CSCI567 Machine Learning (Fall 2025)

Haipeng Luo

University of Southern California

Oct 24, 2025

Administration

Exam 1 grading still ongoing.

HW3 will be available after today's lecture.

Outline

Clustering

Question mixture models

Outline

- Clustering
 - Problem setup
 - K-means algorithm
 - Initialization and Convergence
- 2 Gaussian mixture models

Unsupervised learning

Recall there are different types of machine learning problems

- supervised learning (what we have discussed so far)
 Aim to predict accurately, e.g., classification and regression
- unsupervised learning (this and next few lectures)
 Aim to discover hidden/latent patterns and explore data
- decision making (last two lectures)
 Aim to act optimally under uncertainty

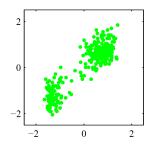
Today's focus: clustering, a canonical unsupervised learning problem

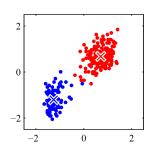
Clustering: informal definition

Given: a set of data points (feature vectors), without labels

Output: group the data into some clusters, which means

- assign each point to a specific cluster
- find the center (representative/prototype/...) of each cluster



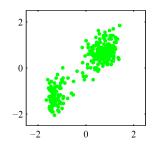


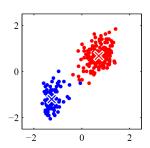
Clustering: formal definition

Given: data points $x_1, \dots, x_N \in \mathbb{R}^\mathsf{D}$ and $\#\mathsf{clusters}\ K$ we want

Output: group the data into K clusters, which means

- find assignment $\gamma_{nk} \in \{0,1\}$ for each data point $n \in [N]$ and $k \in [K]$ s.t. $\sum_{k \in [K]} \gamma_{nk} = 1$ for any fixed n
- find the cluster centers $\mu_1, \dots, \mu_K \in \mathbb{R}^{\mathsf{D}}$





Many applications

- recognize communities in a social network
- group similar customers in market research
- grouping documents into different topics
- image segmentation
- identifying groups of genes with similar expression patterns
- accelerate other algorithms (e.g. NNC as in programing projects)
- . . .

One example

image compression:

- each pixel is a point
- perform clustering over these points
- replace each point by the center of the cluster it belongs to

Original image

Large $K \longrightarrow \mathsf{Small}\ K$

Formal Objective

Key difference from supervised learning problems: no labels given, which means no ground-truth to even measure the quality of your answer!

Still, we can turn it into an optimization problem, e.g. through the popular "K-means" objective: find γ_{nk} and μ_k to minimize

$$F(\{\gamma_{nk}\}, \{\mu_k\}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \|x_n - \mu_k\|_2^2$$

i.e. the sum of squared distances of each point to its center.

Unfortunately, finding the exact minimizer is NP-hard!

Alternating minimization

Instead, use a heuristic that alternatingly minimizes over $\{\gamma_{nk}\}$ and $\{\mu_k\}$:

Initialize
$$\{oldsymbol{\mu}_k^{(1)}\}$$

For
$$t = 1, 2, ...$$

find

$$\{\gamma_{nk}^{(t+1)}\} = \operatorname*{argmin}_{\{\gamma_{nk}\}} F\left(\{\gamma_{nk}\}, \{\boldsymbol{\mu}_k^{(t)}\}\right)$$

find

$$\{\boldsymbol{\mu}_k^{(t+1)}\} = \operatorname*{argmin}_{\{\boldsymbol{\mu}_k\}} F\left(\{\boldsymbol{\gamma}_{nk}^{(t+1)}\}, \{\boldsymbol{\mu}_k\}\right)$$

A closer look

The first step

$$\begin{aligned} \min_{\left\{\gamma_{nk}\right\}} F\left(\left\{\gamma_{nk}\right\}, \left\{\boldsymbol{\mu}_{k}\right\}\right) &= \min_{\left\{\gamma_{nk}\right\}} \sum_{n} \sum_{k} \gamma_{nk} \|\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}\|_{2}^{2} \\ &= \sum_{n} \min_{\left\{\gamma_{nk}\right\}} \sum_{k} \gamma_{nk} \|\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}\|_{2}^{2} \end{aligned}$$

is simply to assign each x_n to the closest μ_k , i.e.

$$\gamma_{nk} = \begin{cases} 1, & \text{if } k = \operatorname{argmin}_c \|\boldsymbol{x}_n - \boldsymbol{\mu}_c\|_2^2 \\ 0, & \text{else} \end{cases}$$

for all $k \in [K]$ and $n \in [N]$.

