
CSCI567 Machine Learning (Fall 2025)

Haipeng Luo

University of Southern California

Oct 31, 2025

1 / 61

Administration

Reminder: HW3 is due on Nov 5th.

2 / 61

Outline

1 Principal Component Analysis (PCA)

2 Markov models

3 Hidden Markov Model

3 / 61

Principal Component Analysis (PCA)

Outline

1 Principal Component Analysis (PCA)

2 Markov models

3 Hidden Markov Model

4 / 61

Principal Component Analysis (PCA)

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning
problem.

Goal: reduce the dimensionality of a dataset so

it is easier to visualize and discover patterns

it takes less time and space to process for any applications
(classification, regression, clustering, etc)

noise is reduced

· · ·

There are many approaches, we focus on a linear method:
Principal Component Analysis (PCA)

5 / 61

Principal Component Analysis (PCA)

Example picture from here

Consider the following dataset:

17 features, each represents the average consumption of some food

4 data points, each represents some country

What can you tell?

Hard to say anything
looking at all these 17
features.

6 / 61

http://setosa.io/ev/principal-component-analysis/

Principal Component Analysis (PCA)

Example picture from here

PCA can help us! The first principal component of this dataset:

i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!

That turns out to be data from Northern Ireland, the only country not on
the island of Great Britain out of the 4 samples.

7 / 61

http://setosa.io/ev/principal-component-analysis/

Principal Component Analysis (PCA)

Example picture from here

PCA can find the second (and more) principal component of the data
too:

8 / 61

http://setosa.io/ev/principal-component-analysis/

Principal Component Analysis (PCA)

High level idea

How does PCA find these principal components (PC)?

The first PC is in fact the direction with the most variance, i.e. the
direction where the data is most spread out.

9 / 61

Principal Component Analysis (PCA)

Finding the first PC

More formally, we want to find a direction v ∈ RD with ∥v∥2 = 1, so that
the projection of the dataset on this direction has the most variance, i.e.

max
v:∥v∥2=1

N∑
n=1

(
xT
nv − 1

N

∑
m

xT
mv

)2

xT
nv is exactly the projection of xn onto the direction v

if we pre-center the data, i.e. let x′
n = xn − 1

N

∑
m xm, then the

objective simply becomes

max
v:∥v∥2=1

N∑
n=1

(
x′
n
T
v
)2

= max
v:∥v∥2=1

vT

(
N∑

n=1

x′
nx

′
n
T

)
v

we will simply assume {xn} is centered (to avoid notation x′
n)

10 / 61

Principal Component Analysis (PCA)

Finding the first PC

With X ∈ RN×D being the data matrix (as in Lec 2), we want

max
v:∥v∥2=1

vT
(
XTX

)
v = max

v:∥v∥2=1
vTUT


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 · · · 0 λD

Uv

= max
v:∥v∥2=1

D∑
i=1

(u⊤
i v)

2λi,

where the columns of UT are unit eigenvectors u1, . . . ,uD of XTX with
corresponding eigenvalues λ1 ≥ λ2 ≥ · · ·λD ≥ 0.

Note:
∑D

i=1(u
⊤
i v)

2 = v⊤
(∑D

i=1 uiu
⊤
i

)
v = v⊤v = 1, so the maximum

above is λ1, realized by v = u1.

Conclusion: the first PC is the top eigenvector of the covariance matrix!

11 / 61

Principal Component Analysis (PCA)

Finding the other PCs

If v1 is the first PC, then the second PC is found via

max
v2:∥v2∥2=1,vT

1 v2=0
vT
2

(
XTX

)
v2

i.e. the direction that maximizes the variance among all other dimensions

This is just the second top eigenvector of the covariance matrix!

Conclusion: the d-th principal component is the d-th eigenvector (sorted
by the eigenvalue from largest to smallest).

12 / 61

Principal Component Analysis (PCA)

PCA

Input: a dataset represented as X, #components p we want

Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance
matrix XTX, denoted by V ∈ RD×p

Step 3 Construct the new compressed dataset XV ∈ RN×p

(Optional) Step 4 “Reconstruct” original dataset as XV V T ∈ RN×D

13 / 61

Principal Component Analysis (PCA)

How many PCs do we want?

