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Administration

Exam 1 grading still ongoing.

HW3 will be available after today's lecture.
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Clustering

Unsupervised learning

Recall there are different types of machine learning problems

e supervised learning (what we have discussed so far)
Aim to predict accurately, e.g., classification and regression

e unsupervised learning (this and next few lectures)
Aim to discover hidden/latent patterns and explore data

e decision making (last two lectures)
Aim to act optimally under uncertainty

Today's focus: clustering, a canonical unsupervised learning problem
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Clustering Problem setup

Clustering: informal definition

Given: a set of data points (feature vectors), without labels
Output: group the data into some clusters, which means
@ assign each point to a specific cluster

e find the center (representative/prototype/...) of each cluster
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Clustering Problem setup

Clustering: formal definition

Given: data points xq, ..

.,xn € RP and #clusters K we want

Output: group the data into K clusters, which means

e find assignment 7, € {0, 1} for each data point n € [N] and k € [K]
s.t. ZkE[K] Yk = 1 for any fixed n

o find the cluster centers pq, ...
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Problem setup
Many applications

@ recognize communities in a social network

@ group similar customers in market research

@ grouping documents into different topics

@ image segmentation

@ identifying groups of genes with similar expression patterns

@ accelerate other algorithms (e.g. NNC as in programing projects)
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Clustering Problem setup

One example

image compression:
@ each pixel is a point
@ perform clustering over these points

@ replace each point by the center of the cluster it belongs to

Original image Large K — Small K
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Clustering Problem setup

Formal Objective
Key difference from supervised learning problems: no labels given, which
means no ground-truth to even measure the quality of your answer!

Still, we can turn it into an optimization problem, e.g. through the
popular “K-means” objective: find v, and pj to minimize

F({vne}: {pw}) = Z Tkl ®n — x5

n=1 k=1

i.e. the sum of squared distances of each point to its center.

Unfortunately, finding the exact minimizer is NP-hard!
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Clustering K-means algorithm

Alternating minimization

Instead, use a heuristic that alternatingly minimizes over {v,x} and {py}:

Initialize {p{"}

Fort=1,2,...
o find
(t+1)
{350} = argmin F ({yui}, {u})
Ynk
o find

(™D} = axgmin F ({1557}, (e}
{mx}
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Clustering K-means algorithm

A closer look

lhe first step
min F nk s = min k|| Tn — 2
Fo! (ke ts {mx}) o En Ek Yok llTn — pell2

= min > el — pil
n {'Ynk} k

is simply to assign each x,, to the closest py, i.e.

{1, if k= argmin, ||, — g3
TYnk =
0, else

for all k € [K] and n € [N].
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Clustering K-means algorithm

A closer look

The second step
min F' ({vnk = min k|| Tn — 2
min ({vnr} {1x}) {Mk}ZZV k| il
= me > len — w3

niYpk=1

is simply to average the points of each cluster (hence the name
ply g

Zn'ynk 1z Z YnkTLn
{n 'Ynk—l}’ > Tk

M =

for each k € [K].
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Clustering K-means algorithm

The K-means algorithm

Step 0 Initialize p1,..., K

Step 1 Fix the centers p1, ..., px, assign each point to the closest center:

1, if k= argmin, ||z, — p|3
Tnk =
0, else

Step 2 Fix the assignment {7, }, update the centers

_ Zn TnkTn
P =< _
Zn ’Ynk

Step 3 Return to Step 1 if not converged
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Clustering K-means algorithm

An example
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Clustering Initialization and Convergence

How to initialize?

There are different ways to initialize:
@ randomly pick K points as initial centers
@ or randomly assign each point to a cluster, then average

@ or more sophisticated approaches (e.g. greedy or K-means+-+)

Initialization matters for convergence.
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Clustering Initialization and Convergence

Convergence

K-means will converge in a finite number of iterations, why?
@ objective decreases at each step
@ objective is lower bounded by 0

e #possible_assignments is finite (K*V, exponentially large though)

However
@ it could take exponentially many iterations to converge

@ and it might not converge to the global minimum of the K-means
objective
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Clustering Initialization and Convergence

Local minimum v.s global minimum

Simple example: 4 data points, 2 clusters, 2 different initializations

° X ° ° °
w X X
Versus
° x ° ° °
L=2W

K-means converges immediately in both cases, but
o left has K-means objective L? = 41}/2
e right has K-means objective W2, 4 times better than left!

