Exam 1 Logistics

CSCI567 Machine Learning (Fall 2025) Date: Friday, Oct 17th

Time: 2:00-4:00pm
Haipeng Luo
Location: will be announced on Piazza
University of Southern California
Individual effort, close-book (no cheat sheet), no calculators or any other
electronics, but need your phone to upload your solutions to Gradescope
from 4:00-4:20pm

Oct 3, 2025

1/59 2 /59

L L
Exam 1 Coverage Tips

. H |
Coverage: Lectures 1-6. Best way to prepare: focus on the sample exam (on course website)!

@ make sure to fully understand those problems (solutions to be posted

Five problems in total
next week)

@ one problem of 15 multiple-choice multiple-answer questions
o 0.5 point for selecting (not selecting) each correct (incorrect) answer @ no need to remember most formulas from the lectures

o “which of the following is correct?” does not imply one correct answer) .
@ expect to see variants of these questions

o four other homework-like problems, each has a couple sub-problems
@ sample exam might appear challenging, but hopefully the actual one

o linear regression, linear classifiers, backpropagation, kernel, SVM)) i
is less so given the practice from the sample exam

3 /59 4 /59

Outline

@ Support vector machines

© Decision tree

© Boosting

Support vector machines

Support vector machines (SVM)

@ most commonly used classification algorithms before deep learning
@ works well with the kernel trick

@ strong theoretical guarantees

We focus on binary classification here.

Support vector machines

Outline

° Support vector machines

Support vector machines

Primal formulation

In one sentence: linear model with L2 regularized hinge loss. Recall

2.0

L5

@ perceptron 0ss perceptron(2) = max{0, —z} — Perceptron
o logistic loss logistic(2) = log(1 + exp(—z)) — logistic regression

o hinge 10ss lhinge(2) = max{0,1 — z} — SVM

Support vector machines Primal formulation of SVM

Primal formulation

For a linear model (w, b), this means
in 3 max {01~ yn (" B() +5)} + 5 ol
wip >)

o recall y, € {—1,+1}
@ a nonlinear mapping ¢ is applied
@ the bias/intercept term b is used explicitly (think about why after this

lecture)

So why L2 regularized hinge loss?

9 /59
Primal formulation of SVM
Intuition
The further away from data points the better.
How to formalize this intuition?
11 / 59

Support vector machines Primal formulation of SVM

Geometric motivation: separable case

When data is linearly separable, there are infinitely many hyperplanes
with zero training error.

So which one should we choose?

10 / 59

Support vector machines Primal formulation of SVM

Distance to hyperplane
What is the distance from a point to a hyperplane {z : w'x +b = 0}?

Assume the projection is x — Em, then

0=w" (a:—fw)—i—b:wT:c—EHwH—Fb

_ wTz+b
and thus ¢ = ol -

Therefore the distance is
lwTz + b|

[[wll2
For a hyperplane that correctly classifies (x,y), the distance becomes

y(wTz +b)
w2

12 /59

Maximizing margin
Margin: the smallest distance from all training points to the hyperplane

yn('ngb(a:n) +b)
[[wll2

MARGIN OF (w, b) = min
n

llwll2

yn(qub(:I:n) + b) . 1 . T
= A T, T yn(w” @(xn) + b)

13 / 59

Support vector machines Primal formulation of SVM

Summary for separable data

For a separable training set, we aim to solve

1
max —— st miny,(w’ ¢(x,) +b) =1
wb [wlly "

This is equivalent to

1
—||w
min 2|| 12

st. y(whe(z,) +b)>1, Vn

SVM is thus also called max-margin classifier. The constraints above are
called hard-margin constraints.

15 / 59

Support vector machines Primal formulation of SVM

Rescaling

Note: rescaling (w,b) does not change the hyperplane at all.

We can thus always scale (w, b) s.t. min,, y,(w'¢(x,) +b) =1

The margin then becomes
MARGIN OF (w, b)

1)
— m min yn(wTd)(mn) +b)
1

[w]2

14 / 59

Support vector machines Primal formulation of SVM

General non-separable case

If data is not linearly separable, the previous constraint
yn(wre(x,) +b) > 1, Vn

is obviously not feasible.

To deal with this issue, we relax them to soft-margin constraints:
yn(wT¢(mn) + b) 2 1- €n7 v n

where we introduce slack variables &, > 0.

