CSCI567 Machine Learning (Fall 2025)

Haipeng Luo
University of Southern California

Oct 31, 2025

Administration

Reminder: HW3 is due on Nov 5th.

Outline

@ Principal Component Analysis (PCA)
© Markov models

© Hidden Markov Model

Principal Component Analysis (PCA)

Outline

@ Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning
problem.

Goal: reduce the dimensionality of a dataset so
@ it is easier to visualize and discover patterns

@ it takes less time and space to process for any applications
(classification, regression, clustering, etc)

@ noise is reduced

There are many approaches, we focus on a linear method:
Principal Component Analysis (PCA)

5 /61

Principal Component Analysis (PCA)

Exam p|e picture from here

Consider the following dataset:
@ 17 features, each represents the average consumption of some food

@ 4 data points, each represents some country

Alcoholic drinks B ars | wsll sl s

Beverages | 57 47 ‘ 53 | 73

Carcase meat I 245 l 267 I 242 I 227

Cereals [N 2 7]

Cheese | 105 | 66| 103 | 103 What can you tell?
Confectionery ‘ 54 41 | 62 [64

Fats and oils 1 193] 209 | 184 235 .

Fish 1 147 | s 122 | 160 Hard to Say anythmg
Fresh fruit I o: I o7+ N o7 N 57 H

Fresh potatoes By N looking at all these 17
Fresh Veg [] 253 143] 1711 265 featu res.

Other meat B sl ol ol sos

Other Veg [ey 355 [l sl s

Processed potatoes I 198 I 187 I 220 I 203

Processed Veg |] ss0 [l a4 [l 337 [365

Soft drinks _4 _56

Sugars 1 156 || 139 | 147 i 175

http://setosa.io/ev/principal-component-analysis/

Principal Component Analysis (PCA)

Exam p|e picture from here

PCA can help us! The first principal component of this dataset:

1 NP v
pc I hd T - L I I T T I -]
-300 -200 -100 0 100 200 300 400 500
Wales England Scotland N Ireland
NP
pcl ®— @ T T T T T T
-300 -200 -100 0 100 200 300 400 500

i.e. we reduce the dimensionality from 17 to just 1.
Now one data point is clearly different from the rest!

That turns out to be data from Northern Ireland, the only country not on
the island of Great Britain out of the 4 samples.

http://setosa.io/ev/principal-component-analysis/

Principal Component Analysis (PCA)

Exam p|e picture from here

PCA can find the second (and more) principal component of the data
too:

400~

300+ Wales

200

100 N Ireland

England

pcZ o 0 ./

-100+

-2004 Scotland

-300+ 'S

-400 T T T T T T T 1
300 200 -100 0 100 200 300 400 500

http://setosa.io/ev/principal-component-analysis/

High level idea

How does PCA find these principal components (PC)?

Wales England Scotland N Ireland

pcl 7 O —@ T T T T T T
-300 -200 -100 0 100 200 300 400 500

The first PC is in fact the direction with the most variance, i.e. the
direction where the data is most spread out.

Principal Component Analysis (PCA)

Finding the first PC

More formally, we want to find a direction v € RP with |jv||2 = 1, so that
the projection of the dataset on this direction has the most variance, i.e.

N

1 2
max Thv — — E)
v:||lv]2=1 “— N

n=1 m

T

U is exactly the projection of x,, onto the direction v

(I 2

e if we pre-center the data, i.e. let], = x,, — % > Tm, then the
objective simply becomes

N

9 N
1 T _ T ;) 4T
max x, v] = max v x,z, |v
vi||v[[2=1 “— vif|v]]2=1 —

n=1 n=1

e we will simply assume {x,} is centered (to avoid notation /)

10 / 61

Principal Component Analysis (PCA)

Finding the first PC

With X € RV*P being the data matrix (as in Lec 2), we want

M 0O - 0
0 XN -+ 0
max vl (XTX) v= max v UL)])) Uv
vi||vll2=1 viflvll2=1 ' : : :
0 0 Xp
D
= max w, v)2\;,
vif|vfl2=1 =
where the columns of U™ are unit eigenvectors w1, ..., up of XX with

corresponding eigenvalues \; > Ay > --- Ap > 0.

