CSCI567 Machine Learning (Fall 2025)

Haipeng Luo
University of Southern California

Oct 24, 2025
. A
B

Outline

@ Clustering

© Gaussian mixture models

Administration

Exam 1 grading still ongoing.

HW?3 will be available after today's lecture.

- A
Outline

@ Clustering
@ Problem setup

@ K-means algorithm
@ Initialization and Convergence

Clustering

Unsupervised learning

Recall there are different types of machine learning problems

e supervised learning (what we have discussed so far)
Aim to predict accurately, e.g., classification and regression

e unsupervised learning (this and next few lectures)
Aim to discover hidden/latent patterns and explore data

e decision making (last two lectures)
Aim to act optimally under uncertainty

Today's focus: clustering, a canonical unsupervised learning problem

5 / 50

Clustering: formal definition
Given: data points zj,...,zy € RP and #clusters K we want

Output: group the data into K clusters, which means

e find assignment 7, € {0, 1} for each data point n € [N] and k € [K]
s.t. Zke[}q Yok = 1 for any fixed n

o find the cluster centers w1, ..., g € RP
2 . 2 .
o‘ .. -‘ P
.a] .& ‘
0 o . 0 o
e o % ° S o & .
g" %"
-2 3) *
-2 0 2 -2 0 2

7/ 50

Clustering: informal definition

Given: a set of data points (feature vectors), without labels
Output: group the data into some clusters, which means
@ assign each point to a specific cluster

e find the center (representative/prototype/...) of each cluster

6 /50
@SS Problem setup
Many applications
@ recognize communities in a social network
@ group similar customers in market research
@ grouping documents into different topics
@ image segmentation
o identifying groups of genes with similar expression patterns
@ accelerate other algorithms (e.g. NNC as in programing projects)
°
8 / 50

One example

image compression:
@ each pixel is a point
@ perform clustering over these points

@ replace each point by the center of the cluster it belongs to

Original image Large K — Small K

9 /50

@SS K-means algorithm

Alternating minimization

Instead, use a heuristic that alternatingly minimizes over {~,x} and {p}:

Initialize {ul(cl)}

Fort=1,2,...
e find
t+1 ; !
{’77(#:_)} = argmin F' ({’Ynk}a {/'l’l(e)}>
{’Y’nk}
e find

{pty = ar{gm}inF (hﬁﬂ)}, {Hk]’)
1225

11 / 50

Formal Objective
Key difference from supervised learning problems: no labels given, which
means no ground-truth to even measure the quality of your answer!

Still, we can turn it into an optimization problem, e.g. through the
popular “K-means” objective: find ~,; and g to minimize

N K
F (e {m}) = DD vmlln — pl3

n=1k=1

i.e. the sum of squared distances of each point to its center.

Unfortunately, finding the exact minimizer is NP-hard!

10 / 50
A closer look
The first step
min F ({ynr}, {p}) = min Y > " yoplln — pel3
{¥nr} Ty} 7
=Y min > yurllen — pll3
n {'Ynk} k
is simply to assign each x,, to the closest i, i.e.
1, if k= argmin, |2, — pel3
Tnk =
0, else
for all k € [K] and n € [N].
12 / 50

Clustering K-means algorithm

A closer look

The second step
min F ({y,r}, {pa}) = min > > " yopl|zn — 3
{ni} b} 7

= min Y — g3
i

n:Ynk=1

is simply to average the points of each cluster (hence the name)

_ Zn:fynkzl Ln _ Zn TnkTn
’{TZ Yk = 1}’ Zn,)/nk:

1225

for each k € [K].

13 / 50

Clustering K-means algorithm

An example

2t (@) .

. S8
0 :@‘
’ X

X
° .
.'.’ o, ¥
RN

1 ¥

4

15 / 50

Clustering K-means algorithm

The K-means algorithm

Step 0 Initialize w1, ..., ux

Step 1 Fix the centers pq, ...

1, if k=argmin, ||z, — w3
Tnk =
0, else

Step 2 Fix the assignment {7, }, update the centers

_ Zn ’Vnkwn
By = —<—=_—

Step 3 Return to Step 1 if not converged

@IEE A Initialization and Convergence

How to initialize?

There are different ways to initialize:
@ randomly pick K points as initial centers
@ or randomly assign each point to a cluster, then average

@ or more sophisticated approaches (e.g. greedy or K-means++)

Initialization matters for convergence.