16 / 59

Primal formulation of SVM
SVM Primal formulation

We want &, to be as small as possible too. The objective becomes

w,b,{gn}

s.t. yn('wT(b(mn) +b)>1-&, Vn
&, >0, Vn

, 1
min 2||U?H§+C§n:§n

where C' is a hyperparameter to balance the two goals.

17 / 59

Support vector machines Primal formulation of SVM

Equivalent form

. 1 2

min C E —

w,b,{{n} gn + 2||w||2
n

st. max{0,1— Yn(wr(x,) + b)} =&, VYn

is equivalent to

w,b

1
min C’Zmax {0,1- Yn(wr(x,) + b)} + 5”10”%

and
A
min Zmax{o, 1 -y (w p(ax,) + b)} + 5““’”%

w,b

with A = 1/C'. This is exactly minimizing L2 regularized hinge loss!

19 / 59

Support vector machines Primal formulation of SVM

Equivalent form

Formulation

1
oin E &n + 2““’”2
n

st. 11— yn(wT¢(wn) +0) <& Yn
€n >0, Vn

is equivalent to

W,b,{fn

st. max{0,1— yn(wr () + b)} =&, Vn

) 1
IIllIl} C;fn + §Hw||%

18 / 59
Optimization
min 0N 6+ w3
w,b,{€n} A A
st. 1—y(wie(x,) +b) <&, Yn
&, >0, Vn
@ It is a convex (quadratic in fact) problem
@ thus can apply any convex optimization algorithms, e.g. SGD
@ there are more specialized and efficient algorithms
@ but usually we apply kernel trick, which requires solving the dual
problem
20 / 59

SIS LT AVl BT S Dual formulation of SVM

The dual formulation

Similar to Perceptron, it turns out that the primal solution w* is also a
linear combination of data

N
w* =" ahynd(an)
n=1

where af, ..., ay are solutions of the dual formulation of SVM:

1
max Z Qn — B Z ymynaman(b(mm)qu(wn)

A1y,

s.t. Zanyn:O and 0<a,<C, Vn
n

@ a quadratic program, many efficient optimization algorithms exist

o immediately kernelizable by replacing ¢(x.,) () with k(zp,,)

21 /59

SIS LT AV BT S Dual formulation of SVM

A closer look at «,

Observe:

> anynd(z,)

n:ag >0

N
w* =" anynd(an) =
n=1

A point with o}, > 0 is called a “support vector”.

Hence the name Support Vector Machine (SVM).

23 / 59

L TS]
Making a prediction

How to efficiently make a prediction SGN ('w*T (z) + b*) for a new x?

o first term

N N
wlo(@) =Y anynd(@,) "d(@) = Y alynk(@,, @)
n=1 n=1

@ second term (derivation omitted):
N
b* = ym — w*! (Tm) = Ym — Z O Ynk(Tn, Tm)
n=1

for any m such that 0 < o, < C. (b* should be precomputed)

m

22 /59
Rl
Geometric interpretation of support vectors
A support vector satisfies oy > 0 and
L= & — yn(w™ B(a,) + %) = 0
When ® wT¢£z)+b:1
© & =0, yn(w (xy) +b°) =1 7 e =0

and thus the point is 1/[|w*||2
away from the hyperplane.

e & < 1, the point is classified
correctly but does not satisfy
the large margin constraint.

Support vectors (circled with the
orange line) are the only points that
matter!

e & > 1, the point is
misclassified.

24 / 59

SIS LT AVl BT S Dual formulation of SVM

An example

One drawback of kernel method: non-parametric, need to keep all
training points potentially

For SVM, very often #support vectors < N

Training data Sl71pport Vectors in the Training data

7 1000
° .' o
(]
6 ..::: l,: 2 6 800
5 Py [5 o 283
o o . o' 600
4 4
400
3 3
2 2 200
e gLz
4 5 6 7 8 4 5 6 7 8
See also Colab demo.
25 / 59

Outline

© Decision tree

27 / 59

SIS LT AV BT S Dual formulation of SVM

Summary
SVM: max-margin linear classifier

Primal (equivalent to minimizing L2 regularized hinge loss):

w7ba{£n

sit. 1-— yn('wT¢(mn) +b) <&, Vn
£, >0, Vn

. 1
min D6+ gl

Dual (kernelizable, reveals what training points are support vectors):