@ in fact, left is local minimum, and right is global minimum.
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Clustering

Local minimum v.s global minimum

L>W

@ moreover, local minimum can be arbitrarily worse if we increase L

@ so initialization matters a lot for K-means



Clustering Initialization and Convergence

How common initialization methods perform?

L>W

e randomly pick K points as initial centers: fails with 1/3 probability

@ or randomly assign each point to a cluster, then average: similarly fail
with a constant probability

@ or more sophisticated approaches?
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U2 (it Ol Coraes
An Intuitive and Greedy Approach

Idea: spread out the initial centers

Start with a random data point as the first center pi;
Fork=2,...,K
o let the k-th center uj be the farthest from the chosen centers:

pr = argmax  min ||z — ;3
€C€{m1,...,wN}]:17“'7k_1
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Clustering Initialization and Convergence

Greedy initialization on the same example

L>W

Suppose we pick top left as w1, then po is the bottom right

@ K-means converges to the global minimum after one iteration!

See demo at https://www.naftaliharris.com/blog/
visualizing-k-means-clustering/.
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Clustering Initialization and Convergence

Does greedy initialization always work?

Not really; it is too sensitive to outliers!

e outlier

In HW3, you will verify that greedy initialization can also lead to arbitrarily
bad local minimums.
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Initialization and Convergence
Solution: K-means+-+

K-means++: robustify the greedy approach via randomness

Start with a random data point as the first center
Fork=2,....K
@ randomly pick the k-th center pj such that

K-means++ guarantees to find a solution that in expectation is at most
O(log K') times of the global optimal.
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Clustering Initialization and Convergence

K-means++ on the same example

. L>W
Suppose we pick top left as w1, then

e Pr[us = bottom left] oc 1177, Pr[ps = top right] oc L?
e Pr[us = bottom right] oc 1177 + L”
So the expected K-means objective is
w2 L? 1 3
sz Ut <2(W2 )l 2) =0

that is, at most 1.5 times of the optimal.
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Clustering Initialization and Convergence

Summary for K-means

K-means is alternating minimization for the K-means objective.
The initialization matters a lot for the convergence.

K-means++ uses a theoretically (and often empirically) better
initialization.
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Gaussian mixture models Motivation and Model

Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic approach for clustering
@ more explanatory than minimizing the K-means objective

@ can be seen as a soft version of K-means

To solve GMM, we will introduce a powerful method for learning
probabilistic model: Expectation—Maximization (EM) algorithm
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Gaussian mixture models Motivation and Model

A generative model

For classification, we discussed the sigmoid model to “explain” how the
labels are generated.

Similarly, for clustering, we want to come up with a probabilistic model p
to “explain” how the data is generated.

That is, each point is an
independent sample of  ~ p.

0.5
What probabilistic model

generates data like this?
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Gaussian mixture models Motivation and Model

GMM: intuition

GMM is a natural model to explain such data

Assume there are 3 ground-truth |
Gaussian models. To generate a
point, we

e first randomly pick one of 0.3
the Gaussian models,

@ then draw a point
according this Gaussian.

Hence the name “Gaussian mixture model” .
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Motivation and Model
GMM: formal definition

A GMM has the following density function:

K

plx) = wiN (@ | p, i)
k=1

where
e K: the number of Gaussian components (same as #clusters we want)
@ wi,...,wgk: mixture weights, a distribution over K components
@ uy and X mean and covariance matrix of the k-th Gaussian

@ N: the density function for a Gaussian
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Gaussian mixture models Motivation and Model

Another view

By introducing a latent variable z € [K|, which indicates cluster
membership, we can see p as a marginal distribution

K

K
= px,z= Zp p(@|z = k) = > wN(x | g, )
s

k=1

x and z are both random variables drawn from the model
@ x is observed

@ z is unobserved/latent
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DI ]
An example

