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Principal Component Analysis (PCA)

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning
problem.

Goal: reduce the dimensionality of a dataset so
@ it is easier to visualize and discover patterns

@ it takes less time and space to process for any applications
(classification, regression, clustering, etc)

noise is reduced

There are many approaches, we focus on a linear method:
Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

Example

picture from here

PCA can help us! The first principal component of this dataset:
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i.e. we reduce the dimensionality from 17 to just 1.
Now one data point is clearly different from the rest!

That turns out to be data from Northern lIreland, the only country not on
the island of Great Britain out of the 4 samples.

7/61

Principal Component Analysis (PCA)

Example

picture from here

Consider the following dataset:
@ 17 features, each represents the average consumption of some food

@ 4 data points, each represents some country

37 135 453 475
57 47 53 73
245 267 242 227
1472 1494 1462 1582
3 10 66 103 103 What can you tell?
Confectionery 54 41 62 64
Fats and oils 193 209 184 235 .
Fish 1 o o 10 Hard to say anything
Fresh fruit 1102 674 957 4137 H
SR o o o o looking at all these 17
253 143 71 265 features.
685 586 /50 803
488 355 418 5/(
e 198 187 220 203
360 334 337 365
1374 1506 1572 1256
Sugal 156 139 47 175
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Principal Component Analysis (PCA)

Example

picture from here

PCA can find the second (and more) principal component of the data
too:
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http://setosa.io/ev/principal-component-analysis/
http://setosa.io/ev/principal-component-analysis/
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Principal Component Analysis (PCA)

High level idea

How does PCA find these principal components (PC)?

Wales  England Scotland N Ireland

pcl
-300 -200 -100 0 100 200 300 400 500

The first PC is in fact the direction with the most variance, i.e. the
direction where the data is most spread out.
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Finding the first PC

With X € RV*P being the data matrix (as in Lec 2), we want

AN O o 0
0 X --- 0
max v’ (XTX) v= max v U’ ) ,2 ) ) Uv

vi|[v]]2=1 vi||v][2=1 : : : :
0 --- 0 Mp

D

= max (u; v)2\;,
v:||v]j2=1 e

where the columns of U™ are unit eigenvectors w1, ..., up of XTX with

corresponding eigenvalues A1 > Ao > --- Ap > 0.

Note: S22 (uv)> =o' (Zzpzl umj) v=v'v =1, sothe maximum

above is Ay, realized by v = u;.

Conclusion: the first PC is the top eigenvector of the covariance matrix!
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Finding the first PC

More formally, we want to find a direction v € RP with ||v||z = 1, so that
the projection of the dataset on this direction has the most variance, i.e.

N

2
1
T T
max <:1:n'v— N Em wm'v>

: =1
villolla=1 &

T

@ x, v is exactly the projection of x,, onto the direction v

o if we pre-center the data, i.e. let ), = @, — % > m Tm, then the
objective simply becomes

N

9 N
1T _ T ;4T
max T, v] = max v T, x, |v
v:Hvﬂgzln_ v:||v||2=1 1

=1

e we will simply assume {x,,} is centered (to avoid notation x/,)
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Principal Component Analysis (PCA)

Finding the other PCs

If v1 is the first PC, then the second PC is found via

max vy (XTX) V2
. — Toy —
’UQ.H’UQHQ—].,’Ul vo=0

i.e. the direction that maximizes the variance among all other dimensions

This is just the second top eigenvector of the covariance matrix!

Conclusion: the d-th principal component is the d-th eigenvector (sorted
by the eigenvalue from largest to smallest).
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Principal Component Analysis (PCA)

PCA

Input: a dataset represented as X, #components p we want
Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance
matrix XT X, denoted by V' € RP*?

Step 3 Construct the new compressed dataset XV € RV*P

(Optional) Step 4 “Reconstruct” original dataset as XVVT ¢ RV*xD
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Principal Component Analysis (PCA)

Another visualization example

A famous study of genetic map
@ dataset: genomes of 1,387 Europeans

o first 2 PCs shown below; looks remarkably like the geographic map

Genetic variation is highly structured by geography; top PCs correspond to

geographic factors.
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Principal Component Analysis (PCA)

How many PCs do we want?

One common rule: pick p large enough so it covers about 90% of the
spectrum (so 90% of variance is explained), i.e.