1
I{I;a)}(Z Qp — 5 Z ymynaman¢($m)T¢(mn)

s.t. Zanyn:() and 0<a,<C, Vn
n

26 / 59

Decision tree

We have seen different ML models for classification/regression:

@ linear models, neural nets and other nonlinear models induced by
kernels

Decision tree is yet another one:
@ nonlinear in general
@ works for both classification and regression; we focus on classification
@ one key advantage is good interpretability

o still very popular for small tabular data, especially when used in
ensemble (i.e., “forest”)

28 / 59

Tree-based models outperform neural nets sometimes Example

Why do tree-based models still outperform deep Many decisions are made based on some tree structure
learning on tabular data?
Medical treatment Salary in a company
Léo Grinsztajn Edouard Oyallon Gaél Varoquaux
Soda, Inria Saclay ISIR, CNRS, Sorbonne University Soda, Inria Saclay
leo.grinsztajn@inria.fr
Fever Degree

Abstract 73400 T 100

High ScHool College

While deep learning has enabled tremendous progress on text and image datasets,
its superiority on tabular data is not clear. We contribute extensive benchmarks of Treatment #1 Muscle Pain Work Exveri 3 .
standard and novel deep learning methods as well as tree-based models such as ork Experience Work Experience Work Experience
XGBoost and Random Forests, across a large number of datasets and hyperparame-

ter combinations. We define a standard set of 45 datasets from varied domains with igh Lew <sgr S\syr <y Ssyr <dr Nsyr
clear characteristics of tabular data and a benchmarking methodology accounting

for both fitting models and finding good hyperparameters. Results show that tree-

based models remain state-of-the-art on medium-sized data (~10K samples) even Treatment #2 Treatment #3 x X $x X N R
without accounting for their superior speed. To understand this gap, we conduct an ! e ' $Xs s
empirical investigation into the differing inductive biases of tree-based models and

Neural Networks (NNs). This leads to a series of challenges which should guide

researchers aiming to build tabular-specific NNs: 1. be robust to uninformative

features, 2. preserve the orientation of the data, and 3. be able to easily learn

irregular functions. To stimulate research on tabular architectures, we contribute a

standard benchmark and raw data for baselines: every point of a 20 000 compute

hours hyperparameter search for each learner.

29 / 59 30 /59

Tree terminology A more abstract example of decision trees

Input: © = (z1,22)

Output: f(x) determined

naturally by traversing the tree
@ start from the root

@ test at each node to decide
which child to visit next

o finally the leaf gives the
prediction f(x)

For example, f((61 — 1,02+ 1)) =B

Complex to formally write down, but easy to represent pictorially or as
codes.

31 /59 32 / 59

The decision boundary Parameters

Parameters to learn for a decision tree:

Corresponds to a classifier with boundaries: @ the structure of the tree, such as the depth, #branches, #nodes, etc
T2, e some of them are sometimes considered as hyperparameters
E o unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data
03 B
@ the test at each internal node
0 C D
2 o which feature(s) to test on?
A
A B C D E o if the feature is continuous,
61 04 ! what threshold (61, 6a,...)?
A B C D E
@ the value/prediction of the leaves (A, B, ...)
33 /59 34 /59
Learning the parameters A running example [Russell & Norvig, AIMA]
@ predict whether a customer will wait for a table at a restaurant
So how do we learn all these parameters? @ 12 training examples

. . . o @ 10 f Il di
Recall typical approach is to find the parameters that minimize some loss. 0 features (all discrete)

Example Attributes Target
This is unfortunately not feasible for trees Alt| Bar | Fri| Hun| Pat | Price | Rain| Res| Type | Est || WillWait
X, T| F F T |Some| $$% F T | French| 0-10 T
e For Z nodes, there are roughly #features? different ways to decide X, T| F | F| T |Ful| § F | F | Thai |30-60| F
“which feature to test on each node”, which is a /ot. Xs | F| T|F | F |Somel § | F | F |Burger 0-10) T
X, T| F | T | T | Ful) F F | Thai |10-30 T
@ enumerating all these configurations to find the one that minimizes Xs T(F|T| F |Ful| $88 F | T French| >60 F
| is too computationally expensive Xe F| T | F| T |Some|l $$ T T | Italian | 0-10 T
S0me 1055 15 P y exp ' X; |F| T | F| F |None| § | T | F |Burger|010| F
Xs F| F | F| T |Some| $§% T T | Thai | 0-10 T
Xo F| T | T| F | Ful $ T F | Burger| >60 F
Instead, we turn to some greedy top-down approach. X0 T| T | 7| T | Full| 8 | F | T |ltalian|10-30| F
Xn F| F | F F | None| § F F | Thai | 0-10 F
X2 T| T | T | T | Ful $ F F | Burger| 30-60 T