0.5

0.5

The conditional distributions are

p(x | z=red) = N(x | p, %)
p(x | z = blue) = N(z | po, X2)
p(x | z =green) = N(x | s, 25)

The marginal distribution is

p(x) = p(red)N (x| p1,%1) + p(blue) N (x | pa, X9)
+ p(green) NV (= | pu3. 23)
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LI
Learning GMMs

Learning a GMM means finding all the parameters 0 = {wy, pg, Ek}szl.
In the process, we will learn the latent variable z,, as well:
p(zn =k ‘ mn) £ Tnk € [07 1]

i.e. “soft assignment” of each point to each cluster, as opposed to “hard
assignment” by K-means.

GMM is more explanatory than K-means
@ both learn the cluster centers py's

@ in addition, GMM learns cluster weight wy and covariance X, thus

e we can predict probability of seeing a new point
e we can generate synthetic data
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Gaussian mixture models Motivation and Model

How to learn these parameters?

An obvious attempt is maximum-likelihood estimation (MLE): find

N N
argmax In H p(xy, ;0) = argmaxz In p(x,, ;0) = argmax P(0)
0 0 0

n=1 n=1

This is called incomplete log-likelihood (since z;,'s are unobserved), and is
intractable in general (non-concave problem).

One solution is to still apply GD/SGD, but a much more effective
approach is the Expectation—Maximization (EM) algorithm.
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Preview of EM for learning GMMs

Step 0 Initialize wg, py, X, for each k € [K]

Step 1 (E-Step) update the “soft assignment” (fixing parameters)
Yk = P(zn =k | @) < Wi N (2, | px, L)

Step 2 (M-Step) update the model parameter (fixing assignments)

Wy = Zn Tnk Wy = Zn TnkLn
N Zn r}/nk:
Z Yok (€0 — ) (€0 — pr) T
n Tnk

Step 3 return to Step 1 if not converged

We will see how this is a special case of EM.
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Gaussian mixture models Motivation and Model

Demo

Generate 50 data points from a mixture of 2 Gaussians with
® w1 = 0.3,/,61 = —0.8,21 =0.52
0 wy =0.7T, u2 =1.2,39 = 0.35

histogram represents the data

red curve represents the
ground-truth density

K
p(x) =3 g wiN(T | p, Bie)

blue curve represents the learned
density for a specific round

EM_demo_1D.pdf shows how the blue curve moves towards red curve
quickly via EM
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https://haipeng-luo.net/courses/CSCI567/2025_spring/slides/EM_demo_1D.pdf

Rl
EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not
just GMM), i.e. find the maximizer of

N N
P(0) = Zlnp(a:n ;0) = Zln/ p(xn, 2n ;0)dz,
n=1 n=1 #n

@ 0O is the parameters for a general probabilistic model
@ x,'s are observed random variables

@ z,'s are latent variables

Again, directly solving the objective is intractable.
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Gaussian mixture models

High level idea

Keep maximizing a lower bound of P that is more manageable




EM slgorihm
Derivation of EM (not required)

Finding the lower bound of P:

Inp(z ;0) = In W (true for any z)
~E.., [m W] (true for any dist. q)
=E. 4 [Inp(x,2;0)] —E.q[Ing(z)] —E.q [ln W]

= By Inp(z, 2 :0)] + H(q) — Eang [m W] (H is entropy)
> By Inpla,30)] + (o)~ mBony |70

(Jensen's inequality)
= EzngInp(z, 2 ;0)] + H(q)
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Gaussian mixture models EM algorithm

Alternatively maximize the lower bound

Therefore, we obtain a lower bound for the log-likelihood function

N
P(9) = Z In p(,, ;0)

Espngn (0 p(Tn, 20 50)] + H(gn)) = F(0,{qn})

an

This holds for any {g,}, so how do we choose? Naturally, the one that
maximizes the lower bound (i.e. the tightest lower bound)!