A closer look

The second step

$$\begin{split} \min_{\{\mu_k\}} F\left(\{\gamma_{nk}\}, \{\mu_k\}\right) &= \min_{\{\mu_k\}} \sum_n \sum_k \gamma_{nk} \|x_n - \mu_k\|_2^2 \\ &= \sum_k \min_{\mu_k} \sum_{n: \gamma_{nk} = 1} \|x_n - \mu_k\|_2^2 \end{split}$$

is simply to average the points of each cluster (hence the name)

$$\mu_k = \frac{\sum_{n:\gamma_{nk}=1} x_n}{|\{n:\gamma_{nk}=1\}|} = \frac{\sum_n \gamma_{nk} x_n}{\sum_n \gamma_{nk}}$$

for each $k \in [K]$.

The K-means algorithm

Step 0 Initialize μ_1, \dots, μ_K

Step 1 Fix the centers μ_1,\ldots,μ_K , assign each point to the closest center:

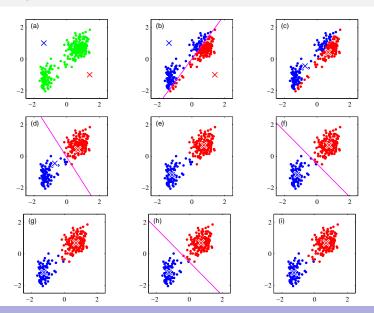
$$\gamma_{nk} = egin{cases} 1, & \text{if } k = \operatorname{argmin}_c \|m{x}_n - m{\mu}_c\|_2^2 \ 0, & \text{else} \end{cases}$$

Step 2 Fix the assignment $\{\gamma_{nk}\}$, update the centers

$$oldsymbol{\mu}_k = rac{\sum_n \gamma_{nk} oldsymbol{x}_n}{\sum_n \gamma_{nk}}$$

Step 3 Return to Step 1 if not converged

An example



How to initialize?

There are different ways to initialize:

- ullet randomly pick K points as initial centers
- or randomly assign each point to a cluster, then average
- or more sophisticated approaches (e.g. greedy or K-means++)

Initialization matters for convergence.

Convergence

K-means will converge in a finite number of iterations, why?

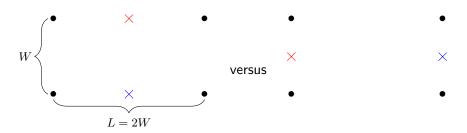
- objective decreases at each step
- objective is lower bounded by 0
- #possible_assignments is finite $(K^N$, exponentially large though)

However

- it could take exponentially many iterations to converge
- and it might not converge to the global minimum of the K-means objective

Local minimum v.s global minimum

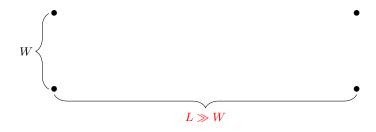
Simple example: 4 data points, 2 clusters, 2 different initializations



K-means converges immediately in both cases, but

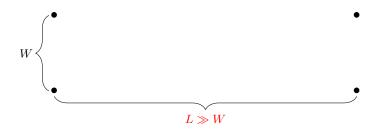
- left has K-means objective $L^2 = 4W^2$
- right has K-means objective W^2 , 4 times better than left!
- in fact, left is local minimum, and right is global minimum.

Local minimum v.s global minimum



- ullet moreover, local minimum can be *arbitrarily worse* if we increase L
- so initialization matters a lot for K-means

How common initialization methods perform?



- ullet randomly pick K points as initial centers: fails with 1/3 probability
- or randomly assign each point to a cluster, then average: similarly fail with a constant probability
- or more sophisticated approaches?

An Intuitive and Greedy Approach

Idea: spread out the initial centers

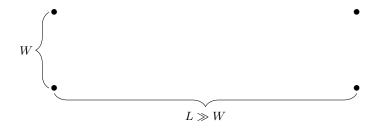
Start with a random data point as the first center μ_1

For
$$k = 2, \ldots, K$$

• let the k-th center μ_k be the farthest from the chosen centers:

$$\boldsymbol{\mu}_k = \operatorname*{argmax} \min_{\boldsymbol{x} \in \{\boldsymbol{x}_1, ..., \boldsymbol{x}_N\}} \min_{j=1, ..., k-1} \|\boldsymbol{x} - \boldsymbol{\mu}_j\|_2^2$$

Greedy initialization on the same example



Suppose we pick top left as μ_1 , then μ_2 is the bottom right

• K-means converges to the global minimum after one iteration!

