CSCI567 Machine Learning (Fall 2025)

Haipeng Luo
University of Southern California

Oct 3, 2025

Exam 1 Logistics

Date: Friday, Oct 17th

Time: 2:00-4:00pm

Location: will be announced on Piazza

Individual effort, close-book (no cheat sheet), no calculators or any other

electronics, but need your phone to upload your solutions to Gradescope
from 4:00-4:20pm

2/59

Exam 1 Coverage

Coverage: Lectures 1-6.

Five problems in total
@ one problem of 15 multiple-choice multiple-answer questions
e 0.5 point for selecting (not selecting) each correct (incorrect) answer
o “which of the following is correct?” does not imply one correct answer
o four other homework-like problems, each has a couple sub-problems

o linear regression, linear classifiers, backpropagation, kernel, SVM

3 /59

N
Tips

Best way to prepare: focus on the sample exam (on course website)!

@ make sure to fully understand those problems (solutions to be posted

next week)
@ no need to remember most formulas from the lectures
@ expect to see variants of these questions

@ sample exam might appear challenging, but hopefully the actual one
is less so given the practice from the sample exam

4/59

Outline

@ Support vector machines
@ Decision tree

© Boosting

Outline

@ Support vector machines

Support vector machines (SVM)

@ most commonly used classification algorithms before deep learning
@ works well with the kernel trick

@ strong theoretical guarantees

We focus on binary classification here.

7 /59

Support vector machines

Primal formulation

In one sentence: linear model with L2 regularized hinge loss. Recall

2.0

LS

0.5

@ perceptron 10ss Lperceptron(2) = max{0, —z} — Perceptron
o logistic loss {jogistic(2) = log(1 4 exp(—z)) — logistic regression

o hinge loss lhinge(2) = max{0,1 — z} - SVM

Support vector machines Primal formulation of SVM

Primal formulation

For a linear model (w,b), this means
min Y " max {0,1 — yn(w" ¢()+b)}+5||w||2
w,b ’ " " 2 2
n
o recall y, € {—1,+1}

@ a nonlinear mapping ¢ is applied

@ the bias/intercept term b is used explicitly (think about why after this
lecture)

So why L2 regularized hinge loss?

9 /59

Support vector machines Primal formulation of SVM

Geometric motivation: separable case

When data is linearly separable, there are infinitely many hyperplanes
with zero training error:

So which one should we choose?

10 / 59

Support vector machines

Intuition

The further away from data points the better.

How to formalize this intuition?

Distance to hyperplane
What is the distance from a point x to a hyperplane {z : wTx +b = 0}?

Assume the projection is x — Kﬁ, then

0=w? (w—€w>+b—wT:c—€HwH+b

T
and thus ¢ = ¥_z+b
lwll2

Therefore the distance is
lwTz + b|

[wll2

For a hyperplane that correctly classifies (x,y), the distance becomes

y(w'z +b)
[w]l2

12 / 59

it G T
Maximizing margin

Margin: the smallest distance from all training points to the hyperplane

T
MARGIN OF (w, b) = min yn(w” P(xn) +b)
" Jwl|2

H:w p(x)+b=0

llwll2

1 T
. _ . ,
T mn Wl WX [Ty Tin (W @(@n) +)

13 / 59

Support vector machines Primal formulation of SVM

Rescaling

Note: rescaling (w,b) does not change the hyperplane at all.

We can thus always scale (w,b) s.t. min, y,(w¢(z,) +b) =1

The margin then becomes
wT¢£z)+b:1

capT —
MARGIN OF (w), b) P gle) +h=0

= ——— min yn(’wT(b(mn) +b)
2 n

14 / 59

Support vector machines Primal formulation of SVM

Summary for separable data

For a separable training set, we aim to solve

1
max —— s.t. miny,(w é(xz,) +b) =1
wb [[wll2 n

This is equivalent to

R
min o flwl

st. yu(wlg(x,) +b)>1, Vn

SVM s thus also called max-margin classifier. The constraints above are
called hard-margin constraints.

15 / 59

Support vector machines Primal formulation of SVM

General non-separable case

If data is not linearly separable, the previous constraint
Yo(wTd(zn) +b) >1, Vn

is obviously not feasible.

To deal with this issue, we relax them to soft-margin constraints:
yn('wT¢(mn) + b) >1- fna vV n

where we introduce slack variables &, > 0.