, E, assign each point to the closest center:

14 / 50

16 / 50

@SS Initialization and Convergence

Convergence

K-means will converge in a finite number of iterations, why?
@ objective decreases at each step
@ objective is lower bounded by 0

o #possible_assignments is finite (K'V, exponentially large though)

However
@ it could take exponentially many iterations to converge

e and it might not converge to the global minimum of the K-means
objective

17 / 50

@IEE A Initialization and Convergence

Local minimum v.s global minimum

L>W

@ moreover, local minimum can be arbitrarily worse if we increase L

@ so initialization matters a lot for K-means

19 / 50

@SS Initialization and Convergence

Local minimum v.s global minimum

Simple example: 4 data points, 2 clusters, 2 different initializations

° X ° ° °
w X X
Versus
° X ° ° °
L=2W

K-means converges immediately in both cases, but
o left has K-means objective L? = 4112
e right has K-means objective W?2, 4 times better than left!

@ in fact, left is local minimum, and right is global minimum.

18 / 50

@IEE A Initialization and Convergence

How common initialization methods perform?

L>W

e randomly pick K points as initial centers: fails with 1/3 probability

@ or randomly assign each point to a cluster, then average: similarly fail
with a constant probability

@ or more sophisticated approaches?

20 / 50

i i il G i
An Intuitive and Greedy Approach

Idea: spread out the initial centers
Start with a random data point as the first center p

Fork=2,....K

@ let the k-th center uy be the farthest from the chosen centers:

pr = argmax min ||z — p;3
we{my,..ay}I=lkl

21 /50

@IEE A Initialization and Convergence

Does greedy initialization always work?

Not really; it is too sensitive to outliers!

e outlier

In HW3, you will verify that greedy initialization can also lead to arbitrarily
bad local minimums.

23 / 50

@SS Initialization and Convergence

Greedy initialization on the same example

L>»>W

Suppose we pick top left as w1, then po is the bottom right

@ K-means converges to the global minimum after one iteration!

See demo at https://www.naftaliharris.com/blog/
visualizing-k-means-clustering/.

22 /50

Iniialization and Convergence
Solution: K-means+-+

K-means++: robustify the greedy approach via randomness

Start with a random data point as the first center p;
Fork=2,....K
e randomly pick the k-th center pj such that

K-means++ guarantees to find a solution that in expectation is at most
O(log K') times of the global optimal.

24 / 50

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

@SS Initialization and Convergence

K-means++ on the same example

[] []
w
[] []
L>W
Suppose we pick top left as pq, then
e Pr[us = bottom left] o< 1177, Pr[ps = top right] o< L?
o Pr[uy = bottom right] oc 1177 + 17
So the expected K-means objective is
W2 L? 1 3
L /A N [I (A 1
2(W2 + L?) * (2(W2 + L?) * 2) -2

that is, at most 1.5 times of the optimal.

Outline

© Gaussian mixture models
@ Motivation and Model
e EM algorithm
o EM applied to GMMs

25 / 50

27 / 50

@SS Initialization and Convergence

Summary for K-means

K-means is alternating minimization for the K-means objective.
The initialization matters a lot for the convergence.

K-means++ uses a theoretically (and often empirically) better
initialization.

26 / 50

(CENESEL NN DTN SE Motivation and Model

Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic approach for clustering
@ more explanatory than minimizing the K-means objective

@ can be seen as a soft version of K-means

To solve GMM, we will introduce a powerful method for learning
probabilistic model: Expectation—Maximization (EM) algorithm

28 / 50

Gaussian mixture models Motivation and Model Gaussian mixture models Motivation and Model

A generative model GMM: intuition

For classification, we discussed the sigmoid model to “explain” how the

labels are generated. GMM is a natural model to explain such data

Similarly, for clustering, we want to come up with a probabilistic model p

Assume there are 3 ground-truth
to “explain” how the data is generated.

Gaussian models. To generate a
point, we

e first randomly pick one of 0.5
the Gaussian models,

That is, each point is an
independent sample of x ~ p.

0.5 @ then draw a point 0

What probabilistic model according this Gaussian.

generates data like this?