P

A
%;151290%

d=1 Ad

where A\{ > --- > Ay are sorted eigenvalues.
Note: 23:1 Mg = Tr(XTX), so no need to actually find all eigenvalues.

For visualization, also often pick p =1 or p = 2.
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Principal Component Analysis (PCA)

Compression Example

Dataset: 256 x 256 (=~ 65K pixels)
dimensional images of about 2500

faces, all framed similarly
(N = 2500, D =~ 65,000)

Even with p =~ 100, reconstructed
images XVVT € RV*P ook very
much similar to original images

The principal components (called
eigenfaces € RP) are themselves
interpretable too!

PCA finds the subspace (out of the

Figure 2. Seven of the eigenfaces calculated from the input images

space of all 256 x 256 images) where  of Figure 1
faces lie
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Principal Component Analysis (PCA)

Word embedding via PCA

Create meaningful vector representation of words; see project.

sad
joytul
happy
Jﬂetrcﬂeum
gés
count
continent
cﬂy
town
viIIz'age
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Markov models

Sequential data and Markov models

Sequential data (i.e., each x,, is a sequence) are ubiquitous:

@ text or speech data
@ stock market data

@ gene data

Markov models are powerful probabilistic tools to analyze them:
@ not the state-of-the-art for e.g. Natural Language Processing (NLP)

@ but still extremely useful in many areas (in particular, it is the
foundation of reinforcement learning)
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Outline

© Markov models
@ Markov chain
@ Learning Markov models

18 / 61
A motivating example
Next word prediction
-r I'll meet you at the
G o g I e house front office
gwe r tyuiop
Q. whatig X & @ - i ,
Q. what is dei jigigiiil
Q. what is doge 0 z X c V; b nm @
Q. whatis my ip [ -
what\sa.filibuster 123 @ space return
@, what is eid G
Can be formulated as predicting the probability of the next word/state:
P(Zii1 | Zv, ... Z4)?
abbreviated as P(Z;11 | Z1.) (i.e., Z14+ denotes the sequence Z1,...,7Z;).
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Markov models Markov chain

Definition of a Markov model/chain

Markov models Markov chain

Examples
A Markov chain is a stochastic process with Markov property: a
sequence of random variables Z1, Zs,--- s.t. o Example 1 (Language model)
States [S] represent a dictionary of words,
P(Zyr | Z1y) = P(Zya | Z4) (Markov property)
Gice.cream = P(Zt41 = cream | Z; = ice)
i.e. the current state only depends on the most recent state
is an example of the transition probability.
We only consider the following case:
e All Z,'s take value from the same discrete set {1,...,S}

e Example 2 (Weather)

® P(Ziy1 =8| Z =s) = asy, known as transition probability States [S] represent weather at each day
e P(Z1=3s)=rms

Asunny,rainy = P(Zi+1 = rainy | Z; = sunny)
o ({ms},{ass}) = (m, A) are parameters of the model
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Markov models Markov chain Markov chain
Graph representation picture from Wikipedia High-order Markov chain
Is the Markov assumption reasonable? Not completely for the language
It is intuitive to represent a Markov model as a graph model for example:
P(Zy41 = office | Z1.4 = I'll meet you at the)
= P(Zy41 = office | Z; = the) (bigram, unreasonable)
Higher-order Markov chains make it more reasonable, e.g.
P(Ziy1 | Z14) = P(Zyy1 | Zt, Zi—1) (second-order Markov)
i.e. the current word only depends on the last two words (the trigram
model).
23 / 61
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Markov models Markov chain

n-gram model

P(Z;4+1 = office | Z1.4 = I'll meet you at the)
= P(Z41 = office | Z;_1.+ = at the) (trigram)
P(Zy4+1 = office | Z1.; = I'll meet you at the)
= P(Z;41 = office | Z;_9.+ = you at the) (4-gram)
P(Zy41 = office | Z1.4 = I'll meet you at the)
= P(Z+1 = office | Z;_3+ = meet you at the) (5-gram)

Learning higher-order Markov chains is similar, but more expensive.