See demo at https://www.naftaliharris.com/blog/visualizing-k-means-clustering/.

Does greedy initialization always work?

Not really; it is too sensitive to outliers!

In HW3, you will verify that greedy initialization can also lead to *arbitrarily* bad local minimums.

Solution: K-means++

K-means++: robustify the greedy approach via randomness

Start with a random data point as the first center μ_1

For
$$k = 2, \ldots, K$$

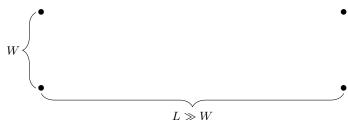
• randomly pick the k-th center μ_k such that

$$\mu_k = \underset{\boldsymbol{x} \in \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}}{\operatorname{argmax}} \min_{j=1,\dots,k-1} \|\boldsymbol{x} - \boldsymbol{\mu}_j\|_2^2$$

$$\Pr[\boldsymbol{\mu}_k = \boldsymbol{x}_n] \propto \min_{j=1,\dots,k-1} \|\boldsymbol{x}_n - \boldsymbol{\mu}_j\|_2^2$$

K-means++ *guarantees* to find a solution that in expectation is at most $O(\log K)$ times of the global optimal.

K-means++ on the same example



Suppose we pick top left as μ_1 , then

•
$$\Pr[\mu_2 = \text{bottom left}] \propto W^2$$
, $\Pr[\mu_2 = \text{top right}] \propto L^2$

•
$$\Pr[\mu_2 = \text{bottom right}] \propto W^2 + L^2$$

So the expected K-means objective is

$$\frac{W^2}{2(W^2 + L^2)} \cdot L^2 + \left(\frac{L^2}{2(W^2 + L^2)} + \frac{1}{2}\right) \cdot W^2 \le \frac{3}{2}W^2,$$

that is, at most 1.5 times of the optimal.

Summary for K-means

K-means is alternating minimization for the K-means objective.

The initialization matters a lot for the convergence.

K-means++ uses a theoretically (and often empirically) better initialization.

Outline

- Clustering
- Gaussian mixture models
 - Motivation and Model
 - EM algorithm
 - EM applied to GMMs

Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic approach for clustering

- more explanatory than minimizing the K-means objective
- can be seen as a soft version of K-means

To solve GMM, we will introduce a powerful method for learning probabilistic model: **Expectation–Maximization (EM) algorithm**

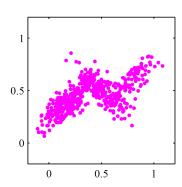
A generative model

For classification, we discussed the sigmoid model to "explain" how the labels are generated.

Similarly, for clustering, we want to come up with a probabilistic model p to "explain" how the data is generated.

That is, each point is an independent sample of $\boldsymbol{x} \sim p$.

What probabilistic model generates data like this?

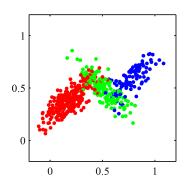


GMM: intuition

GMM is a natural model to explain such data

Assume there are 3 ground-truth Gaussian models. To generate a point, we

- first randomly pick one of the Gaussian models.
- then draw a point according this Gaussian.



Hence the name "Gaussian mixture model".

GMM: formal definition

A GMM has the following density function:

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where

- ullet K: the number of Gaussian components (same as #clusters we want)
- $\omega_1, \ldots, \omega_K$: mixture weights, a distribution over K components
- ullet μ_k and Σ_k : mean and covariance matrix of the k-th Gaussian
- ullet N: the density function for a Gaussian

Another view

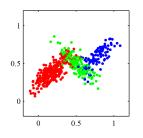
By introducing a **latent variable** $z \in [K]$, which indicates cluster membership, we can see p as a **marginal distribution**

$$p(\boldsymbol{x}) = \sum_{k=1}^K p(\boldsymbol{x}, z = k) = \sum_{k=1}^K p(z = k) p(\boldsymbol{x} | z = k) = \sum_{k=1}^K \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