16 / 59

Primal formulation of SVM
SVM Primal formulation

We want &, to be as small as possible too. The objective becomes

1 2
mi —||w C g

s.t. yn(quf)(ccn) +b)>1-&,, Vn
£, >0, Vn

where C' is a hyperparameter to balance the two goals.

17 / 59

Support vector machines Primal formulation of SVM

Equivalent form

Formulation

1

i C ~lw|?

oin E €n+2llw||2
n

st. 1—yu(w d(@,) +0) <&, Vn
& >0, Vn

is equivalent to

1

. C - 2

oin E &+ 2||w||2
n

s.t. max {O, 1 —yp(wlo(x,) + b)} =&, Vn

18 / 59

G T PO
Equivalent form

min szn |w||2

w7b7{€n

st. max{0,1—y,(w e(xn) +b)} =&, Vn

is equivalent to

1
min C') max {0,1 -y, (w P(x,) +b)} + 5y|w||§

w,b

and
‘ A
rznul’il En max {0, 1-— yn(’chb(wn) + b)} + 5”“’”%

with A = 1/C. This is exactly minimizing L2 regularized hinge loss!

19 / 59

Support vector machines Primal formulation of SVM

Optimization

W,b,{fn

st. 1—yu(w d(@,) +0) <&, Vn
& >0, Vn

. 1
min , Can + §Hw||§

@ It is a convex (quadratic in fact) problem
@ thus can apply any convex optimization algorithms, e.g. SGD
@ there are more specialized and efficient algorithms

@ but usually we apply kernel trick, which requires solving the dual
problem

20 / 59

Support vector machines Dual formulation of SVM

The dual formulation

Similar to Perceptron, it turns out that the primal solution w* is also a
linear combination of data

N
w' = Z A yn@(Tn)
n=1
where af, ..., ay are solutions of the dual formulation of SVM:

[o Y

1
maxN Z Qy — 5 Z ymynaman¢($m)T¢(mn)

m,n

s.t. Zanynzo and 0<a,<C, Vn

@ a quadratic program, many efficient optimization algorithms exist

o immediately kernelizable by replacing ¢ ()" d(x,) with k(x,,, z,)

21 /59

SR T G
Making a prediction

How to efficiently make a prediction saN (w* " ¢(z) + b*) for a new x?

@ first term

)T
w* Zanynqﬁ) ¢(x Zanyn T, T
n=1
@ second term (derivation omitted):

N
b* = Ym — w*T (wm) =UYm — Z a;ynk(mm mm)

n=1

for any m such that 0 < o, < C. (b* should be precomputed)

22 /59

Support vector machines Dual formulation of SVM

A closer look at o,

Observe:

N
W =Y ndle) = Y aimdlen)
n=1

n:ag, >0

A point with o > 0 is called a “support vector”.

Hence the name Support Vector Machine (SVM).

23 / 59

Support vector machines Dual formulation of SVM

Geometric interpretation of support vectors

A support vector satisfies o) > 0 and

1-¢, — yn("U*T (xn) +0°) =0

When w'ole) +b=1
° & =0, yu(w* p(mn) +) = 1 L M@ =0
and thus the point is 1/[|w*||2 4
away from the hyperplane.

e & < 1, the point is classified
correctly but does not satisfy
the large margin constraint.

Support vectors (circled with the
orange line) are the only points that
matter!

@ & > 1, the point is
misclassified.

24 / 59

Support vector machines Dual formulation of SVM

An example

One drawback of kernel method: non-parametric, need to keep all
training points potentially

For SVM, very often #support vectors < N

Training data Support Vectors in the Training data
7 7 1000
o 4 L4
°

6 ..::: 1 X 4 6 800
5) ® 5 o 269

o o o on'¥ 600
4 4

400
3 3
P 2 200
11— 1
4 5 6 7 8 4 5 6 7 8

See also Colab demo.

25 / 59

Support vector machines Dual formulation of SVM

Summary
SVM: max-margin linear classifier

Primal (equivalent to minimizing L2 regularized hinge loss):

1
i C + = |lwl|?
Lo anﬁn 5wl

st. 1-— yn('wTd)(mn) +b) <&, Vn
€n =0, Vn

Dual (kernelizable, reveals what training points are support vectors):

1
?im}(Z oy — 5 Z ymynaman¢(mm)T¢(mn)

s.t. Zanynzo and 0<a,<C, Vn

26 / 59

Outline

© Decision tree

Decision tree

We have seen different ML models for classification/regression:

@ linear models, neural nets and other nonlinear models induced by
kernels

Decision tree is yet another one:
@ nonlinear in general
@ works for both classification and regression; we focus on classification
@ one key advantage is good interpretability

@ still very popular for small tabular data, especially when used in
ensemble (i.e., “forest”)

28 / 59

Tree-based models outperform neural nets sometimes

Why do tree-based models still outperform deep
learning on tabular data?