One common rule: pick p large enough so it covers about 90% of the
spectrum (so 90% of variance is explained), i.e.∑p

d=1 λd∑D
d=1 λd

≥ 90%

where λ1 ≥ · · · ≥ λN are sorted eigenvalues.

Note:
∑D

d=1 λd = Tr(XTX), so no need to actually find all eigenvalues.

For visualization, also often pick p = 1 or p = 2.

14 / 61

Principal Component Analysis (PCA)

Another visualization example

A famous study of genetic map

dataset: genomes of 1,387 Europeans

first 2 PCs shown below; looks remarkably like the geographic map

Genetic variation is highly structured by geography; top PCs correspond to
geographic factors.

15 / 61

Principal Component Analysis (PCA)

Compression Example

Dataset: 256× 256 (≈ 65K pixels)
dimensional images of about 2500
faces, all framed similarly
(N = 2500, D ≈ 65, 000)

Even with p ≈ 100, reconstructed
images XV V T ∈ RN×D look very
much similar to original images

The principal components (called
eigenfaces ∈ RD) are themselves
interpretable too!

PCA finds the subspace (out of the
space of all 256× 256 images) where
faces lie

16 / 61

Principal Component Analysis (PCA)

Word embedding via PCA

Create meaningful vector representation of words; see project.

17 / 61

Markov models

Outline

1 Principal Component Analysis (PCA)

2 Markov models
Markov chain
Learning Markov models

3 Hidden Markov Model

18 / 61

Markov models

Sequential data and Markov models

Sequential data (i.e., each xn is a sequence) are ubiquitous:

text or speech data

stock market data

gene data

Markov models are powerful probabilistic tools to analyze them:

not the state-of-the-art for e.g. Natural Language Processing (NLP)

but still extremely useful in many areas (in particular, it is the
foundation of reinforcement learning)

19 / 61

Markov models

A motivating example

Next word prediction

Can be formulated as predicting the probability of the next word/state:

P (Zt+1 | Z1, . . . , Zt)?

abbreviated as P (Zt+1 | Z1:t) (i.e., Z1:t denotes the sequence Z1, . . . , Zt).

20 / 61

Markov models Markov chain

Definition of a Markov model/chain

A Markov chain is a stochastic process with Markov property: a
sequence of random variables Z1, Z2, · · · s.t.

P (Zt+1 | Z1:t) = P (Zt+1 | Zt) (Markov property)

i.e. the current state only depends on the most recent state

We only consider the following case:

All Zt’s take value from the same discrete set {1, . . . , S}

P (Zt+1 = s′ | Zt = s) = as,s′ , known as transition probability

P (Z1 = s) = πs

({πs}, {as,s′}) = (π,A) are parameters of the model

21 / 61

Markov models Markov chain

Examples

Example 1 (Language model)

States [S] represent a dictionary of words,

aice,cream = P (Zt+1 = cream | Zt = ice)

is an example of the transition probability.

Example 2 (Weather)

States [S] represent weather at each day

asunny,rainy = P (Zt+1 = rainy | Zt = sunny)

22 / 61

Markov models Markov chain

Graph representation picture from Wikipedia

It is intuitive to represent a Markov model as a graph

23 / 61

Markov models Markov chain

High-order Markov chain

Is the Markov assumption reasonable? Not completely for the language
model for example:

P (Zt+1 = office | Z1:t = I’ll meet you at the)

= P (Zt+1 = office | Zt = the) (bigram, unreasonable)

Higher-order Markov chains make it more reasonable, e.g.

P (Zt+1 | Z1:t) = P (Zt+1 | Zt, Zt−1) (second-order Markov)

i.e. the current word only depends on the last two words (the trigram
model).