For simplicity, we will only consider standard Markov chains.
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Finding the MLE
Same story, find the MLE. The log-likelihood of a sequence z1,..., 27 is

In P(Zy.1 = 21.1)

Il
M=

InP(Zy =z | Z1:4—1 = 21:4-1) (always true)

ﬁ
Il
—_

In P(Zt = Z¢ ’ Zt,1 = thl)

Il
[M]=

(Markov property)

t=1
T
=lnm, + Zln Qzy 12
t=2
T
= Z]I[zl = s]lnms + Z (Z [[zt—1 = s,2¢ = s']) Inag ¢
s 5,8’ \t=2
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WETICIVANICLEERN  Learning Markov models

Learning from examples

Now suppose we have observed N sequences of examples:

21155 21,T

(]
(]
@ Zny---5 20T
(]

° ZN,I; o 7ZN,T
where

e for simplicity we assume each sequence has the same length T’

@ lower case z,; represents the value of the random variable 7, ;
From these observations how do we learn the model parameters (7, A)?
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Learning Markov models
Finding the MLE

Summing over all N sequences, we obtain the joint log-likelihood:

L(mw, A) :Z(#initial states with value s)In 7,

s

+ Z(#transitions from s to s')Ina, o

8,8’

The MLE argmax, 4 L(m, A) is:

T oC #initial states with value s

ass o #transitions from s to s’

28 / 61



\WET{CIVALICLEERN  Learning Markov models

Example

Suppose we observed the following 2 sequences of length 5
@ sunny, sunny, rainy, rainy, rainy

@ rainy, sunny, sunny, sunny, rainy

MLE is the following model
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\WET{CIVANICLEERN  Learning Markov models

Text generation adapted from Stanford CS224n

After learning the model, can also generate texts by repeatedly sampling
conditioning on what have been generated:

company ©.153

@ today the e o lea

i price  0.077

@ today the price italian ©.039

emirate 0.039

@ today the price of

lof 0.308

H for 0.050

@ today the price of gold i o oe

to 0.046

final result: today the price of gold per ton, while is 6.031

production of shoe lasts and shoe industry, the bank P Py,

intervened just after it considered and rejected an 18 0.043

IMF demand to rebuild depleted European stocks. ‘1’,2 Z'Z:Z
Surprisingly grammatical! but incoherent... gold  ©.018 |
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WETICIVANICLEERN  Learning Markov models

n-gram example

ar I'll meet you at the
house front office
Recall: I'll meet you at the _____ ajwjejrjtjvjujijo]p
a s d f g h j k |
L& zZ X ¢ Vb nm &
Suppose

123 @ space return

@ we use a 5-gram model
@ “meet you at the” appears 1000 times in the training set:
o “meet you at the house” appears 500 times
o “meet you at the front” appears 300 times

o “meet you at the office” appears 200 times

Then the model predicts the next word as “house” with prob. 0.5, “front”
with prob. 0.3, and “office” with prob. 0.2.
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Outline
© Hidden Markov Model
@ Inferring HMMs
@ Learning HMMs
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Hidden Markov Model

Markov model with outcomes/observations

Now suppose each state Z; also “emits” some outcome/observation

X € [O] based on the following model
P(Xi=o0|Z;=s5)=bs, (emission probability)

independent of anything else.

The model parameters are ({ms}, {as s}, {bs0}) = (7, A, B).
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Joint likelihood
The joint log-likelihood of a state-outcome sequence 21, 1,..., 27, T is

In P(ZLT = z17, X1.7 = xl:T)

=InP(Zir=z.7) +nP(X1.p =217 | Z1.r = z1.7)  (always true)

T T
= ZlnP(Zt = Zt | Zt—l = Zt—l) + ZIHP(Xt = It ‘ Zt = Zt)
t=1 t=1
(due to all the independence)

T T
= 1117'('21 + E In Oze 1,2 T+ E In bzt,wt
t=2 t=1
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Hidden Markov Model

Another (toy) running example

On each day, we also observe Bob’s activity: walk, shop, or clean,
which only depends on the weather of that day.