35 / 59 36 / 59

First step: how to build the root? Measure of uncertainty of a node

I.e., which feature should we test at the root? Examples: It should be a function of the distribution of classes

000000 00000) N
000000 000000 @ e.g. a node with 2 positive and 4 Eull
negative examples can be \
Non ome ur Eronch = . o summarized by a distribution P . .
e u res lan 4l urger .
oo o000 o e oo oo PY =-1)=2/3
Which split is better? One classic uncertainty measure of a distribution is its (Shannon) entropy:

@ intuitively “patrons” is a better feature since it leads to “more pure” ¢
or “more certain” children ZP Y =k)logP(Y =k)
k=1

@ how to quantify this intuition?

37 /59 38 / 59
Properties of entropy Examples of computing entropy
With base e and 4 classes:
C 1
;P (Y =k)log P(Y = k) H(Y) = 0.8360 Jd o H(Y) = 13563
%O.G E‘U.E
:
@ the base of log can be 2, e or 10 = cog
0.2
@ always non-negative i P9 “]]] I
N 1 3 4
Class
@ it's the smallest codeword length to encode symbols drawn from P 1 C omst
@ maximized if P is uniform (max = log C): most uncertain case N H(Y)=0
@ minimized if P focuses on one class (min = 0): most certain case %M
e eg. P=(1,0,...,0)
e 0logO0 is defined naturally as lim,_,o4 zlogz =0 ~ L
T 3 4
39 / 59

40 / 59

Another example Measure of uncertainty of a split

Entropy in each child if root tests on “patrons”
Suppose we split based on a discrete feature A, the uncertainty can be

For “None™ branch measured by the conditional entropy:
- (0 log 0 + 2 log 2) =0
0+2 "0+2 042 “0+2 000000 H(Y |A)
For “Some” branch o00000
(4 l 4) 0 1 0) . Patrons? — ZP(A — a)H(Y ‘ A — a)
_ og og = None Some. Full a
440 °4+0 440 440 co0e 06 C
For “Full” branch (1] [I T 1]
2 o244\ =Y P(A=a){ =) P(Y|A=a)logP(Y | A=a)
“\2ratava Taya®ag) T a k=1

= Z “fraction of example at node A = a" x “entropy at node A = a"

So how good is choosing “patrons” overall? “

Very naturally, we take the weighted average of entropy:

2 4 6 ; i
2 w0+ — x04+ — x09 =045 Pick the feature that leads to the smallest conditional entropy.
12 12 12
41 /59 42 /59
Deciding the root Repeat recursively
Split each child in the same way.
o P > same way 000000
For “French” branch 43444 @ but no need to split children “none” 000000
1 1 1 1 " "
- 1 =1 Type? and “some”: they are pure alread Patrons?
(1+1°g1+1+1+10g1+1> = yarep y [Pobvone?|
- Froncn _—Takan/ \ Tha Buger and become leaves
For “Italian” branch é oo oY) None Some Full
(LANRURS SRS S) . ¢ ¢ oo e o for “full”, repeat, focusing on those 0000 00
— 0 0, =
T+1 21+1 141 2141 6 examples: o0 o000
For “Thai" and “Burger” branches
2 2 2 2 .
— . lOg . —+ log . =1 Alt| Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est || WillWait
242 7242 242 72412 X, | T| F | F| T |Some| $85 | F | T |French| 0-10| T
X, T| F | F| T | Ful $ F F | Thai | 30-60 F
X3 F| T | F| F |Some|l $ F F | Burger| 0-10 T
9 9 4 4 X, T| F T T | Ful s ki F | Thai |10-30 T
1t e £ £ = = — X, T| F | T | F | Full | 33§ F T | French| >60 (=
The conditional entropy is 5 X 1+ 5 X1+ 5 X1+ 5 x1=1>045 A I B 0 s e e B R bt i
e . “ "o. . . " " X7 F| T | F| F |None| $ T F | Burger| 0-10 F
So splitting with “patrons” is better than splitting with “type”. Xs | F| F|F| T |Some| s5 | T | 7| Thai|lo0| T
Xo F| T|T F | Full $ T F | Burger| >60 F
In fact by similar calculation “patrons” is the best split among all features. 2 T T T A ool RS 8 P SIS ey 30250 e
X F| F F F | None| $ F F | Thai | 0-10 F
X2 T| T | T| T | Ful $ & F | Burger| 30-60 T

We are now done with building the root (this is also called a stump).