24 / 61

Markov models Markov chain

n-gram model

P (Zt+1 = office | Z1:t = I’ll meet you at the)

= P (Zt+1 = office | Zt−1:t = at the) (trigram)

P (Zt+1 = office | Z1:t = I’ll meet you at the)

= P (Zt+1 = office | Zt−2:t = you at the) (4-gram)

P (Zt+1 = office | Z1:t = I’ll meet you at the)

= P (Zt+1 = office | Zt−3:t = meet you at the) (5-gram)

Learning higher-order Markov chains is similar, but more expensive.

For simplicity, we will only consider standard Markov chains.
25 / 61

Markov models Learning Markov models

Learning from examples

Now suppose we have observed N sequences of examples:

z1,1, . . . , z1,T

· · ·
zn,1, . . . , zn,T

· · ·
zN,1, . . . , zN,T

where

for simplicity we assume each sequence has the same length T

lower case zn,t represents the value of the random variable Zn,t

From these observations how do we learn the model parameters (π,A)?

26 / 61

Markov models Learning Markov models

Finding the MLE

Same story, find the MLE. The log-likelihood of a sequence z1, . . . , zT is

lnP (Z1:T = z1:T)

=

T∑
t=1

lnP (Zt = zt | Z1:t−1 = z1:t−1) (always true)

=

T∑
t=1

lnP (Zt = zt | Zt−1 = zt−1) (Markov property)

= lnπz1 +

T∑
t=2

ln azt−1,zt

=
∑
s

I[z1 = s] lnπs +
∑
s,s′

(
T∑
t=2

I[zt−1 = s, zt = s′]

)
ln as,s′

27 / 61

Markov models Learning Markov models

Finding the MLE

Summing over all N sequences, we obtain the joint log-likelihood:

L(π,A) =
∑
s

(#initial states with value s) lnπs

+
∑
s,s′

(#transitions from s to s′) ln as,s′

The MLE argmaxπ,A L(π,A) is:

πs ∝ #initial states with value s

as,s′ ∝ #transitions from s to s′

28 / 61

Markov models Learning Markov models

Example

Suppose we observed the following 2 sequences of length 5

sunny, sunny, rainy, rainy, rainy

rainy, sunny, sunny, sunny, rainy

MLE is the following model

29 / 61

Markov models Learning Markov models

n-gram example

Recall: I’ll meet you at the .

Suppose

we use a 5-gram model

“meet you at the” appears 1000 times in the training set:

“meet you at the house” appears 500 times

“meet you at the front” appears 300 times

“meet you at the office” appears 200 times

Then the model predicts the next word as “house” with prob. 0.5, “front”
with prob. 0.3, and “office” with prob. 0.2.

30 / 61

Markov models Learning Markov models

Text generation adapted from Stanford CS224n

After learning the model, can also generate texts by repeatedly sampling
conditioning on what have been generated:

today the

today the price

today the price of

today the price of gold

final result: today the price of gold per ton, while
production of shoe lasts and shoe industry, the bank
intervened just after it considered and rejected an
IMF demand to rebuild depleted European stocks.

Surprisingly grammatical! but incoherent...

31 / 61

Hidden Markov Model

Outline

1 Principal Component Analysis (PCA)

2 Markov models

3 Hidden Markov Model
Inferring HMMs
Learning HMMs

32 / 61

Hidden Markov Model

Markov model with outcomes/observations

Now suppose each state Zt also “emits” some outcome/observation
Xt ∈ [O] based on the following model

P (Xt = o | Zt = s) = bs,o (emission probability)

independent of anything else.

The model parameters are ({πs}, {as,s′}, {bs,o}) = (π,A,B).

33 / 61

Hidden Markov Model

Another (toy) running example picture from Wikipedia

On each day, we also observe Bob’s activity: walk, shop, or clean,
which only depends on the weather of that day.