) -
AN 06 ==
N
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- N 04
N

N
N
N /

01,/
,
,

\
0.1
\
\
\

05 ,/ N
2,
7\\
03/ S~
. ~<
,
,
,

Hidden Markov Model

Learning the model

If we observe N state-outcome sequences: 2y 1,Tn1,---,2n,T, Tn,T fOr
n=1,...,N, the MLE is again very simple (verify yourself):

T < Finitial states with value s
ass o< #transitions from s to s’

bs,o x #£state-outcome pairs (s, 0)

picture from Wikipedia
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Hidden Markov models

However, most often we do not observe the states! Hence the name
Hidden Markov Model (HMM)

@ speech recognition: observe the speech Xi.7 but not the underlying
words/phones Zy.1

time

DD~~~ 2w

a phone

Observable
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Learning HMMs

How to learn HMMs? Roadmap:

e first discuss how to infer when the model is known (key: dynamic
programming)

@ then discuss how to learn the model (key: EM)

39 / 61

Hidden Markov models (cont.)

e Part of Speech (POS) tagging' observe the sentence X7.7 but not
the underlying categories Z1.1 (noun, verb, adjective, adverb, etc.)

79773

Secretariat is expected to race  tomorrow

See programming project!
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Inferring HMMs
What can we infer about an HMM?

Knowing the parameter of an HMM, we can infer

e most likely hidden states path, given an observation sequence

argmax P(Zy.7 = z1.7 | X1.7 = 71.7)
21:T

e.g. given Bob's activities for one week, what's the most likely
weather for this week?

o the probability of observing some sequence
P(X11 = 21.7)

e.g. prob. of observing Bob's activities “walk, walk, shop, clean, walk,
shop, shop” for one week
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Inferring HMMs
What can we infer for a known HMM?

Knowing the parameter of an HMM, we can infer
o the state at some point, given an observation sequence
P(Zt =S ‘ Xl:T = zl:T)

e.g. given Bob's activities for one week, how was the weather like on
Wed?

e the transition at some point, given an observation sequence
P(Zy=s,Z141=5"| X1.r = x1.7)

e.g. given Bob's activities for one week, how was the weather like on
Wed and Thu?
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Hidden Markov Model Inferring HMMs

Computing forward messages

Key: establish recursion

as(t)
= P(Zf = 5>X1:t - :L'l:t)
= ZP(Zt =5, 711 =5, X1 = T1:4)
s/

= ZP(Zt—l = Sl,Xl;t—l = xl:t—l)

!

(marginalizing)

S

XP(Zy=s,Xi =24 | Z—1 =5, X1:4-1 = T1:4-1)
= bswft Z asf’sasr (t — 1)

s/

(by the model definition)

Base case: a,(1) = P(Z) = 5, X1 = x1) = Tbs 4,
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Hidden Markov Model Inferring HMMs

Forward and backward messages

The key to infer all these is to compute two things:

o forward messages: for each s and ¢

aé(t> - P(Zt - 57X1:t - xl:t)

e backward messages: for each s and ¢

Bs(t) = P(Xyp1:1 = 1.7 | Zt = 9)

Hidden Markov Model Inferring HMMs

Forward procedure

Forward procedure

For all s € [S], compute a(1) = msbs 4,

Fort=2,...,T

e for each s € [S], compute
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It takes
e O(S?T) time
e O(ST) space




Hidden Markov Model Inferring HMMs Hidden Markov Model Inferring HMMs

Computing backward messages Backward procedure

Backward procedure

Again, establish a recursion For all s € [S], set 55(T") = 1.

Bs(t) Fort=T-1,...,1

= P(X¢y110 = Terr | Ze = 8) e for each s € [S], compute

=Y P(Xyp1r =210 Ze1 =8 | Zy = 5) (marginalizing)
g Bs(t) = Z GS,s/bs/,th By (t+1)

= ZP(ZHI =3 ’ Zy = S)P(Xt+1:T = Tt4+1:T | Ziy1 = 8I7 Zy = 5) ° 7
° , , Again it takes

= Zas,s/P(XtH =Z41 | Ziy1 = ) P(Xigor = g7 | Zigr = §)

S

= Z aS,S'bS',JCH-lBS’ (t + 1)
s/

Base case: §;(T) =1

e O(S?T) time
e O(ST) space
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Hidden Markov Model Inferring HMMs Hidden Markov Model Inferring HMMs