Léo Grinsztajn Edouard Oyallon Gaél Varoquaux
Soda, Inria Saclay ISIR, CNRS, Sorbonne University Soda, Inria Saclay
leo.grinsztajn@inria.fr

Abstract

‘While deep learning has enabled tremendous progress on text and image datasets,
its superiority on tabular data is not clear. We contribute extensive benchmarks of
standard and novel deep learning methods as well as tree-based models such as
XGBoost and Random Forests, across a large number of datasets and hyperparame-
ter combinations. We define a standard set of 45 datasets from varied domains with
clear characteristics of tabular data and a benchmarking methodology accounting
for both fitting models and finding good hyperparameters. Results show that tree-
based models remain state-of-the-art on medium-sized data (~10K samples) even
without accounting for their superior speed. To undes d this gap, we conduct an
empirical investigation into the differing inductive bi of tree-based models and
Neural Networks (NNs). This leads to a series of challenges which should guide
researchers aiming to build tabular-specific NNs: 1. be robust to uninformative
features, 2. preserve the orientation of the data, and 3. be able to easily learn
irregular functions. To stimulate research on tabular architectures, we contribute a
standard benchmark and raw data for baselines: every point of a 20 000 compute
hours hyperparameter search for each learner.

29 / 59

Decision tree

Example

Many decisions are made based on some tree structure

Medical treatment Salary in a company

Fever Degree

T>/100 T< 100

Treatment #1 Muscle Pain R)
Work Work Work

igh w <gyr >\syr <gyr >\oyr <gyr >\syr

Treatment #2 Treatment #3 s, X, SXs X, X X,

Decision tree

Tree terminology

Node ~I_

1
1
1
1
1
1
1
1
1
\4

A more abstract example of decision trees

Input: « = (21, x2)

Output: f(x) determined

naturally by traversing the tree
@ start from the root

@ test at each node to decide
which child to visit next

o finally the leaf gives the
prediction f(x)

For example, f((61 — 1,62 +1)) =B

Complex to formally write down, but easy to represent pictorially or as
codes.

32 /59

Decision tree

The decision boundary

Corresponds to a classifier with boundaries:

€2
E
03t B
0, C D
A
A B C D E
61 04 X1

Parameters
Parameters to learn for a decision tree:

@ the structure of the tree, such as the depth, #branches, #nodes, etc

e some of them are sometimes considered as hyperparameters

o unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

@ the test at each internal node

e which feature(s) to test on?

o if the feature is continuous,
what threshold (64, 02,...)7

o the value/prediction of the leaves (A, B, ...)

34 / 59

Decision tree Learning a decision tree

Learning the parameters

So how do we learn all these parameters?
Recall typical approach is to find the parameters that minimize some loss
This is unfortunately not feasible for trees

e For Z nodes, there are roughly #features? different ways to decide
“which feature to test on each node”, which is a /lot.

@ enumerating all these configurations to find the one that minimizes

some loss is too computationally expensive.

Instead, we turn to some greedy top-down approach.

35 / 59

Decision tree

A running example [Russell & Norvig, AIMA]

@ predict whether a customer will wait for a table at a restaurant
@ 12 training examples

o 10 features (all discrete)

Example Attributes Target

Alt| Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | WillWait
X, T| F | F T |Some| $$$ F T | French| 0-10 T
X, T| F | F| T | Full 5 F F | Thai |30-60 F
X3 F T F F |Some| §$ F F | Burger| 0-10 T
X, T| F | T| T | Full $ F F | Thai |10-30 T
Xs T| F | T | F | Full | $5% F T | French| >60 F
Xe F| T | F| T |Some| $$ T T | ltalian | 0-10 T
X7 F| T | F| F |None|l $ T | F |Burger| 0-10 F
Xs F| F| F| T |Some| $$ T T | Thai | 0-10 T
Xo F| T | T F | Full $ T F | Burger| >60 F
X0 T| T | T| T | Full | $38 F T | Italian | 10-30 F
X F| F| F| F |None| §$ F F | Thai | 0-10 F
X, T| T | T| T | Full s F F | Burger | 30-60 T

Decision tree Learning a decision tree

First step: how to build the root?

l.e., which feature should we test at the root? Examples:

000000 000000
000000 000000
None Some Full French Italian Thai Burger
0000 00 (*] e 00 00
o0 0000 o e o0 o0

Which split is better?
@ intuitively “patrons” is a better feature since it leads to “more pure”

or “more certain” children
@ how to quantify this intuition?