Note: S (ujv)2 =0T (222, uiuT) v=v'v =1, sothe maximum

[

above is A1, realized by v = u;.

Conclusion: the first PC is the top eigenvector of the covariance matrix!

11/ 61

Principal Component Analysis (PCA)

Finding the other PCs

If vy is the first PC, then the second PC is found via

max vy (XTX) ()

1}2:||’l}2||2=1,’l)}"02=0

i.e. the direction that maximizes the variance among all other dimensions

This is just the second top eigenvector of the covariance matrix!

Conclusion: the d-th principal component is the d-th eigenvector (sorted
by the eigenvalue from largest to smallest).

12 / 61

Principal Component Analysis (PCA)

PCA

Input: a dataset represented as X, #components p we want
Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance
matrix XTX, denoted by V' e RPx?

Step 3 Construct the new compressed dataset XV e RV*P

(Optional) Step 4 “Reconstruct” original dataset as XVVT ¢ RVxD

13 / 61

Principal Component Analysis (PCA)

How many PCs do we want?

One common rule: pick p large enough so it covers about 90% of the
spectrum (so 90% of variance is explained), i.e.

p
>90‘7
Zd 1 d

where A1 > --- > Ay are sorted eigenvalues.

Note: 2321 A = Tr(XTX), so no need to actually find all eigenvalues.

For visualization, also often pick p =1 or p = 2.

14 / 61

Principal Component Analysis (PCA)

Another visualization example

A famous study of genetic map
o dataset: genomes of 1,387 Europeans

@ first 2 PCs shown below; looks remarkably like the geographic map

Genetic variation is highly structured by geography; top PCs correspond to

geographic factors.
15 / 61

Principal Component Analysis (PCA)

Compression Example

Dataset: 256 x 256 (=~ 65K pixels)
dimensional images of about 2500

faces, all framed similarly
(N = 2500, D = 65,000)

Even with p ~ 100, reconstructed
images XVVT ¢ RV*P ook very
much similar to original images

The principal components (called
eigenfaces ¢ RP) are themselves
interpretable too!

PCA finds the subspace (out of the

Figure 2. Seven of the eigenfaces calculated from the input images

space of all 256 x 256 images) where of Figure 1
faces lie

16 / 61

Word embedding via PCA

Create meaningful vector representation of words; see project.

sad
joytul
happy
&ﬂetrdeum
gas
(]
coun
continent
cﬁy
town

villége

Outline

© Markov models
@ Markov chain
@ Learning Markov models

Markov models

Sequential data and Markov models

Sequential data (i.e., each x,, is a sequence) are ubiquitous:

@ text or speech data
@ stock market data

@ gene data

Markov models are powerful probabilistic tools to analyze them:
@ not the state-of-the-art for e.g. Natural Language Processing (NLP)

@ but still extremely useful in many areas (in particular, it is the
foundation of reinforcement learning)

19 / 61

Markov models

A motivating example

Next word prediction

ar I'll meet you at the|
Google | | o
qgwe rr tyuiop

what i X & @

Q

Q. whatis dei D WD WD W Wi WD W " —
Q. whatis doge . zZ X ¢c v.bnm
Q. whatis my ip LA A A A 4 A J
Q
Q

what is a filibuster
space
what is eid -

Can be formulated as predicting the probability of the next word/state:
P(Zt+l | Zl7 sy Zt)?

abbreviated as P(Z;41 | Z1.4) (i-e., Z1.4 denotes the sequence Z1,...,7Z;).
0 e

Markov models Markov chain

Definition of a Markov model/chain

A Markov chain is a stochastic process with Markov property: a
sequence of random variables Z1, Zs, - -+ s.t.