 \boldsymbol{x} and z are both random variables drawn from the model

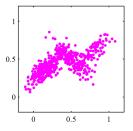
- x is observed
- z is unobserved/latent

An example



The conditional distributions are

$$\begin{split} p(\boldsymbol{x} \mid z = \text{red}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \\ p(\boldsymbol{x} \mid z = \text{blue}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) \\ p(\boldsymbol{x} \mid z = \text{green}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3) \end{split}$$



The marginal distribution is

$$\begin{split} p(\boldsymbol{x}) &= p(\text{red}) N(\boldsymbol{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + p(\text{blue}) N(\boldsymbol{x} \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) \\ &+ p(\text{green}) N(\boldsymbol{x} \mid \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3) \end{split}$$

Learning GMMs

Learning a GMM means finding all the parameters $\theta = \{\omega_k, \mu_k, \Sigma_k\}_{k=1}^K$. In the process, we will learn the latent variable z_n as well:

$$p(z_n = k \mid \boldsymbol{x}_n) \triangleq \gamma_{nk} \in [0, 1]$$

i.e. "soft assignment" of each point to each cluster, as opposed to "hard assignment" by K-means.

GMM is more explanatory than K-means

- ullet both learn the cluster centers $oldsymbol{\mu}_k$'s
- ullet in addition, GMM learns cluster weight ω_k and covariance $oldsymbol{\Sigma}_k$, thus
 - we can predict probability of seeing a new point
 - we can generate synthetic data

How to learn these parameters?

An obvious attempt is maximum-likelihood estimation (MLE): find

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ \ln \prod_{n=1}^{N} p(\boldsymbol{x}_{n} ; \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p(\boldsymbol{x}_{n} ; \boldsymbol{\theta}) \triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P(\boldsymbol{\theta})$$

This is called incomplete log-likelihood (since z_n 's are unobserved), and is intractable in general (non-concave problem).

One solution is to still apply GD/SGD, but a much more effective approach is the **Expectation–Maximization (EM) algorithm**.

Preview of EM for learning GMMs

Step 0 Initialize $\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ for each $k \in [K]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{nk} = p(z_n = k \mid \boldsymbol{x}_n) \propto \omega_k N\left(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right)$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$\omega_k = rac{\sum_n \gamma_{nk}}{N}$$
 $oldsymbol{\mu}_k = rac{\sum_n \gamma_{nk} oldsymbol{x}_n}{\sum_n \gamma_{nk}}$

$$oldsymbol{\Sigma}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (oldsymbol{x}_n - oldsymbol{\mu}_k) (oldsymbol{x}_n - oldsymbol{\mu}_k)^{ ext{T}}$$

Step 3 return to Step 1 if not converged

We will see how this is a special case of EM.

Demo

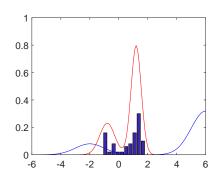
Generate 50 data points from a mixture of 2 Gaussians with

- $\omega_1 = 0.3, \mu_1 = -0.8, \Sigma_1 = 0.52$
- $\omega_2 = 0.7, \mu_2 = 1.2, \Sigma_2 = 0.35$

histogram represents the data

red curve represents the ground-truth density $p(\boldsymbol{x}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$

blue curve represents the learned density for a specific round



EM_demo_1D.pdf shows how the blue curve moves towards red curve quickly via EM

EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

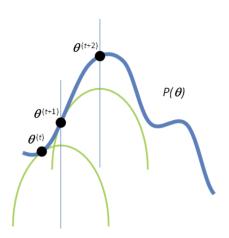
$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \int_{z_n} p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) dz_n$$

- $oldsymbol{\theta}$ is the parameters for a general probabilistic model
- x_n 's are observed random variables
- z_n 's are latent variables

Again, directly solving the objective is intractable.