Using forward and backward messages Using forward and backward messages

With forward and backward messages, we can easily infer many things, e.g. Another example: the conditional probability of transition s to s’ at time ¢

vs(t) = P(Zy = s | X1.7 = 21.7) (1) et Bttt
X P(Zt = 87X1:T = :I:I:T) o / Ei
=P(Zi=5,Z11 =5 | Xu.r = 217) 3
= P(Zt =5, X1t = iL’l:t)P(XH-l:T = Tt41:T | Zy=5,X14 = fUl:t) , iy
= as(t)Bs(t) x P(Zy = 5, Z41 = 8, X110 = 21:7)
) = P(Z = 8, X1t = 114) P(Ziy1 = ', Xep1r = weq1r | Ze = 5, X1t = 214t)
What constant are we omitting in “x”? It is exactly =as(t)P(Zyy1 =8| Zy = 8)P(Xyy1.7 = X1 | Zev1 = )

= a(t)as g P(Xt11 =2 Zii1 = 8)P(Xiqgor = Tg0r | Zpy1 =5
P(X1.r = z1.7) = Zas(t)ﬁs(t), as(t)as,s P(Xit1 t+1 | Ze+1 VP(Xitor = Tey21 | Zt41 = §)
s = as(t)as,s’bs’,xt+1 55’ (t + 1)
the probability of observing the sequence z1.7.

This is true for any t; a good way to check correctness of your code. The normalization constant is in fact again P(X1.p = z1.7)
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Hidden Markov Model

Finding the most likely path

Can't use forward and backward messages directly to find the most likely
path, but it is very similar to the forward procedure. Key: compute

ds(t) = max P(Zy = s, Z14—1 = 21:4—1, X114 = T1:t)

Z1:t—1

the probability of the most likely path for time 1 : ¢ ending at state s

Hidden Markov Model

Viterbi Algorithm (1)

Viterbi Algorithm
For each s € [S], compute 04(1) = msbs 4,
Foreacht=2,...,T,

o for each s € [S], compute

ds(t) = bs z, m;/}xaslysés/ (t—1),

A(t) = argmaxay 04 (t — 1).

s/

Backtracking: let 2} = argmax, 0,(T).
Foreacht =T,...,2: set 2} | = A« (t).

Output the most likely path 27,...,2}.

Hidden Markov Model

Computing 0,(t)

Observe

5s(t) = max P(Zt =S, Zl:t—l = Z1:t—1, Xl:t - xl:t)

Z1:t—1

= max max P(Zy=5,Z11 =5 Z14-2 = z1:0-2, X1:t = 1)
=maxP(Z; =s | Zi—1 = SYP(Xy =4 | Zy = 8)-
S
max P(Z;—1 = &', Z14—2 = 21:4—2, X1:4—1 = T1:4-1)

21:t—2

= bsq, max ag s0g(t —1) (recursion!)

Base case: §,(1) = P(Z; = s, X1 = x1) = 7sbs 2,
Exactly the same as forward messages except replacing “sum” by “max”!

Hidden Markov Model

Example: x1.4 = clean, shop, walk, walk

Viterbi Algorithm
For each s € [S], compute 04(1) = msbs 4, .

5sunny ( 1) = Tsunny bsunny,clean

5ra,iny ( 1) = Trainy brainy,clean

Ssunny (1) = 0.25

Brainy(1) = 0.4

(numbers are made up here)



s L L
Example: x1.4 = clean, shop, walk, walk

Viterbi Algorithm

For each ¢t = 2,...,T and each s € [S], compute

0s(t) = bsz, maxay 05 (t — 1), Ay(t) = argmaxay 65 (t — 1).

S/

5sunny(2) = bsunny,shop max

s'€{sunny,rainy}
Srainy (2) = max

brain sho
YShop s’€{sunny,rainy}

6sunny(1) =0.25

5sunny (2) =0.1

Srainy(1) = 0.4 Srainy(2) = 0.19

Arrows represent the “argmax”, i.e. Ag(t).

[nfemnglkiMe
Example: x1.4 = clean, shop, walk, walk

Viterbi Algorithm

For each t =2,...,T and each s € [S], compute

Qg ,sunny(ss’ (1>

Qs rainy Oy (1)
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0s(t) = bs 2, maxay 09 (t —1), Ag(t) =argmaxay sdg(t —1).
s’ s/
5sunny (4) = bsunny,walk max as’,sunny(;s’ (3)
s’€{sunny,rainy}
5rainy (4) = brainy,walk max as’,rainy5s’(3)

s’€{sunny,rainy}

dsunny (1) = 0.25 Osunny(2) = 0.1 Osunny(3) = 0.04

Ssunmy (4) = 0.016

Orainy (1) = 0.4

Srainy (2) = 0.19 Srainy (3) = 0.042

Orainy(4) = 0.01

Arrows represent the “argmax”, i.e. Ag(?).
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Example: x1.4 = clean, shop, walk, walk

Viterbi Algorithm

For each ¢t = 2,...,T and each s € [S], compute

0s(t) = bsz, maxay 05 (t — 1), Ay(t) = argmaxay 65 (t — 1).