P(Zit1 | Z14) = P(Zys1 | Z4) (Markov property)
i.e. the current state only depends on the most recent state
We only consider the following case:
o All Z;'s take value from the same discrete set {1,...,S}
® P(Zyy1 =8| Zy = s) = as v, known as transition probability
e P(Zy=3s)=ms

o ({ms}, {ass}) = (m, A) are parameters of the model

21/ 61

Markov models Markov chain

Examples

e Example 1 (Language model)

States [S] represent a dictionary of words,

Qjce,cream = P(Z141 = cream | Z; = ice)

is an example of the transition probability.

e Example 2 (Weather)
States [S] represent weather at each day

%sunny,rainy = P(Zy41 = rainy | Z; = sunny)

22 / 61

Markov models

Graph representation picture from Wikipedia

It is intuitive to represent a Markov model as a graph

Markov chain
High-order Markov chain

Is the Markov assumption reasonable? Not completely for the language
model for example:

P(Zyy1 = office | Z1.4 = I'll meet you at the)
= P(Z;4+1 = office | Z; = the) (bigram, unreasonable)
Higher-order Markov chains make it more reasonable, e.g.

P(Zii1 | Z1t) = P(Zysa | Zey Zi—1) (second-order Markov)

i.e. the current word only depends on the last two words (the trigram
model).

24 / 61

Markov models Markov chain

n-gram model

P(Z41 = office | Z1.4 = I'll meet you at the)
= P(Z41 = office | Z;_1.+ = at the) (trigram)
P(Zy41 = office | Z1.4 = I'll meet you at the)
= P(Z;41 = office | Z;_9.4 = you at the) (4-gram)
P(Zy11 = office | Z1.4 = I'll meet you at the)
= P(Zy41 = office | Z;_3.; = meet you at the) (5-gram)

Learning higher-order Markov chains is similar, but more expensive.

For simplicity, we will only consider standard Markov chains.
25 / 61

Markov models Learning Markov models

Learning from examples

Now suppose we have observed N sequences of examples:

o 2’171,...,2’17T

° ...

o Zn71,...,zn’T

o DRI

® ZN1,---3ZN,T
where

o for simplicity we assume each sequence has the same length T’

@ lower case z,; represents the value of the random variable Z,, ;

From these observations how do we learn the model parameters (7, A)?

26 / 61

Markov models Learning Markov models

Finding the MLE

Same story, find the MLE. The log-likelihood of a sequence z1,..., 27 is

In P(ZLT = Zl:T)

[l
M=

mP(Z =2z | Zi4—1 = 21:4-1) (always true)

~
Il

1

Il
M=

ImP(Zi =2z | Zi1 = ze-1) (Markov property)

t=1
T
=lnm, + Z Ina, .,
t=2
T
= Z]I[zl = s]lnms + Z (Z Mzi1 = 58,2 = 5/}) Inag ¢
s s,s’ t=2

27 / 61

TR
Finding the MLE

Summing over all NV sequences, we obtain the joint log-likelihood:

L(m, A) =) (#tinitial states with value s)In,

S

+ Z(#transitions from s to s')Ina, ¢

3,8’

The MLE argmax, 4 L(m, A) is:

T o< Finitial states with value s

ass < #transitions from s to s

28 / 61

Markov models Learning Markov models

Example

Suppose we observed the following 2 sequences of length 5
@ sunny, sunny, rainy, rainy, rainy

@ rainy, sunny, sunny, sunny, rainy

MLE is the following model

29 / 61

Markov models Learning Markov models

n-gram example

ar I'll meet you at the|
house front office
Recall: I'll meet you at the ajwlejrjtjvjujijojp
a s d f g h j k I
& z X ¢ vbnm &
Suppose —_— —

123 @ space return
@ we use a 5-gram model

@ “meet you at the” appears 1000 times in the training set:
e “meet you at the house” appears 500 times
o “meet you at the front” appears 300 times

e “meet you at the office” appears 200 times

Then the model predicts the next word as “house” with prob. 0.5, “front”
with prob. 0.3, and “office” with prob. 0.2.

