neural Nets Definition

Learning the model

No matter how complicated the model is, our goal is the same: minimize

F (W1, . . . ,WL) =
1

N

N∑
n=1

Fn(W1, . . . ,WL)

where

Fn(W1, . . . ,WL) =

{
∥f(xn)− yn∥22 for regression

ln
(
1 +

∑
k ̸=yn

ef(xn)k−f(xn)yn

)
for classification

16 / 47

http://playground.tensorflow.org

Neural Nets Backpropagation

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

for a composite function f(g(w))

∂f

∂w
=

∂f

∂g

∂g

∂w

for a composite function f(g1(w), . . . , gd(w))

∂f

∂w
=

d∑
i=1

∂f

∂gi

∂gi
∂w

the simplest example f(g1(w), g2(w)) = g1(w)g2(w)

17 / 47

Neural Nets Backpropagation

Computing the derivative

Drop the subscript ℓ for layer for simplicity.

Find the derivative of Fn w.r.t. to wij

∂Fn

∂wij
=

∂Fn

∂ai

∂ai
∂wij

=
∂Fn

∂ai

∂(wijoj)

∂wij
=

∂Fn

∂ai
oj

∂Fn

∂ai
=

∂Fn

∂oi

∂oi
∂ai

=

(∑
k

∂Fn

∂ak

∂ak
∂oi

)
h′i(ai) =

(∑
k

∂Fn

∂ak
wki

)
h′i(ai)

18 / 47

Neural Nets Backpropagation

Computing the derivative

Adding the subscript for layer:

∂Fn

∂wℓ,ij
=

∂Fn

∂aℓ,i
oℓ−1,j

∂Fn

∂aℓ,i
=

(∑
k

∂Fn

∂aℓ+1,k
wℓ+1,ki

)
h′ℓ,i(aℓ,i)

For the last layer, for square loss

∂Fn

∂aL,i
=

∂(hL,i(aL,i)− yn,i)
2

∂aL,i
= 2(hL,i(aL,i)− yn,i)h

′
L,i(aL,i)

Exercise: try to do it for cross-entropy loss yourself.

19 / 47

Neural Nets Backpropagation

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

∂Fn

∂Wℓ
=

∂Fn

∂aℓ
oT
ℓ−1 ∈ RDℓ×Dℓ−1

∂Fn

∂aℓ
=

{(
WT

ℓ+1
∂Fn
∂aℓ+1

)
◦ h′

ℓ(aℓ) if ℓ < L

2(hL(aL)− yn) ◦ h′
L(aL) else

where v1 ◦ v2 = (v11v21, · · · , v1Dv2D) is the element-wise product (a.k.a.
Hadamard product).

Verify yourself! (But no need to remember this formula.)

20 / 47

Neural Nets Backpropagation

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W1, . . . ,WL randomly. Repeat:

1 randomly pick one data point n ∈ [N]

2 forward propagation: for each layer ℓ = 1, . . . , L
compute aℓ = Wℓoℓ−1 and oℓ = hℓ(aℓ) (o0 = xn)

3 backward propagation: for each ℓ = L, . . . , 1
compute

∂Fn

∂aℓ
=

{(
WT

ℓ+1
∂Fn

∂aℓ+1

)
◦ h′

ℓ(aℓ) if ℓ < L

2(hL(aL)− yn) ◦ h′
L(aL) else

update weights

Wℓ ←Wℓ − η
∂Fn

∂Wℓ
= Wℓ − η

∂Fn

∂aℓ
oT
ℓ−1

(Important: should Wℓ be overwritten immediately in the last step?)
21 / 47

Neural Nets Backpropagation

Important tricks to optimize neural nets

Many important tricks on top on Backprop

mini-batch: randomly sample a batch of examples to form a
stochastic gradient (common batch size: 32, 64, 128, etc.)

batch normalization: normalize the inputs of each neuron over the
mini-batch (to zero-mean and one-variance; c.f. Lec 1)

adaptive learning rate: scale the learning rate of each parameter
based on some moving average of the magnitude of the gradients

momentum: make use of previous gradients (taking inspiration from
physics)

· · ·

22 / 47

Neural Nets Backpropagation

SGD with momentum (a simple version)

Initialize w0 and velocity v = 0

For t = 1, 2, . . .

form a stochastic gradient gt

update velocity v ← αv + gt for some discount factor α ∈ (0, 1)

update weight wt ← wt−1 − ηv

Updates for first few rounds:

w1 = w0 − ηg1

w2 = w1 − αηg1 − ηg2

w3 = w2 − α2ηg1 − αηg2 − ηg3

· · ·

Adam (most popular) ≈ SGD + adaptive learning rate + momentum

23 / 47

Neural Nets Preventing overfitting

Overfitting

Overfitting is very likely since neural nets are too powerful.