S/

5sunny (3) = bsunny,walk

5rainy (3) =

max as’,sunny(;s’ (2)
s’€{sunny,rainy}
max

brainy,walk .
s’€{sunny,rainy}

Qs rainy Oy (2)

6sunny(1) =0.25

5sunny(2) =0.1 (Ssunny(3) = 0.04

Orainy (1) = 0.4

Orainy (2) = 0.19

Srainy(3) = 0.042

Arrows represent the “argmax”, i.e. Ag(t).
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Hidden Markov Model Inferring HMMs

Example: x1.4 = clean, shop, walk, walk

Viterbi Algorithm

Backtracking: let 2}, = argmax, 65(7).
Foreacht =T,...,2: set 2z} | = A_:(1). (just follow the arrow!)

Output the most likely path 27,...,2}.

2y = argmax
se{sunny,rainy}

25 = Agunny(3) = rainy,

05(4) = sunny, 23 = Agumny(4) = sunny

ZT = Arainy(Q) = rainy

Ssunny (1) = 0.25

Ssunmy (2) = 0.1 Seunmy (3) = 0.04

(5sunny (4) = 0.016

Srainy (1) = 0.4 Srainy (2) = 0.19 Srainy (3) = 0.042

Orainy(4) = 0.01

The most likely path is “rainy, rainy, sunny, sunny”

56 / 61



L=ilg T
Learning the parameters of an HMM

All previous inferences depend on knowing the parameters (m, A, B).

How do we learn the parameters based on N observation sequences
Tniy--- Ty form=1,... N7

MLE is intractable due to the hidden variables Z,, ;'s (similar to GMMs)

Need to apply EM again! Known as the Baum—Welch algorithm.
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ez U
Applying EM: M-Step

The maximizer of complete log-likelihood is simply doing weighted
counting (compared to the unweighted counting on Slide 36):

Ty OX Zvﬁ")
! T-1
Qg 57 X Z Z gg‘?’ (t) =K

n t=1

boox 33 4(t)

n t:xir=o

= [E, [ #initial states with value s]

¢ | #transitions from s to ']
E, [ #state-outcome pairs (s, 0)]

where

f}/g’n)(t) = P(Z’n,t =S | Xn,l:T — an:T)
égi?’(t) P(Zn,t == S, Zn7t+1 = S/ ‘ Xn,l:T —

17n,1:T)

(Recall how EM for GMM updates parameters using weighted averages.)
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ez U
Applying EM: E-Step

Recall in the E-Step we fix the parameters and find the posterior
distributions ¢ of the hidden states (for each sample n), which leads to
the complete log-likelihood:

E. png In P(Z1:7 = 217, X1:7 = 21.7)]

T-1 T
= EZI:TNq 1n7TZ1 + E :hlazt,ztﬂ + E :ln bzt,ﬂﬁt
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We have discussed how to compute
vs(t) = P(Zt = s | X1.r = z1.1)
¢s.o(t) =P(Zy =8, Z111 =8 | X1.r = 21.7)
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T
Baum—-Welch algorithm

Step 0 Initialize the parameters (7, A, B)

Step 1 (E-Step) Fixing the parameters, compute forward and backward
messages for all sample sequences, then use these to compute 'y( )( t) and
fé?,( t) for each n,t,s, s’ (see Slides 47 and 48).

Step 2 (M-Step) Update parameters:

me o 241, ass/foZﬁssl boo o 3 3 (1)

n t:xt=o
Step 3 Return to Step 1 if not converged
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Hidden Markov Model Learning HMMs

Summary

Very important models: Markov chains, hidden Markov models

Several algorithms:
e forward and backward procedures
@ inferring HMMs based on forward and backward messages

e Viterbi algorithm and variants (see today’s discussion)

@ Baum-Welch algorithm
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