37 / 59

Decision tree Learning a decision tree

Measure of uncertainty of a node

It should be a function of the distribution of classes

@ e.g. a node with 2 positive and 4 Full
negative examples can be \
summarized by a distribution P . .

with P(Y = +1) = 1/3 and 000

P(Y = —1) =2/3

One classic uncertainty measure of a distribution is its (Shannon) entropy:

C
=—> P(Y =k)logP(Y = k)
k=1

38 / 59

Decision tree Learning a decision tree

Properties of entropy

zC:P k)log P(Y = k)
k=1
@ the base of log can be 2, e or 10
@ always non-negative
@ it's the smallest codeword length to encode symbols drawn from P
e maximized if P is uniform (max = log C): most uncertain case

e minimized if P focuses on one class (min = 0): most certain case
e eg. P=(1,0,...,0)

o 0logO0 is defined naturally as lim, o4 zlogz =0

39 / 59

Decision tree Learning a decision tree

Examples of computing entropy

With base e and 4 classes:

o H(Y)=0.8360 o H(Y) = 1.3863
go,e zog
2 2
o4 E(JA
o2 02
t gy HEN
! Class ¢ 1] 4
Class
0.8
H(Y)=0
z0§
2
& 04
¥ Class g 7

40 / 59

Decision tree Learning a decision tree

Another example

Entropy in each child if root tests on “patrons”

For “None” branch

v lo, v + 2 lo, 2 =0
0+2 %0x2 042 %0+2) "

000000
For “Some” branch eoeoo0e
Patrons?
4 4 0 0
— 7log7+7log7) =0 None Some Full
(4+0 440 440 "4+0 cobe oo
For “Full” branch o0 o000

2 g2 1 g2 0.0
*(2+4 2951041 °g2+4)’” ‘

So how good is choosing “patrons” overall?
Very naturally, we take the weighted average of entropy:

2><0+4><O+6><09—O45
12 12 12 R

41 /59

Decision tree Learning a decision tree

Measure of uncertainty of a split

Suppose we split based on a discrete feature A, the uncertainty can be
measured by the conditional entropy:

H(Y | A)
_ZP HY|A=na)
C
=Y P(A=a) (—ZP(Y|A:a)logP(Y|A:a)>
a k=1

= Z “fraction of example at node A = a" x “entropy at node A = a”

a

Pick the feature that leads to the smallest conditional entropy.

42 / 59

Decision tree Learning a decision tree

Deciding the root

For “French” branch

000000
Ll e D) S
— og 0 = ype
141 %141 1+1 ®141
. " French Itahan Thai Burger
For “Italian” branch o oo o0
S ST S : ° e o0 oo
— og O =
111 %141 141 B141

For “Thai”” and “Burger” branches

2 2 2 2)
— log + log =1
242 242 242 242

The conditional entropy is & x 1+ & x 1+ 75 x 1+ 75 x 1 =1> 0.45
So splitting with “patrons” is better than splitting with “type”.
In fact by similar calculation “patrons” is the best split among all features.

We are now done with building the root (this is also called a stump).

43 / 59

ol
Repeat recursively

Split each child in the same way.

000000
@ but no need to split children “none” 000000
and “some”: they are pure already
and become leaves
Some Full
e for “full”, repeat, focusing on those 0o o000 ::.
6 examples: ®
""""""" Alt| Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | WillWait
X, T| F | F T |Some| $$% F T |French| 0-10 T
Xy T| F e T | Full $ 17 F | Thai |30-60 (=
X3 F| T | F| F |[Some|l § F F_| Burger| 0-10 T
Xy T| F T T | Full $ F F | Thai |10-30 T
Xs T| F T | F | Full | $$§ E T | French| >60 F
X F| T | F T |Some| $$ T T | Italian| 0-10 T
X7 F| T | F| F |None|l §$ T F | Burger| 0-10 F
X5 F F F T |Some| $$ T T Thai | 0-10 T
Xy F| T T F | Full $ T F | Burger| >60 F
X0 T| T T T | Full | $$$ F T | Italian | 10-30 F
Xn F F F F | None $ F F Thai | 0-10 F
X2 T| T T T | Full $ 1= F | Burger | 30-60 T

44 / 59

Decision tree Learning a decision tree

Patrons?