High level idea

Keep maximizing a lower bound of P that is more manageable



Derivation of EM (not required)

Finding the lower bound of P:

$$\ln p(\boldsymbol{x}\,;\boldsymbol{\theta}) = \ln \frac{p(\boldsymbol{x},z\,;\boldsymbol{\theta})}{p(z|\boldsymbol{x}\,;\boldsymbol{\theta})} \qquad \text{(true for any } z\text{)}$$

$$= \mathbb{E}_{z\sim q} \left[\ln \frac{p(\boldsymbol{x},z\,;\boldsymbol{\theta})}{p(z|\boldsymbol{x}\,;\boldsymbol{\theta})} \right] \qquad \text{(true for any dist. } q\text{)}$$

$$= \mathbb{E}_{z\sim q} \left[\ln p(\boldsymbol{x},z\,;\boldsymbol{\theta}) \right] - \mathbb{E}_{z\sim q} \left[\ln q(z) \right] - \mathbb{E}_{z\sim q} \left[\ln \frac{p(z|\boldsymbol{x}\,;\boldsymbol{\theta})}{q(z)} \right]$$

$$= \mathbb{E}_{z\sim q} \left[\ln p(\boldsymbol{x},z\,;\boldsymbol{\theta}) \right] + H(q) - \mathbb{E}_{z\sim q} \left[\ln \frac{p(z|\boldsymbol{x}\,;\boldsymbol{\theta})}{q(z)} \right] \qquad \text{(H is entropy)}$$

$$\geq \mathbb{E}_{z\sim q} \left[\ln p(\boldsymbol{x},z\,;\boldsymbol{\theta}) \right] + H(q) - \ln \mathbb{E}_{z\sim q} \left[\frac{p(z|\boldsymbol{x}\,;\boldsymbol{\theta})}{q(z)} \right] \qquad \text{(Jensen's inequality)}$$

$$= \mathbb{E}_{z\sim q} \left[\ln p(\boldsymbol{x},z\,;\boldsymbol{\theta}) \right] + H(q)$$

Alternatively maximize the lower bound

Therefore, we obtain a lower bound for the log-likelihood function

$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta})$$

$$\geq \sum_{n=1}^{N} (\mathbb{E}_{z_n \sim q_n} [\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta})] + H(q_n)) = F(\boldsymbol{\theta}, \{q_n\})$$

This holds for any $\{q_n\}$, so how do we choose? Naturally, the one that maximizes the lower bound (i.e. the tightest lower bound)!

Equivalently, this is the same as alternatingly maximizing F over $\{q_n\}$ and θ (similar to K-means).

Maximizing over $\{q_n\}$

Fix $\theta^{(t)}$, the solution to

$$\operatorname*{argmax}_{q_n} \mathbb{E}_{z_n \sim q_n} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)}) \right] + H(q_n)$$

turns out to be $q_n^{(t)}$ s.t.

$$q_n^{(t)}(z_n) = p(z_n \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)}) \propto p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)})$$

i.e., the *posterior distribution of* z_n given x_n and $\theta^{(t)}$.

So at $\theta^{(t)}$, we found the tightest lower bound $F\left(\theta,\{q_n^{(t)}\}\right)$:

- $F\left(\boldsymbol{\theta}, \{q_n^{(t)}\}\right) \leq P(\boldsymbol{\theta})$ for all $\boldsymbol{\theta}$.
- $F\left(m{ heta}^{(t)},\{q_n^{(t)}\}
 ight) = P(m{ heta}^{(t)})$ (can be verified through Slide 40)

Maximizing over heta

Fix $\{q_n^{(t)}\}$, maximize over $\boldsymbol{\theta}$:

 $\operatorname{argmax} F\left(\boldsymbol{\theta}, \{q_n^{(t)}\}\right)$

$$= \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}} \left[\ln p(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}) \right] \quad \left(H(q_{n}^{(t)}) \text{ is independent of } \boldsymbol{\theta} \right)$$

$$\triangleq \operatorname*{argmax}_{\boldsymbol{\theta}} \ Q(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}) \qquad \qquad \left(\left\{ q_{n}^{(t)} \right\} \text{ are computed via } \boldsymbol{\theta}^{(t)} \right)$$

Q is the (expected) **complete likelihood** and is usually more tractable.

• versus the incomplete likelihood: $P(\theta) = \sum_{n=1}^{N} \ln p(x_n; \theta)$

General EM algorithm

Step 0 Initialize $\theta^{(1)}$, t=1

Step 1 (E-Step) update the posterior of latent variables

$$q_n^{(t)}(\cdot) = p(\cdot \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)})$$

and obtain Expectation of complete likelihood

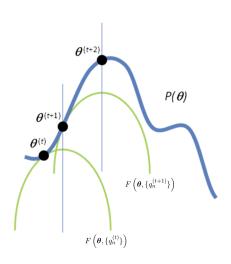
$$Q(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}) = \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) \right]$$