34 / 61

Hidden Markov Model

Joint likelihood

The joint log-likelihood of a state-outcome sequence z1, x1, . . . , zT , xT is

lnP (Z1:T = z1:T , X1:T = x1:T)

= lnP (Z1:T = z1:T) + lnP (X1:T = x1:T | Z1:T = z1:T) (always true)

=

T∑
t=1

lnP (Zt = zt | Zt−1 = zt−1) +

T∑
t=1

lnP (Xt = xt | Zt = zt)

(due to all the independence)

= lnπz1 +

T∑
t=2

ln azt−1,zt +

T∑
t=1

ln bzt,xt

35 / 61

Hidden Markov Model

Learning the model

If we observe N state-outcome sequences: zn,1, xn,1, . . . , zn,T , xn,T for
n = 1, . . . , N , the MLE is again very simple (verify yourself):

πs ∝ #initial states with value s

as,s′ ∝ #transitions from s to s′

bs,o ∝ #state-outcome pairs (s, o)

36 / 61

Hidden Markov Model

Hidden Markov models

However, most often we do not observe the states! Hence the name
Hidden Markov Model (HMM)

speech recognition: observe the speech X1:T but not the underlying
words/phones Z1:T

37 / 61

Hidden Markov Model

Hidden Markov models (cont.)

Part of Speech (POS) tagging: observe the sentence X1:T but not
the underlying categories Z1:T (noun, verb, adjective, adverb, etc.)

See programming project!

38 / 61

Hidden Markov Model

Learning HMMs

How to learn HMMs? Roadmap:

first discuss how to infer when the model is known (key: dynamic
programming)

then discuss how to learn the model (key: EM)

39 / 61

Hidden Markov Model Inferring HMMs

What can we infer about an HMM?

Knowing the parameter of an HMM, we can infer

most likely hidden states path, given an observation sequence

argmax
z1:T

P (Z1:T = z1:T | X1:T = x1:T)

e.g. given Bob’s activities for one week, what’s the most likely
weather for this week?

the probability of observing some sequence

P (X1:T = x1:T)

e.g. prob. of observing Bob’s activities “walk, walk, shop, clean, walk,
shop, shop” for one week

40 / 61

Hidden Markov Model Inferring HMMs

What can we infer for a known HMM?

Knowing the parameter of an HMM, we can infer

the state at some point, given an observation sequence

P (Zt = s | X1:T = x1:T)

e.g. given Bob’s activities for one week, how was the weather like on
Wed?

the transition at some point, given an observation sequence

P (Zt = s, Zt+1 = s′ | X1:T = x1:T)

e.g. given Bob’s activities for one week, how was the weather like on
Wed and Thu?

41 / 61

Hidden Markov Model Inferring HMMs

Forward and backward messages

The key to infer all these is to compute two things:

forward messages: for each s and t

αs(t) = P (Zt = s,X1:t = x1:t)

backward messages: for each s and t

βs(t) = P (Xt+1:T = xt+1:T | Zt = s)

42 / 61

Hidden Markov Model Inferring HMMs

Computing forward messages

Key: establish recursion

Z1 . . . Zt−1 Zt

X1

. . .

Xt−1 Xtαs(t)

= P (Zt = s,X1:t = x1:t)

=
∑
s′

P (Zt = s, Zt−1 = s′, X1:t = x1:t) (marginalizing)

=
∑
s′

P (Zt−1 = s′, X1:t−1 = x1:t−1)

× P (Zt = s,Xt = xt | Zt−1 = s′, X1:t−1 = x1:t−1)

= bs,xt

∑
s′

as′,sαs′(t− 1) (by the model definition)

Base case: αs(1) = P (Z1 = s,X1 = x1) = πsbs,x1

43 / 61

Hidden Markov Model Inferring HMMs

Forward procedure

Forward procedure

For all s ∈ [S], compute αs(1) = πsbs,x1 .

For t = 2, . . . , T

for each s ∈ [S], compute

αs(t) = bs,xt

∑
s′

as′,sαs′(t− 1)

It takes

O(S2T) time

O(ST) space

Z1 . . . Zt−1 Zt

X1

. . .

Xt−1 Xt

44 / 61

Hidden Markov Model Inferring HMMs

Computing backward messages

Again, establish a recursion

Zt Zt+1 . . . ZT

Xt Xt+1

. . .