Methods to overcome overfitting:

data augmentation

regularization

dropout

early stopping

· · ·

24 / 47

Neural Nets Preventing overfitting

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data

25 / 47

Neural Nets Preventing overfitting

Regularization

L2 regularization: minimize

F ′(W1, . . . ,WL) = F (W1, . . . ,WL) + λ
L∑

ℓ=1

∥Wℓ∥22

Simple change to the gradient:

∂F ′

∂wij
=

∂F

∂wij
+ 2λwij

Introduce weight decaying effect

26 / 47

Neural Nets Preventing overfitting

Dropout

Independently delete each neuron with a fixed probability (say 0.5),
during each iteration of Backprop (only for training, not for testing)

Very effective, makes training faster as well

27 / 47

Neural Nets Preventing overfitting

Early stopping

Stop training when the performance on validation set stops improvingCHAPTER 7. REGULARIZATION FOR DEEP LEARNING

0 50 100 150 200 250

Time (epochs)

0.00

0.05

0.10

0.15

0.20

L
o
s
s

(
n
e
g
a
t
i
v
e

l
o
g
-
l
i
k
e
l
i
h
o
o
d
)

Training set loss

Validation set loss

Figure 7.3: Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or epochs). In this
example, we train a maxout network on MNIST. Observe that the training objective
decreases consistently over time, but the validation set average loss eventually begins to
increase again, forming an asymmetric U-shaped curve.

greatly improved (in proportion with the increased number of examples for the
shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between
the different tasks are valid, meaning that there is something shared across some
of the tasks.

From the point of view of deep learning, the underlying prior belief is the
following: among the factors that explain the variations observed in the data
associated with the different tasks, some are shared across two or more tasks.

7.8 Early Stopping

When training large models with sufficient representational capacity to overfit
the task, we often observe that training error decreases steadily over time, but
validation set error begins to rise again. See figure 7.3 for an example of this
behavior. This behavior occurs very reliably.

This means we can obtain a model with better validation set error (and thus,
hopefully better test set error) by returning to the parameter setting at the point in
time with the lowest validation set error. Every time the error on the validation set
improves, we store a copy of the model parameters. When the training algorithm
terminates, we return these parameters, rather than the latest parameters. The

246

Early stopping

28 / 47

Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks

are hugely popular, achieving best performance on many problems

do need a lot of data to work well

take a lot of time to train (need GPUs for massive parallel computing)

take some work to select architecture and hyperparameters

are still not well understood in theory

29 / 47

Convolutional neural networks (ConvNets/CNNs)

Outline

1 Review of Last Lecture

2 Neural Nets

3 Convolutional neural networks (ConvNets/CNNs)
Motivation
Architecture

30 / 47

Convolutional neural networks (ConvNets/CNNs)

Acknowledgements

Not much math, a lot of empirical intuitions

The materials borrow heavily from the following sources:

Stanford Course CS231n: http://cs231n.stanford.edu/

Dr. Ian Goodfellow’s lectures on deep learning:
http://deeplearningbook.org

Both website provides tons of useful resources: notes, demos, videos, etc.

Also, demo from https://poloclub.github.io/cnn-explainer/

31 / 47

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Image Classification: A core task in Computer Vision

6

cat

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

This image by Nikita is
licensed under CC-BY 2.0

http://cs231n.stanford.edu/
http://deeplearningbook.org
https://poloclub.github.io/cnn-explainer/

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

This image by Nikita is
licensed under CC-BY 2.0

The Problem: Semantic Gap

7

What the computer sees

An image is just a big grid of
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Viewpoint variation

8

All pixels change when
the camera moves!

This image by Nikita is
licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Illumination

9

This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Deformation

10

This image by Umberto Salvagnin
is licensed under CC-BY 2.0

This image by Tom Thai is
licensed under CC-BY 2.0

This image by sare bear is
licensed under CC-BY 2.0

This image by Umberto Salvagnin
is licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Occlusion

11

This image is CC0 1.0 public domain This image by jonsson is licensed
under CC-BY 2.0This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 201712

This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Intraclass variation

13

This image is CC0 1.0 public domain

Convolutional neural networks (ConvNets/CNNs) Motivation

Fundamental problems in vision

The key challenge
How to train a model that can tolerate all those variations?

Main ideas

need a lot of data that exhibits those variations

need more specialized models to capture the invariance

32 / 47

Convolutional neural networks (ConvNets/CNNs) Motivation

Issues of standard NN for image inputs

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201727

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

1
10

Spatial structure is lost!