Step 2 (M-Step) update the model parameter via Maximization

$$\boldsymbol{\theta}^{(t+1)} \leftarrow \operatorname*{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta} \ ; \boldsymbol{\theta}^{(t)})$$

Step 3 $t \leftarrow t + 1$ and return to Step 1 if not converged

Pictorial explanation



 $P(\theta)$ is non-concave, but $Q(\theta; \theta^{(t)})$ often is concave and easy to maximize.

$$P(\boldsymbol{\theta}^{(t+1)}) \ge F\left(\boldsymbol{\theta}^{(t+1)}; \{q_n^{(t)}\}\right)$$
$$\ge F\left(\boldsymbol{\theta}^{(t)}; \{q_n^{(t)}\}\right)$$
$$= P(\boldsymbol{\theta}^{(t)})$$

So EM always increases the objective value and will converge to some local maximum (similar to K-means).

Apply EM to learn GMMs

E-Step:

$$q_n^{(t)}(z_n = k) = p\left(z_n = k \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)}\right)$$

$$\propto p\left(\boldsymbol{x}_n, z_n = k ; \boldsymbol{\theta}^{(t)}\right)$$

$$= p\left(z_n = k ; \boldsymbol{\theta}^{(t)}\right) p(\boldsymbol{x}_n \mid z_n = k ; \boldsymbol{\theta}^{(t)})$$

$$= \omega_k^{(t)} N\left(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)}\right)$$

This computes the "soft assignment" $\gamma_{nk} = q_n^{(t)}(z_n = k)$, i.e. conditional probability of x_n belonging to cluster k.

Apply EM to learn GMMs

M-Step:

$$\begin{split} \operatorname*{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) &= \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}} \left[\ln p(\boldsymbol{x}_{n}, z_{n} \; ; \boldsymbol{\theta}) \right] \\ &= \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}} \left[\ln p(z_{n} \; ; \boldsymbol{\theta}) + \ln p(\boldsymbol{x}_{n} | z_{n} \; ; \boldsymbol{\theta}) \right] \\ &= \operatorname*{argmax}_{\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \left(\ln \omega_{k} + \ln N(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right) \end{split}$$

To find $\omega_1, \ldots, \omega_K$, solve

To find each μ_k, Σ_k , solve

$$\underset{\boldsymbol{\omega}}{\operatorname{argmax}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \ln \omega_{k} \qquad \underset{\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}}{\operatorname{argmax}} \sum_{n=1}^{N} \gamma_{nk} \ln N(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

M-Step (continued)

Solutions to previous two problems are very natural, for each \boldsymbol{k}

$$\omega_k = \frac{\sum_n \gamma_{nk}}{N}$$

i.e. (weighted) fraction of examples belonging to cluster k

$$oldsymbol{\mu}_k = rac{\sum_n \gamma_{nk} oldsymbol{x}_n}{\sum_n \gamma_{nk}}$$

i.e. (weighted) average of examples belonging to cluster k

$$oldsymbol{\Sigma}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (oldsymbol{x}_n - oldsymbol{\mu}_k) (oldsymbol{x}_n - oldsymbol{\mu}_k)^{ ext{T}}$$

i.e (weighted) covariance of examples belonging to cluster k

(You can try to verify these for the 1D case.)

Putting it together

EM for learning GMMs:

(see 2D demo)

Step 0 Initialize $\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ for each $k \in [K]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{nk} = p(z_n = k \mid \boldsymbol{x}_n) \propto \omega_k N\left(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right)$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$\omega_k = rac{\sum_n \gamma_{nk}}{N}$$
 $\mu_k = rac{\sum_n \gamma_{nk} x_n}{\sum_n \gamma_{nk}}$

$$oldsymbol{\Sigma}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (oldsymbol{x}_n - oldsymbol{\mu}_k) (oldsymbol{x}_n - oldsymbol{\mu}_k)^{ ext{T}}$$

Step 3 return to Step 1 if not converged

Connection to K-means

K-means is in fact a special case of EM for (a simplified) GMM:

- ullet assume $oldsymbol{\Sigma}_k = \sigma^2 oldsymbol{I}$ for some fixed σ so only ω_k and $oldsymbol{\mu}_k$ are parameters
- when $\sigma \to 0$, EM becomes K-means

GMM is a soft version of K-means and it provides a probabilistic interpretation of the data, which means we can predict and generate data after learning.