XT
βs(t)

= P (Xt+1:T = xt+1:T | Zt = s)

=
∑
s′

P (Xt+1:T = xt+1:T , Zt+1 = s′ | Zt = s) (marginalizing)

=
∑
s′

P (Zt+1 = s′ | Zt = s)P (Xt+1:T = xt+1:T | Zt+1 = s′, Zt = s)

=
∑
s′

as,s′P (Xt+1 = xt+1 | Zt+1 = s′)P (Xt+2:T = xt+2:T | Zt+1 = s′)

=
∑
s′

as,s′bs′,xt+1βs′(t+ 1)

Base case: βs(T) = 1
45 / 61

Hidden Markov Model Inferring HMMs

Backward procedure

Backward procedure

For all s ∈ [S], set βs(T) = 1.

For t = T − 1, . . . , 1

for each s ∈ [S], compute

βs(t) =
∑
s′

as,s′bs′,xt+1βs′(t+ 1)

Again it takes

O(S2T) time

O(ST) space

Zt Zt+1 . . . ZT

Xt Xt+1

. . .

XT

46 / 61

Hidden Markov Model Inferring HMMs

Using forward and backward messages

With forward and backward messages, we can easily infer many things, e.g.

Z1 . . . Zt . . . ZT

X1 Xt

.

XT
γs(t) = P (Zt = s | X1:T = x1:T)

∝ P (Zt = s,X1:T = x1:T)

= P (Zt = s,X1:t = x1:t)P (Xt+1:T = xt+1:T | Zt = s,X1:t = x1:t)

= αs(t)βs(t)

What constant are we omitting in “∝”? It is exactly

P (X1:T = x1:T) =
∑
s

αs(t)βs(t),

the probability of observing the sequence x1:T .

This is true for any t; a good way to check correctness of your code.
47 / 61

Hidden Markov Model Inferring HMMs

Using forward and backward messages

Another example: the conditional probability of transition s to s′ at time t

Z1 . . . Zt Zt+1 . . . ZT

X1 Xt Xt+1

.

XT

ξs,s′(t)

= P (Zt = s, Zt+1 = s′ | X1:T = x1:T)

∝ P (Zt = s, Zt+1 = s′, X1:T = x1:T)

= P (Zt = s,X1:t = x1:t)P (Zt+1 = s′, Xt+1:T = xt+1:T | Zt = s,X1:t = x1:t)

= αs(t)P (Zt+1 = s′ | Zt = s)P (Xt+1:T = xt+1:T | Zt+1 = s′)

= αs(t)as,s′P (Xt+1 = xt+1 | Zt+1 = s′)P (Xt+2:T = xt+2:T | Zt+1 = s′)

= αs(t)as,s′bs′,xt+1βs′(t+ 1)

The normalization constant is in fact again P (X1:T = x1:T)

48 / 61

Hidden Markov Model Inferring HMMs

Finding the most likely path

Can’t use forward and backward messages directly to find the most likely
path, but it is very similar to the forward procedure. Key: compute

δs(t) = max
z1:t−1

P (Zt = s, Z1:t−1 = z1:t−1, X1:t = x1:t)

the probability of the most likely path for time 1 : t ending at state s

49 / 61

Hidden Markov Model Inferring HMMs

Computing δs(t)

Observe

δs(t) = max
z1:t−1

P (Zt = s, Z1:t−1 = z1:t−1, X1:t = x1:t)

= max
s′

max
z1:t−2

P (Zt = s, Zt−1 = s′, Z1:t−2 = z1:t−2, X1:t = x1:t)

= max
s′

P (Zt = s | Zt−1 = s′)P (Xt = xt | Zt = s)·

max
z1:t−2

P (Zt−1 = s′, Z1:t−2 = z1:t−2, X1:t−1 = x1:t−1)

= bs,xt max
s′

as′,sδs′(t− 1) (recursion!)

Base case: δs(1) = P (Z1 = s,X1 = x1) = πsbs,x1

Exactly the same as forward messages except replacing “sum” by “max”!

50 / 61

Hidden Markov Model Inferring HMMs

Viterbi Algorithm (!)