0 0.5 1
0 1 . L ”
Hence the name “Gaussian mixture model".
0 0.5 1
29 / 50 30 / 50
GMM: formal definition Another view
A GMM has the following density function: By introducing a latent variable z € [K], which indicates cluster
K membership, we can see p as a marginal distribution
plx) = wiN (@ | p, Ti) K K K
k=1
p(x) = Zp(m,z =k)= Zp(z =k)p(x|z=k) = ZwkN(:c | i, k)

where k=1 k=1 k=1

e K: the number of Gaussian components (same as #clusters we want)

)] o x and z are both random variables drawn from the model
® wi,...,wx: mixture weights, a distribution over K components
. . . @ x is observed
@ uy; and Xg: mean and covariance matrix of the k-th Gaussian
_ _ _ @ z is unobserved/latent
@ N: the density function for a Gaussian
31/ 50

32 / 50

ezt ex k)
An example

| The conditional distributions are
p(x|z=red) = N(z | p, %)
p(x | z = blue) = N(zx | p2, X9)

p(x |z =green) = N(x | 3. 25)

0.5

The marginal distribution is

0.5

p(x) = p(red)N(x | p1,%1) + p(blue) N(x | pa, Xo)
+ p(green) V(x| p15.335)

33 / 50

(CETESEL NN DTN S Motivation and Model

How to learn these parameters?

An obvious attempt is maximum-likelihood estimation (MLE): find
N N

argmax In | | p(x, ;0) = argmax > Inp(x, ;0) = argmax P(0)

This is called incomplete log-likelihood (since z,'s are unobserved), and is
intractable in general (non-concave problem).

One solution is to still apply GD/SGD, but a much more effective
approach is the Expectation—Maximization (EM) algorithm.

35 / 50

Metivation and Mode
Learning GMMs

Learning a GMM means finding all the parameters 8 = {wg, i, p }E_,.
In the process, we will learn the latent variable z,, as well:
p(zn =k | wn) £ Ynk € [0, 1]

i.e. “soft assignment” of each point to each cluster, as opposed to “hard
assignment” by K-means.

GMM is more explanatory than K-means
@ both learn the cluster centers py's

@ in addition, GMM learns cluster weight wy and covariance X, thus

e we can predict probability of seeing a new point
e we can generate synthetic data

34 / 50

(CENESEL NN DTN SE Motivation and Model

Preview of EM for learning GMMs
Step 0 Initialize wy, py, X, for each k € [K]
Step 1 (E-Step) update the “soft assignment” (fixing parameters)

Tk = P(2n =k | @) X wiN (x4, | pr, Xic)

Step 2 (M-Step) update the model parameter (fixing assignments)

— Zn ’Ynk

N

Zn 'Vnk

Wk

1
k\Ln — U) Ln — Kk
Zn%k;%(n— 1) (T — p

Y=)T

Step 3 return to Step 1 if not converged

We will see how this is a special case of EM.

36 / 50

(CETESEL NN DTN S Motivation and Model

Demo

Generate 50 data points from a mixture of 2 Gaussians with
@ W1 = 0.3,/11 = —0.8, 21 =0.52
Q@ Wy = 07, Mo = 1.2, 22 =0.35

1
histogram represents the data os

. A
red curve represents the 06 (/\\
ground-truth density ' { “\‘
p@) = S, N (@ | g, 3p) /
blue curve represents the learned 0-2 // \
density for a specific round

EM_demo_1D.pdf shows how the blue curve moves towards red curve
quickly via EM

37 / 50
High level idea
Keep maximizing a lower bound of P that is more manageable
39 / 50

[CENESEL NG BRATCN G S EM algorithm

EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not
just GMM), i.e. find the maximizer of

N N
P(0) = Zlnp(a:n :0) = Zln/ p(xn, 2n 5 0)dzy
n=1 n=1 Zn

@ 0 is the parameters for a general probabilistic model
@ x,'s are observed random variables

@ 2,'s are latent variables

Again, directly solving the objective is intractable.

38 / 50

G A
Derivation of EM (not required)

Finding the lower bound of P:

p(z,2;0)
Inp(x;0)=In——= true for any z
pa:0) =l 5 (y2)
p(z,z ;9)] .
=FE. |In———= true for any dist.
s (v dist-)
=E.gInp(x,2;0)] —E.y[Ing(z)] — E.q {ln p(z|21:)’ 0)]
q(z

=E.qInp(z,2;0)] + H(q) — E.nyg [m W} (H is entropy)
>E,q[Inp(x,z;0)]+ H(q) —InE.,4 [W]

(Jensen's inequality)
= Eong [Inp(z, 2 ;0)] + H(q)

40 / 50

https://haipeng-luo.net/courses/CSCI567/2025_spring/slides/EM_demo_1D.pdf

Gaussian mixture models SSVEEIEC AT

Alternatively maximize the lower bound

Therefore, we obtain a lower bound for the log-likelihood function

N
P(O) =3 lupen :6)

N

z Zn~qn lnp L,y Zn ’0)] + H(qn)) = F(O, {Qn})

=1

This holds for any {gy}, so how do we choose? Naturally, the one that
maximizes the lower bound (i.e. the tightest lower bound)!