French ltalian

Burger

Again, very easy to interpret.

45 / 59

Decision tree Learning a decision tree

Random Forests

Random forest is an ensemble of trees:

@ each tree is built using a bootstrapped dataset (that is, a set of
points randomly sampled from the training set with replacement)

@ each split of each tree is selected from a random subset of features

e final prediction is the plurality vote of all tress (for classification
tasks) or the averaged prediction of all trees (for regression tasks)

@ much better performance than a single tree, trivially parallelizable!

46 / 59

Outline

© Boosting

Introduction

Boosting (an even more powerful /general ensemble method):

@ is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

@ main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

@ works very well in practice (especially in combination with trees)
@ often is resistant to overfitting

@ has strong theoretical guarantees

We again focus on binary classification.

48 / 59

A simple example

Email spam detection:
@ given a training set like:

o (“Want to make money fast? ...", spam)
o (“Viterbi Research Gist ...", not spam)

o first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e e.g. contains the word “money” = spam

@ reweight the examples so that “difficult” ones get more attention
e e.g. spam that doesn't contain the word “money”

@ obtain another classifier by applying the same base algorithm:
e e.g. empty “to address’ =- spam

@ repeat ...

e final classifier is the (weighted) majority vote of all weak classifiers

49 / 59

Examples
The base algorithm

A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h + A(S, D)

@ this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

@ many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by "weighted total loss™)

@ even if it's not obvious how to deal with weight directly, we can
always resample according to D to create a new unweighted dataset

50 / 59

sl
Boosting Algorithms

Given:
@ a training set S

@ a base algorithm A

Two things to specify a boosting algorithm:
@ how to reweight the examples?

@ how to combine all the weak classifiers?

Focus on AdaBoost, one of the most successful boosting algorithms.

51 / 59

S
The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize Dy to be uniform

Fort=1,...,T
@ obtain a weak classifier hy < A(S, Dy)

@ calculate the importance of h; as

/Bt:;hl<1_€t) (ﬁt>0<:>6t<0.5)

€t
where €, = 3, 1, ()24, Dt(n) is the weighted error of hy.
@ update distributions

Dt(n)e*'@’5 if hi(zn) = yn

D n) x Di¢(n e_ﬁiynht(mn) —
t+1(n) ¢(n) Dimebt else

Output the final classifier H(x) = sgn (Zthl ﬁtht(w))

52 / 59

Example
D,

+
10 data points in R2 + o+
The size of 4 or - indicates the + -
weight, which starts from uniform D, n B

Base algorithm is decision stump:
x>0 Xz, > 192

Observe that no stump can predict very accurately for this dataset

53 / 59

Round 1: t =1

o 3 misclassified (circled): ¢, =0.3 — 8y = 1In (ﬂ) ~ 0.42.

€¢

@ Dy puts more weights on those examples

Round 2: t = 2

e 3 misclassified (circled): €3 = 0.21 — 2 = 0.65.

@ D3 puts more weights on those examples

Round 3: t =3

@ again 3 misclassified (circled): €3 = 0.14 — 3 = 0.92.

Boosting

Final classifier: combining 3 classifiers

H . =sign | 0.42 +0.65) +0.92
final

All data points are now classified correctly, even though each weak
classifier makes 3 mistakes.

S
Overfitting

When T is large, the model is very complicated and overfitting can happen

(boosting “stumps” on

10| train | heart-disease dataset)
5 L
0 L |
1 10 100 1000
rounds

58 / 59

Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

20:
e
5
510 (boosting C4.5 on
. test “letter” dataset)
0: \« train
10 100 1000
of rounds (7)

e test error does not increase, even after 1000 rounds
o (total size > 2,000,000 nodes)
o test error continues to drop even after training error is zero!
rounds
5 | 100 | 1000
train error | 0.0 | 0.0 0.0
test error | 8.4 | 3.3 3.1

Used to be a mystery, but by now rigorous theory has been developed to

explain this phenomenon.
59 / 59