Viterbi Algorithm

For each s ∈ [S], compute δs(1) = πsbs,x1 .

For each t = 2, . . . , T ,

for each s ∈ [S], compute

δs(t) = bs,xt max
s′

as′,sδs′(t− 1),

∆s(t) = argmax
s′

as′,sδs′(t− 1).

Backtracking: let z∗T = argmaxs δs(T).
For each t = T, . . . , 2: set z∗t−1 = ∆z∗t

(t).

Output the most likely path z∗1 , . . . , z
∗
T .

51 / 61

Hidden Markov Model Inferring HMMs

Example: x1:4 = clean, shop, walk, walk

Viterbi Algorithm

For each s ∈ [S], compute δs(1) = πsbs,x1 .
· · ·

δsunny(1) = πsunnybsunny,clean

δrainy(1) = πrainybrainy,clean

δsunny(1) = 0.25 δsunny(2) = 0.1 δsunny(3) = 0.04 δsunny(4) = 0.016

δrainy(1) = 0.4 δrainy(2) = 0.19 δrainy(3) = 0.042 δrainy(4) = 0.01

(numbers are made up here)
52 / 61

Hidden Markov Model Inferring HMMs

Example: x1:4 = clean, shop, walk, walk

Viterbi Algorithm
· · ·
For each t = 2, . . . , T and each s ∈ [S], compute

δs(t) = bs,xt max
s′

as′,sδs′(t− 1), ∆s(t) = argmax
s′

as′,sδs′(t− 1).

δsunny(2) = bsunny,shop max
s′∈{sunny,rainy}

as′,sunnyδs′(1)

δrainy(2) = brainy,shop max
s′∈{sunny,rainy}

as′,rainyδs′(1)

δsunny(1) = 0.25 δsunny(2) = 0.1 δsunny(3) = 0.04 δsunny(4) = 0.016

δrainy(1) = 0.4 δrainy(2) = 0.19 δrainy(3) = 0.042 δrainy(4) = 0.01

Arrows represent the “argmax”, i.e. ∆s(t).
53 / 61

Hidden Markov Model Inferring HMMs

Example: x1:4 = clean, shop, walk, walk

Viterbi Algorithm
· · ·
For each t = 2, . . . , T and each s ∈ [S], compute

δs(t) = bs,xt max
s′

as′,sδs′(t− 1), ∆s(t) = argmax
s′

as′,sδs′(t− 1).

δsunny(3) = bsunny,walk max
s′∈{sunny,rainy}

as′,sunnyδs′(2)

δrainy(3) = brainy,walk max
s′∈{sunny,rainy}

as′,rainyδs′(2)

δsunny(1) = 0.25 δsunny(2) = 0.1 δsunny(3) = 0.04 δsunny(4) = 0.016

δrainy(1) = 0.4 δrainy(2) = 0.19 δrainy(3) = 0.042 δrainy(4) = 0.01

Arrows represent the “argmax”, i.e. ∆s(t).
54 / 61

Hidden Markov Model Inferring HMMs

Example: x1:4 = clean, shop, walk, walk

Viterbi Algorithm
· · ·
For each t = 2, . . . , T and each s ∈ [S], compute

δs(t) = bs,xt max
s′

as′,sδs′(t− 1), ∆s(t) = argmax
s′

as′,sδs′(t− 1).

δsunny(4) = bsunny,walk max
s′∈{sunny,rainy}

as′,sunnyδs′(3)

δrainy(4) = brainy,walk max
s′∈{sunny,rainy}

as′,rainyδs′(3)

δsunny(1) = 0.25 δsunny(2) = 0.1 δsunny(3) = 0.04 δsunny(4) = 0.016

δrainy(1) = 0.4 δrainy(2) = 0.19 δrainy(3) = 0.042 δrainy(4) = 0.01

Arrows represent the “argmax”, i.e. ∆s(t).
55 / 61

Hidden Markov Model Inferring HMMs

Example: x1:4 = clean, shop, walk, walk

Viterbi Algorithm
· · ·
Backtracking: let z∗T = argmaxs δs(T).