43 /59 44 / 59

Random Forests

Patrons?

Random forest is an ensemble of trees:

@ each tree is built using a bootstrapped dataset (that is, a set of
points randomly sampled from the training set with replacement)

@ each split of each tree is selected from a random subset of features

Burger e final prediction is the plurality vote of all tress (for classification
tasks) or the averaged prediction of all trees (for regression tasks)

French Italian

@ much better performance than a single tree, trivially parallelizable!

Again, very easy to interpret.

45 / 59 46 / 59

Outline Introduction

Boosting (an even more powerful/general ensemble method):

@ is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

@ main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

© Boosting @ works very well in practice (especially in combination with trees)
@ often is resistant to overfitting

@ has strong theoretical guarantees

We again focus on binary classification.

47 / 59 48 / 59

=
A simple example

Email spam detection:
@ given a training set like:

o (“Want to make money fast? ...", spam)
o ("Viterbi Research Gist ...", not spam)

e first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e e.g. contains the word “money” = spam

@ reweight the examples so that “difficult” ones get more attention
e e.g. spam that doesn't contain the word “money”

@ obtain another classifier by applying the same base algorithm:
e e.g. empty “to address’ = spam

@ repeat ...

e final classifier is the (weighted) majority vote of all weak classifiers

49 / 59

Examples
Boosting Algorithms

Given:
@ a training set S

@ a base algorithm A

Two things to specify a boosting algorithm:
@ how to reweight the examples?

@ how to combine all the weak classifiers?

Focus on AdaBoost, one of the most successful boosting algorithms.

51 / 59

Examples
The base algorithm

A base algorithm A (also called weak learning algorithm /oracle) takes a
training set S weighted by D as input, and outputs classifier h < A(S, D)

@ this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

@ many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by “weighted total loss")

@ even if it's not obvious how to deal with weight directly, we can
always resample according to D to create a new unweighted dataset

50 / 59

AdaBoost
The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize D1 to be uniform
Fort=1,....,T

@ obtain a weak classifier h; < A(S, D;)

@ calculate the importance of h; as

1 1—6t
=1
Bt 211(o >

where € =, 1, (@), Dt() is the weighted error of ;.

(B; >0 < ¢ < 0.5)

@ update distributions

Di(n)e=Pif hy(xn) = yn

D n) o< Dy(n)e Prynhe(zn) —
e+ () t(n) Di(n)eP else

Output the final classifier H(x) = sgn (Zz;l ﬂtht(m)>

52 / 59

Example

Dy

+
10 data points in R? o+
The size of + or - indicates the + 5 -
weight, which starts from uniform D, N B

Base algorithm is decision stump:
x, >0,

x> 64

Observe that no stump can predict very accurately for this dataset

Round 2: t =2

o 3 misclassified (circled): e2 = 0.21 — 33 = 0.65.

@ D3 puts more weights on those examples

Round 1: t =1

o 3 misclassified (circled): e = 0.3 — 81 = 31n (t—ff) ~~ 0.42.

@ D> puts more weights on those examples

Round 3: t =3

@ again 3 misclassified (circled): e3 = 0.14 — 53 = 0.92.

Boosting

Final classifier: combining 3 classifiers

H =sign | 042 +0.65
final

+0.92

All data points are now classified correctly, even though each weak
classifier makes 3 mistakes.

Boosting

Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

5 i
£10:
o 4
5/\ test

(boosting C4.5 on
“letter” dataset)

o . _train
10 100 1000
of rounds (7)

e test error does not increase, even after 1000 rounds
* (total size > 2,000,000 nodes)
e test error continues to drop even after training error is zero!

rounds
5 | 100 | 1000
train error | 0.0 | 0.0 0.0
test error | 8.4 | 3.3 3.1

Used to be a mystery, but by now rigorous theory has been developed to
explain this phenomenon.

Overfitting

When T is large, the model is very complicated and overfitting can happen

(boosting “stumps” on

10| train heart-disease dataset)
5 L
0 L L
1 10 100 1000
rounds