Equivalently, this is the same as alternatingly maximizing F' over {¢,,} and
0 (similar to K-means).

41 /50

[CENESEL NN DRATCN G S EM algorithm

Maximizing over 6

Fix {qg)}, maximize over 6:

argmaxF (9, {q,(f)})

= argmax Z E

2 argmax Q(6 ;01)
0

(t) Inp(xn, 2z, ;0)] (H(7(1)) is independent of 0)

({qﬁf)} are computed via 8())

@ is the (expected) complete likelihood and is usually more tractable.

@ versus the incomplete likelihood: P(6) = 27]:7:1 Inp(xz, ;0)

43 / 50

EM algorithm
Maximizing over {g,}

Fix 1) the solution to

argmaxE, g, [lnp(wn,zn ;e(t))] + H(qn)
dn

(t)

turns out to be ¢’ s.t.

qT(Lt)(Zn) = p(zn | Tn ;a(t)) X p(:cn, Zn §0(t))

i.e., the posterior distribution of z, given x, and 108

So at @), we found the tightest lower bound F ({q(t)}>:
o F (0, {q,(f)}) < P(8) for all 6.
o F (6, {4}) = P(6®

) (can be verified through Slide 40)

42 /50

[CENESEL NG DRATCN G S EM algorithm

General EM algorithm

Step 0 Initialize o) +=1
Step 1 (E-Step) update the posterior of latent variables

dP() =p(- |z, ;0Y)

and obtain Expectation of complete likelihood

Qo ;01 = Z]E

MO lnp Ln,y Zn ag)]

Step 2 (M-Step) update the model parameter via Maximization

6+ « argmaxQ(6 ;0
0

Step 3t < t+ 1 and return to Step 1 if not converged

44 / 50

Gaussian mixture models SSVEEIEC AT

Pictorial explanation

P(8) is non-concave, but Q(8;0®)
often is concave and easy to
maximize.

P(O) > F (00 {40})

> F (09 {¢{})
= P(6M)

So EM always increases the objective
value and will converge to some local
maximum (similar to K-means).

F(0.{4})

45 /50
Apply EM to learn GMMs
M-Step:
N
argmax (6, O(t)) = argmaxZE o0 lnp(x,, 2, ;0)]
6 o 1 T
N
= argglaxz Ezan,(f) Inp(z, ;0) + lnp(x,|z, ;0)]
n=1
N K

= argmax Z Z’ynk (Inwg + In N(x, | px, X))
{wrmr, B} 21—

To find wy,...,wk, solve To find each pg, 3, solve
N K N
argmax Z Z Yk 1N Wi argmax Z Yok In N (20, | por, Xi)
“ n=lk=1 (72—

47 / 50

0 D o
Apply EM to learn GMMs

E-Step:
0o = k) =p (20 =k | 2, :00)
xp (wn,zn =k ;O(t)>
=P (Zn =k ;09 p(my, | 20 =k ;0<t))

— w](:)N (ar;n | ,u,,(f)7 Z,@)

This computes the “soft assignment” 7, = qﬁf)(zn = k), i.e. conditional
probability of @, belonging to cluster k.

46 / 50

G e G
M-Step (continued)

Solutions to previous two problems are very natural, for each k

— Zn ’Ynk

WEk N

i.e. (weighted) fraction of examples belonging to cluster k

_ Zn ’Ynkwn
I

i.e. (weighted) average of examples belonging to cluster k

3 =

1
S o D k(@0 —) (@0 —)"
n /M n

i.e (weighted) covariance of examples belonging to cluster k

(You can try to verify these for the 1D case.)
48 / 50

Putting it together Connection to K-means

EM for learning GMMs: (see 2D demo)

Step 0 Initialize wy, py, X for each k € [K]

. . K-means is in fact a special case of EM for (a simplified) GMM:
Step 1 (E-Step) update the “soft assignment” (fixing parameters)

@ assume X, = 021 for some fixed o so only wy, and py, are parameters
Yok = DP(2n = k | ®n) X wpN (T | pir,)

@ when ¢ — 0, EM becomes K-means
Step 2 (M-Step) update the model parameter (fixing assignments)

3 v - GMM is a soft version of K-means and it provides a probabilistic
Wi = % i = Zon InkTn interpretation of the data, which means we can predict and generate data
2 on Yk after learning.
1

= Ynk\Tn — Rk)(T _NkT
Zn/ynk; (n)(n)

Step 3 return to Step 1 if not converged

49 / 50 50 / 50

https://github.com/mr-easy/GMM-EM-Python/blob/master/combined.gif

	Clustering
	Gaussian mixture models