For each t = T, . . . , 2: set z∗t−1 = ∆z∗t
(t). (just follow the arrow!)

Output the most likely path z∗1 , . . . , z
∗
T .

z∗4 = argmax
s∈{sunny,rainy}

δs(4) = sunny, z∗3 = ∆sunny(4) = sunny

z∗2 = ∆sunny(3) = rainy, z∗1 = ∆rainy(2) = rainy

δsunny(1) = 0.25 δsunny(2) = 0.1 δsunny(3) = 0.04 δsunny(4) = 0.016

δrainy(1) = 0.4 δrainy(2) = 0.19 δrainy(3) = 0.042 δrainy(4) = 0.01

The most likely path is “rainy, rainy, sunny, sunny”
56 / 61

Hidden Markov Model Learning HMMs

Learning the parameters of an HMM

All previous inferences depend on knowing the parameters (π,A,B).

How do we learn the parameters based on N observation sequences
xn,1, . . . , xn,T for n = 1, . . . , N?

MLE is intractable due to the hidden variables Zn,t’s (similar to GMMs)

Need to apply EM again! Known as the Baum–Welch algorithm.

57 / 61

Hidden Markov Model Learning HMMs

Applying EM: E-Step

Recall in the E-Step we fix the parameters and find the posterior
distributions q of the hidden states (for each sample n), which leads to
the complete log-likelihood:

Ez1:T∼q [lnP (Z1:T = z1:T , X1:T = x1:T)]

= Ez1:T∼q

[
lnπz1 +

T−1∑
t=1

ln azt,zt+1 +

T∑
t=1

ln bzt,xt

]

=
∑
s

γs(1) lnπs +
T−1∑
t=1

∑
s,s′

ξs,s′(t) ln as,s′ +

T∑
t=1

∑
s

γs(t) ln bs,xt

We have discussed how to compute

γs(t) = P (Zt = s | X1:T = x1:T)

ξs,s′(t) = P (Zt = s, Zt+1 = s′ | X1:T = x1:T)

58 / 61

Hidden Markov Model Learning HMMs

Applying EM: M-Step

The maximizer of complete log-likelihood is simply doing weighted
counting (compared to the unweighted counting on Slide 36):

πs ∝
∑
n

γ(n)s (1) = Eq [#initial states with value s]

as,s′ ∝
∑
n

T−1∑
t=1

ξ
(n)
s,s′(t) = Eq

[
#transitions from s to s′

]
bs,o ∝

∑
n

∑
t:xt=o

γ(n)s (t) = Eq [#state-outcome pairs (s, o)]

where

γ(n)s (t) = P (Zn,t = s | Xn,1:T = xn,1:T)

ξ
(n)
s,s′(t) = P (Zn,t = s, Zn,t+1 = s′ | Xn,1:T = xn,1:T)

(Recall how EM for GMM updates parameters using weighted averages.)
59 / 61

Hidden Markov Model Learning HMMs

Baum–Welch algorithm

Step 0 Initialize the parameters (π,A,B)

Step 1 (E-Step) Fixing the parameters, compute forward and backward

messages for all sample sequences, then use these to compute γ
(n)
s (t) and

ξ
(n)
s,s′(t) for each n, t, s, s′ (see Slides 47 and 48).

Step 2 (M-Step) Update parameters:

πs ∝
∑
n

γ(n)s (1), as,s′ ∝
∑
n

T−1∑
t=1

ξ
(n)
s,s′(t), bs,o ∝

∑
n

∑
t:xt=o

γ(n)s (t)

Step 3 Return to Step 1 if not converged

60 / 61

Hidden Markov Model Learning HMMs

Summary

Very important models: Markov chains, hidden Markov models

Several algorithms:

forward and backward procedures

inferring HMMs based on forward and backward messages

Viterbi algorithm and variants (see today’s discussion)

Baum–Welch algorithm

61 / 61

	Principal Component Analysis (PCA)
	Markov models
	Hidden Markov Model