30 / 61

Markov models Learning Markov models

Text generation adapted from Stanford CS224n

After learning the model, can also generate texts by repeatedly sampling
conditioning on what have been generated:

company 0.153
@ today the b
. price 0.077
@ today the price italian 0.039
emirate 0.039

@ today the price of
lof 0.308
H for 0.050
@ today the price of gold s o e
to 0.046
final result: today the price of gold per ton, while 1s 6.031
production of shoe lasts and shoe industry, the bank e 07
intervened just after it considered and rejected an 18 0.043
IMF demand to rebuild depleted European stocks. i’fi g'ggg
Surprisingly grammatical! but incoherent... gold ©.018

31/ 61

Outline

© Hidden Markov Model
@ Inferring HMMs
@ Learning HMMs

Hidden Markov Model

Markov model with outcomes/observations

Now suppose each state Z; also “emits” some outcome/observation
X € [O] based on the following model

P(X;=o0|Zi=s)=bs, (emission probability)

independent of anything else.

The model parameters are ({7s}, {as s}, {bs0}) = (7, A, B).

33 / 61

Hidden Markov Model

Another (toy) running example picture from Wikipedia

On each day, we also observe Bob’s activity: walk, shop, or clean,
which only depends on the weather of that day.

34 / 61

Joint likelihood

The joint log-likelihood of a state-outcome sequence z1,x1,..., 27, T IS

In P(leT = Zl:TuXI:T = $1:T>
=InP(Zir =z17) + W P(X1.7r =217 | Z1.r = z1.7) (always true)
T T

= ZIHP(Zt = Zt ’ Zt—l = Zt—l) + ZIHP(Xt = Tt ‘ Zt = Zt)
t=1 t=1
(due to all the independence)

T T
= 1n7Tzl + E In Qzy_1,z T E In bztﬂﬂt
t=2 t=1

35 / 61

Hidden Markov Model

Learning the model

If we observe N state-outcome sequences: 2, 1,ZTn1,--.,2n,T, TnT fOr
n=1,...,N, the MLE is again very simple (verify yourself):

ms X FFinitial states with value s
as s o< Ftransitions from s to s’

bs,, x F#state-outcome pairs (s, 0)

36 / 61

Hidden Markov models

However, most often we do not observe the states! Hence the name
Hidden Markov Model (HMM)

o speech recognition: observe the speech X1.7 but not the underlying
words/phones Z;.1

time

BN
° ° e ° ° she just had a baby

a phone

Observable

37 / 61

Hidden Markov models (cont.)

e Part of Speech (POS) tagging' observe the sentence Xi.p but not
the underlying categories Z;.7 (noun, verb, adjective, adverb, etc.)

T \Vszr ﬁBN/

Secretariat is expected to race tomorrow

See programming project!

38 / 61

Learning HMMs

How to learn HMMs? Roadmap:

o first discuss how to infer when the model is known (key: dynamic
programming)

@ then discuss how to learn the model (key: EM)

Inferring HMMs
What can we infer about an HMM?

Knowing the parameter of an HMM, we can infer

o most likely hidden states path, given an observation sequence

argmax P(Zy.r = z1.7 | X1.7 = 21.7)
21:T

e.g. given Bob's activities for one week, what's the most likely
weather for this week?

o the probability of observing some sequence
P(X1.1 = x1.7)

e.g. prob. of observing Bob's activities “walk, walk, shop, clean, walk,
shop, shop” for one week

40 / 61

Inferring HMMs
What can we infer for a known HMM?