33 / 47

Convolutional neural networks (ConvNets/CNNs) Motivation

Solution: Convolutional Neural Net (ConvNet/CNN)

A special case of fully connected neural nets

usually consist of convolution layers, ReLU layers, pooling layers,
and regular fully connected layers

key idea: learning from low-level to high-level features

34 / 47

Convolutional neural networks (ConvNets/CNNs) Architecture

Convolution layer

Arrange neurons as a 3D volume naturally

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201728

32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth

35 / 47

Convolutional neural networks (ConvNets/CNNs) Architecture

Convolution

(Goodfellow 2016)

2D Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

a b c d

e f g h

i j k l

w x

y z

aw + bx +
ey + fz
aw + bx +
ey + fz

bw + cx +
fy + gz
bw + cx +
fy + gz

cw + dx +
gy + hz
cw + dx +
gy + hz

ew + fx +
iy + jz
ew + fx +
iy + jz

fw + gx +
jy + kz
fw + gx +
jy + kz

gw + hx +
ky + lz
gw + hx +
ky + lz

Input
Kernel

Output

Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.

334

(filter/receptive field)

36 / 47

Convolutional neural networks (ConvNets/CNNs) Architecture

Why convolution makes sense?

Main idea: if a filter is useful at one location, it should be useful at
other locations.

(Goodfellow 2016)

A simple example why
filtering is useful

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320⇥ 280⇥ 319⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)

340

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320⇥ 280⇥ 319⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)

340

-1 -1

Input

Kernel
Output

37 / 47

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201729

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201730

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201731

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201732

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201733

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201734

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201735

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6
5x5x3
filters

Convolutional neural networks (ConvNets/CNNs) Architecture

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201736

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Demo: https://poloclub.github.io/cnn-explainer

38 / 47

Convolutional neural networks (ConvNets/CNNs) Architecture

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:

filter = weights with sparse connection

39 / 47

(Goodfellow 2016)

Local Receptive Field Leads to
Sparse Connectivity (affects less)

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.

336

Sparse
connections
due to small
convolution

kernel

Dense
connections

(Goodfellow 2016)

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.

337

Sparse connectivity: being
affected by less

Sparse
connections
due to small
convolution

kernel

Dense
connections

Figure 9.3

https://poloclub.github.io/cnn-explainer

Convolutional neural networks (ConvNets/CNNs) Architecture

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:

filter = weights with sparse connection

parameters sharing

40 / 47
(Goodfellow 2016)

Parameter SharingCHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3 x4x4 x5x5

s2s2s1s1 s3s3 s4s4 s5s5

Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude less than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I
be a function giving image brightness at integer coordinates. Let g be a function

338

Convolution
shares the same

parameters
across all spatial

locations

Traditional
matrix

multiplication
does not share
any parameters

Figure 9.5

Convolutional neural networks (ConvNets/CNNs) Architecture

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:

filter = weights with sparse connection

parameters sharing

Much fewer parameters! Example (ignore bias terms):

FC: (32× 32× 3)× (28× 28) ≈ 2.4M

CNN: 5× 5× 3 = 75

41 / 47

Convolutional neural networks (ConvNets/CNNs) Architecture

Spatial arrangement: stride and padding

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201742

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

42 / 47

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201743

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201744

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201745

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201746

7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201747

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201748

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201749

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201750

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201751

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201752

N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201753

In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201754

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201755

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
 F = 5 => zero pad with 2
 F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201756

Remember back to…
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Convolutional neural networks (ConvNets/CNNs) Architecture

Summary for convolution layer

Input: a volume of size W1 ×H1 ×D1

Hyperparameters:

K filters of size F × F

stride S

amount of zero padding P (for one side)

Output: a volume of size W2 ×H2 ×D2 where

W2 = (W1 + 2P − F)/S + 1

H2 = (H1 + 2P − F)/S + 1

D2 = K

#parameters: (F × F ×D1 + 1)×K weights

Common setting: F = 3, S = P = 1
43 / 47

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201757

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201758

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201759

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201760

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)

=> 76*10 = 760

Convolutional neural networks (ConvNets/CNNs) Architecture

Another element: pooling

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201772

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

44 / 47

Convolutional neural networks (ConvNets/CNNs) Architecture

Pooling

Similar to a filter, except

depth is always 1
different operations: average, L2-norm, max
no parameters to be learned

Max pooling with 2× 2 filter and stride 2 is very common

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201773

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

MAX POOLING

45 / 47

Convolutional neural networks (ConvNets/CNNs) Architecture

Putting everything together

Typical architecture for CNNs:

Input → [[Conv → ReLU]*N → Pool?]*M → [FC → ReLU]*Q → FC

Common choices: N ≤ 5, Q ≤ 2, M is large

Well-known CNNs: LeNet, AlexNet, ZF Net, GoogLeNet, VGGNet, etc.

All achieve excellent performance on image classification tasks.

Demo: https://poloclub.github.io/cnn-explainer

46 / 47

Convolutional neural networks (ConvNets/CNNs) Architecture

How to train a CNN?

How do we learn the filters/weights?

Essentially the same as FC NNs: apply SGD/backpropagation

47 / 47

https://poloclub.github.io/cnn-explainer

	Review of Last Lecture
	Neural Nets
	Convolutional neural networks (ConvNets/CNNs)