Equivalently, this is the same as alternatingly maximizing F' over {¢,} and
0 (similar to K-means).
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Gaussian mixture models EM algorithm

Maximizing over {q,}

Fix O(t), the solution to

argmax Eant]n [lnp(acn, Zn 3 e(t))] + H(Qn)
qn

turns out to be q7(lt) s.t.

q’l(’bt)(zn) = p(Zn ‘ Ln ’e(t)) X p(mmzn 70(t))

i.e., the posterior distribution of z, given x, and 2108
So at 8®), we found the tightest lower bound F (0, {qf,,t)}):
o F (e, {q,(f)}) < P() for all 6.

o F (H(t), {qg)}) = P(6") (can be verified through Slide 40)
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Gaussian mixture models EM algorithm

Maximizing over 6

Fix {qg)}, maximize over 6:

arggnaxF (0, {qﬁf)})

N
= argmaxZIE oo Inp(xy, 2, ;0)] (H(qg)) is independent of 0)
0 n=1 in
2 argmax Q(6 ;01) ({¢\"} are computed via 8®))
0

@ is the (expected) complete likelihood and is usually more tractable.

@ versus the incomplete likelihood: P(0) = 27]:[:1 Inp(x, ;0)
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Rl
General EM algorithm
Step 0 Initialize 8, t =1

Step 1 (E-Step) update the posterior of latent variables

aP () =p(- |z, ;09)

and obtain Expectation of complete likelihood

ZE (t) lnp L, Zn ,9)]

Step 2 (M-Step) update the model parameter via Maximization

0+ — argmax Q(6 ;00)
0

Step 3t < t+ 1 and return to Step 1 if not converged
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Gaussian mixture models EM algorithm

Pictorial explanation

P(8) is non-concave, but Q(0; 1)
often is concave and easy to
maximize.

PO) > F (00 {40})

> F (0(‘) : {q1(f)}>
= P(6M)

So EM always increases the objective
value and will converge to some local
maximum (similar to K-means).

F(0.4a})
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T D EET
Apply EM to learn GMMs

E-Step:
(t) _k pzn:k|xn, (t)>

(
o= :00)
(E

K

plan =k O(t (a:n|zn:k;9(t)>

N (| . 50

This computes the “soft assignment” ~,,, = qg)(zn = k), i.e. conditional
probability of x,, belonging to cluster k.

w
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T D EET
Apply EM to learn GMMs

M-Step:

N
argmax Q(6,0) = argmaxZEz g® Inp(xy,, 2, ;0)]
(7] 0 n—1 noEn

N
= argmaxZEz g® Inp(zy ;0) + Inp(x,|z, ;0)]

N K

= argmax > >k (Inwy +In Ny | g, Si))
{wisbe Bk} =1 =1

To find w1, ...,wg, solve To find each p, X, solve
N K N
argmaxz Z’Ynk; In wy, argmaxz Yk D N (2, | pog, Xi)
@Yo n=1k=1 Pe:Xk 21
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EM applied to GMMs
M-Step (continued)

Solutions to previous two problems are very natural, for each k

Zn 7nk

WE = N

i.e. (weighted) fraction of examples belonging to cluster k

_ Zn YnkZn
M = ——
Zn /-Y’I’Lk

i.e. (weighted) average of examples belonging to cluster k

Z’Ynk ) (xn — por) "

i.e (weighted) covariance of examples belonging to cluster k

n Tnk

(You can try to verify these for the 1D case.)
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EM applied to GMMs
Putting it together

EM for learning GMMs: (see 2D demo)
Step 0 Initialize wg, py, X, for each k € [K]
Step 1 (E-Step) update the “soft assignment” (fixing parameters)

Ynk = p(zn =k ’ xn) X wpN (wn ‘ Mk, Ek)

Step 2 (M-Step) update the model parameter (fixing assignments)

Wy = Zn Tnk = Zn TnkLn
N Zn ’Vnk:
Z IYnk ( Ly — Nk)T
n Tnk

Step 3 return to Step 1 if not converged
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https://github.com/mr-easy/GMM-EM-Python/blob/master/combined.gif

Connection to K-means

K-means is in fact a special case of EM for (a simplified) GMM:
@ assume X = oI for some fixed o so only wy, and p;, are parameters

@ when o0 — 0, EM becomes K-means

GMM is a soft version of K-means and it provides a probabilistic
interpretation of the data, which means we can predict and generate data

after learning.
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