Knowing the parameter of an HMM, we can infer

o the state at some point, given an observation sequence
P(Z; =s| X117 = x1.7)

e.g. given Bob's activities for one week, how was the weather like on
Wed?

o the transition at some point, given an observation sequence
P(Zy=s,Z111=5"| Xi.r = m11)

e.g. given Bob's activities for one week, how was the weather like on
Wed and Thu?

41/ 61

Hidden Markov Model

Forward and backward messages

The key to infer all these is to compute two things:

o forward messages: for each s and ¢

as<t) = P(Zt = 37X1:t = xl:t)

@ backward messages: for each s and ¢

Bs(t) = P(Xiy1.7 = Tpq1:7 | Ze = 9)

I CENNVYET VAV S Inferring HMMs.

Computing forward messages

Key: establish recursion

as(t)
= P(Zy = 5, X1t = T14)
= ZP(Zt =521 =5, X1 = 14) (marginalizing)
s/

=Y P(Zr1 =5, X141 = 21:1)

)

XP(Zy=s8,Xs=u¢| Z-1 =5, X141 = T1:4-1)
= b, Y Qg 50y (t — 1) (by the model definition)

Base case: o;(1) = P(Z; =5, X1 = x1) = msbs o,
43 / 61

Hidden Markov Model

Forward procedure

Forward procedure

For all s € [S], compute a(1) = msbs 4, .

Fort=2,...,T

e for each s € [S], compute

() = bz, Y Gy 50y (t —1)
Sl

It takes
e O(S2T) time
@ O(ST) space

I CENNVYET VAV S Inferring HMMs.

Computing backward messages

Again, establish a recursion

Bs(t)
= P(Xt+1:T = Tt4+1:T ’ Ly = S)
= ZP(Xt+1:T = 2ip1.7, Zeg1 = S | Zp = s) (marginalizing)

Sl

= P(Ziy1 =8| Z =)P(Xpyrr = wepar | Zop1 = 8, 2 = s)

S

= Zas,s/P(Xt+1 =241 | Ziv1 = §)P(Xiyor = iyor | Zip1 = §)

E)

= Z as,s’bs’,xt+1ﬁs’ (t + 1)
8/

Base case: 5,(7) =1

45 / 61

Hidden Markov Model

Backward procedure

Backward procedure

For all s € [S], set B5(T) = 1.
Fort=T-1,...,1

e for each s € [S], compute

Bo(t) = sy gy B (t+ 1)
S,

Again it takes
e O(S2T) time
@ O(ST) space

I CENNVYET VAV S Inferring HMMs.

Using forward and backward messages

With forward and backward messages, we can easily infer many things, e.g.

Ys(t) = P(Zy = s | X1.7 = 2117)
o« P(Zy = s, X117 = 71.7)
= P(Z; = 5, X1t = 014) P(Xtq 1.7 = 2eq1.7 | Zo = 8, X1t = 214)
= a(t)5s(t)
What constant are we omitting in “o<”? It is exactly

P(XI:T =21T) = ZQS(t)BS(t)a

the probability of observing the sequence x1.7.

This is true for any t; a good way to check correctness of your code.
47 / 61

Infering HMMs
Using forward and backward messages

Another example: the conditional probability of transition s to s’ at time ¢

gs,s’ (t) Elr
= P(Zt =5, Zt+] =3 | Xir = Il:T) EE
x P(Zy = 8, Z411 = 8, X110 = z1.7)

P(Z; = 8, X14 = x14) P(Zey1 = 8", Xeyrr = Toprr | Ze = 5, Xia = @14,
= os(t)P(Zy1 =5 | Zy = 8)P(Xpgr1:1 = Tegrer | Zigr =)

= as(t)as s P(Xi1 = @1 | Ziyr = 8)P(Xypor = 2ppor | Zigr =)

= as(t)as,sbs oy B (t +1)

The normalization constant is in fact again P(X1.7 = z1.7)

48 / 61

Infering HMMs
Finding the most likely path

Can't use forward and backward messages directly to find the most likely
path, but it is very similar to the forward procedure. Key: compute

65(t) = Inax P(Zt =8, Z1:4-1 = 2141, X1:t = xl:t)

21:t—1

the probability of the most likely path for time 1 : ¢ ending at state s

49 / 61

Inerring HMMs
Computing d4(t)

Observe

d5(t) = max P(Z; = 8, Z1:4—1 = 21:4—1, X1 = T1:¢)

Z1:t—1
!
= max max P(Zi =521 =5,Z14-2 = z1:4—2, X1 = T1:¢)
S 1:t—2
=max P(Z; = s | Zy-1 =8)P(Xy = 21 | Z; = s)-
S
/
max P(Zi1 =5,Z14-2 = z14-2, X1:4—1 = T1:4—1)
1:t—2

= bs g, max ay 0y (t —1) (recursion!)

Base case: 05(1) = P(Z1 = 5, X1 = 21) = mgbs o,
Exactly the same as forward messages except replacing “sum” by “max”!

50 / 61

Viterbi Algorithm (1)

Viterbi Algorithm
For each s € [S], compute 04(1) = msbs 4, .
Foreacht=2,...,T,

e for each s € [S], compute
05(t) = bs o, maxay s0s (t — 1),

Ag(t) = argmax ay 0s(t — 1).

s/

Backtracking: let 2} = argmax, 0,(T).
Foreach t =T,...,2: set z; | = A« (t).

Output the most likely path 27,..., 27.

Hidden Markov Model

Example: x1.4 = clean, shop, walk, walk

Viterbi Algorithm
For each s € [S], compute (1) = msbs 4, .

5sunny (1) = Tsunny bsunny,clea,n

6rainy (1) = Trainy bra,iny,clean

Jsunny (1) = 0.25

6rainy(1) =04

(numbers are made up here)

I CENNVYET VAV S Inferring HMMs.

Example: x1.4 = clean, shop, walk, walk
Viterbi Algorithm

For each t =2,...,T and each s € [S], compute

0s(t) = bsz, maxay ;05 (t — 1), Ag(l) = argmaxay 0y (t —1).

Sl

5sunny(2) = bsunny,shop max as’,sunny(ss’(]-)
s’€{sunny,rainy}
6rainy(2) = brainy,shop max as’,rainyds’(l)
s'€{sunny,rainy}
Jsunny (1) = 0.25 Jsunny(2) = 0.1
Orainy(1) = 0.4 Orainy(2) = 0.19

Arrows represent the “argmax”, i.e. Ag(t).
53 / 61

I CENNVYET VAV S Inferring HMMs.

Example: x1.4 = clean, shop, walk, walk
Viterbi Algorithm

For each t =2,...,T and each s € [S], compute

0s(t) = bsz, maxay ;05 (t — 1), Ag(l) = argmaxay 0y (t —1).

Sl

5sunny(3) = bsunny,walk max as’7sunny55’(2)
s'€{sunny,rainy}
5rainy(3) = brainy,walk max as’,rainyés’(2)
s'€{sunny,rainy}
5sunny(1) =0.25 6sunny(2) =0.1 6surmy(3) = 0.04
Srainy (1) = 0.4 Grainy (2) = 0.19 Grainy (3) = 0.042

Arrows represent the “argmax”, i.e. Ag(t).
54 / 61

I CENNVYET VAV S Inferring HMMs.

Example: x1.4 = clean, shop, walk, walk
Viterbi Algorithm

For each t =2,...,T and each s € [S], compute

0s(t) = bsz, maxay ;05 (t — 1), Ag(l) = argmaxay 0y (t —1).

Sl

(5sunny (4) = bsunny,walk max as’,sunny(ss’(?’)
s'€{sunny,rainy}
iny - /,rainy s
5ran (4) brainy,walk max g/ raj y5 /(3)
s’€{sunny,rainy}
Ssunny (1) = 025 Baumny (2) = 0.1 Sounny(3) = 0.04 Beunny (4) = 0.016
Orainy (1) = 0.4 Srainy(2) = 0.19 Sraimy (3) = 0.042 Sraimy (4) = 0.01

Arrows represent the “argmax”, i.e. Ag(t).
55 / 61

Inferring HMMs
Example: x1.4 = clean, shop, walk, walk

Viterbi Algorithm

Backtracking: let 2. = argmax, 65(7").
Foreacht =T,...,2: set 2/ | = A_«(t). (just follow the arrow!)

Output the most likely path 27, ..., z}.

zy = argmax 0s(4) = sunny,
s€{sunny,rainy}

25 = Agunny (3) = rainy,

23 = Agunny (4) = sunny

2] = Arainy(2) = rainy

Jsunny (1) = 0.25 Jsunny(2) = 0.1 Jsunny (3) = 0.04 Osunny (4) = 0.016

Orainy (1) = 0.4 Srainy (2) = 0.19

5rainy(3) = 0.042 6rainy(4) = 0.01

The most likely path is “rainy, rainy, sunny, sunny”

56 / 61

Cel
Learning the parameters of an HMM

All previous inferences depend on knowing the parameters (7, A, B).

How do we learn the parameters based on N observation sequences
T, Tpr formn=1...,N?

MLE is intractable due to the hidden variables Z,, ;'s (similar to GMMs)

Need to apply EM again! Known as the Baum—Welch algorithm.

57 / 61

Learning HMMs
Applying EM: E-Step

Recall in the E-Step we fix the parameters and find the posterior
distributions ¢ of the hidden states (for each sample n), which leads to
the complete log-likelihood:
E. g I P(Z10 = 2170, X7 = 561~T)]
T-1
=K., jg |In7, + Z Inas, -, + Zln bey

—Z’Ys lnﬂ's"‘ZZfss lnass’+2275 lnbsxt

t=1 s,s’

We have discussed how to compute
vs(t) = P(Zy = s | X1.7 = w1.70)
o0(t) = P(Zs = 5, 2111 = ' | X1r = w1.7)

58 / 61

Learning HMMs
Applying EM: M-Step

The maximizer of complete log-likelihood is simply doing weighted
counting (compared to the unweighted counting on Slide 36):

Mg X nys = E, [#initial states with value]
as,s X Z Z 55 '(t) = E, [#transitions from s to s']
n t=1
bs,o X Z Z ~{M(t) = E, [#state-outcome pairs (s, 0)]
n t:x¢r=o

where
VM) = P(Zpy = s | Xp1 = Tnar)
£ (t)

P(Zn,t =S, Zn,t—‘rl =4 ‘ Xn,l:T = xn,l:T)

(Recall how EM for GMM updates parameters using weighted averages.)
59 / 61

Learning HMMs
Baum-Welch algorithm

Step 0 Initialize the parameters (7, A, B)

Step 1 (E-Step) Fixing the parameters, compute forward and backward
messages for all sample sequences, then use these to compute mgn) (t) and
5(?,@) for each n,t,s, s (see Slides 47 and 48).

S

Step 2 (M-Step) Update parameters:

T-1
Ts X Zrygn)(l)7 s s X Z Z 5&2 (t), bs,o X Z Z '}ﬁgn) (t)

n t=1 n t:x¢=o
Step 3 Return to Step 1 if not converged

60 / 61

Hidden Markov Model Learning HMMs

Summary

Very important models: Markov chains, hidden Markov models

Several algorithms:
o forward and backward procedures
@ inferring HMMs based on forward and backward messages
@ Viterbi algorithm and variants (see today's discussion)

@ Baum-Welch algorithm

61 / 61

	Principal Component Analysis (PCA)
	Markov models
	Hidden Markov Model

