CSCI567 Machine Learning (Fall 2025)

Haipeng Luo
University of Southern California

Nov 7, 2025

. A
I
Outline
@ Review of last lecture

© Recurrent Neural Network

© Transformers

Administration

Will discuss HW3 solutions in today's discussion session.

HW4 (last homework) will be released soon.

Review of last lecture

Outline

@ Review of last lecture

Hidden Markov Models Baum—-Welch algorithm

Step 0 Initialize the parameters (m, A, B)

Model parameters: Step 1 (E-Step) Fixing the parameters, compute forward and backward

messages for all sample sequences, then use these to compute %E") (t) and
£(n) (t) for each n,t,s,s’.

s,s’

@ initial distribution
P(Zy=s)=ms

@ transition distribution N
P(Zyp1 =5 |Zr=3)=asy “f““ Step 2 (M-Step) Update parameters:

e emission distribution T—1 o
PRe= ol 2= =beo mooc Yy (D), asy < YD END, baoox Yy Y (D)
n

n t= n t:x¢y=o

Step 3 Return to Step 1 if not converged

5 /51 6 /51
Viterbi Algorithm Example
Viterbi Algorithm
For each s € [S], compute 04(1) = msbs 4,
For each ¢ — 2 T Arrows represent A(t), backtracking = follow the arrows.
e for each s € [S], compute
Squnny(1) = 0.25 Squnny(2) = 0.1 Squnny (3) = 0.04 Seunny (4) = 0.016

05(t) = bs p, maxay 0 (t — 1 Y Y ’ Y

S() S,Tt 5 s ,8Ys ()

As (t) — argmaX Qg 555’ (t _ 1) 5rainy(1) =04 (5miny(2) =0.19 6miny(3) = 0.042 (Sminy(4) = 0.01

s ’
Backtracking: let z = argmax, 6,(7T). The most likely path is “rainy, rainy, sunny, sunny”.
T s y Y M M y

Foreacht =1T,...,2: set z; | = A.:(1).
Output the most likely path 27,...,27.

7 /51 8 /51

Outline

© Recurrent Neural Network
@ RNN: model

@ RNN: training and testing

9/51

Recurrent Neural Network

How to improve this?

Key ideas for improvement:
@ represent words as vectors, enabling differentiable operations

e flexible sequence to sequence architecture (not just vector to
vector)

e shared components (just like filters in CNN)

Recurrent Neural Network (RNN) is one solution (popular before
transformers).

11 / 51

Recall: language models via HMM

@ today the

@ today the price

@ today the price of

@ today the price of gold

final result: today the price of gold per ton, while
production of shoe lasts and shoe industry, the bank
intervened just after it considered and rejected an
IMF demand to rebuild depleted European stocks.

Surprisingly grammatical! but incoherent...

Recurrent Neural Network

Acknowledgements

Very useful resources:

@ RNN cheatsheet from Stanford CS 230

@ https://stanford.edu/~shervine/teaching/cs-230/

cheatsheet-recurrent-neural-networks

e Visualizing a tiny RNN

company ©.153
bank 0.153
price 0.077
italian ©.039
emirate 0.039
lof 0.308
for 0.050
it 0.046
to 0.046
is 0.031
the 0.072
18 0.043
oil 0.043
its 0.036
gold 0.018

e https://joshvarty.github.io/VisualizingRNNs/

@ Character-level RNN

10 / 51

o https://karpathy.github.io/2015/05/21/rnn-effectiveness/

12 / 51

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://joshvarty.github.io/VisualizingRNNs/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Network

Words as vectors

Simplest approach: one-hot sparse encoding
@ suppose there are d words in the vocabulary
@ represent the i-th of them by the d-dimensional basis vector

e; =(0,...,0,1,0,...,0) € R?
/]\

i-th entry

Issues: does not convey any semantic meanings

13 /51

Unifying two approaches

Let & € R? be the one-hot encoding of a word, and matrix E € R%*? pe
some embedding matrix, then Ex is the embedding for this word

@ FE can be fixed (i.e., from word2vec or GloVe), where the i-th column
is the embedding for the i-th word

@ or E can be learned (e.g., via backpropagation in DL pipeline),
making it application specific (common especially if data are huge)

In the remaining, we simply use one-hot representation, but keep in mind
it could be passed through some E implicitly

15 / 51

Recurrent Neural Network

Words as vectors: embedding

Word embedding: similar words are closer in their vector representation

@ popular approaches: word2vec, GloVe (see project)
@ can even perform meaningful algebraic operations
e example: man is to woman as king is to?

o can be answered by finding the word with the closest embedding to
vec(woman) — vec(man) + vec(king), which happens to be “queen”

walking ¥

14 / 51

Recurrent Neural Network RNN: model

A recurrent layer

from y = f(z) to (y,h') = f(z, h)
e his “hidden state” (like HMM), updated via

h' =o(Wh+Uz+by)

where o is an activation function

=2
== |—>[=]

y = VR + b, is the output

z,y € R4 h,h/ € R

X o weight matrices W € R%*dn [¢ R%x4 Y ¢ R*n

o bias terms b;, € R%, b, € R4

16 / 51

Recurrent Neural Network RNN: model Recurrent Neural Network RNN: model

Recurrent layer applied recursively Making it “deep”

Given a sequence x1, o, ..., can apply f recursively:
BIRER e hp=0 .
rebatr Stack multiple recurrent layers:
——'—*— "] (’Zj\l, hl) = f(zCl, h()) 4 t t t t t t
L R @ hidden states become the inputs of LWL LE L LD L
ttt ° (Y2, h2) = f(x2,h1) the next layer

t t t t 1t 1t 1

BN N I o -

o different layers learn different

. _ W.U, b, f ¥t fff ft
This is one recurrent layer unfolded (over steps), not many different layers.

The same f (i.e, W, U,V , by, by) is shared in all steps (similar to CNN's o last layer learns V', b, and output t + t &t t t 1
filters shared across different spatial locations). e
Hidden state h; summarizes information up to step t. time

17 / 51 18 / 51

Recurrent Neural Network RNN: model Recurrent Neural Network RNN: training and testing

A flexible sequence-to-sequence model How to train an RNN
Many possible structures and applications: Take text generation (unsupervised learning) as an example:
el S R SDIARRTE A @ given a corpus, train an RNN that learns P(x; | ©1.4—1)

L For each sequence 1, ...,z € R? (one-hot representation) in the corpus

g7l 0 00
*D‘D Dﬂ* Dﬂ*_'DD Bl o feed xy,...,x7_; into the current RNN to get 4y,...,yr_1 € R?

ﬁ m ﬁ ﬁ] minim @ each ¥, defines a distribution over the next word via softmax:

L SR P(next word =) o< exp(Y,;)
@ one-to-many: image captioning

=T
. e ex T
@ many-to-one: sentiment classification —In (z:dp(ytéil))
i=1 CXP\Yt i

—
=1
—

|—
|—

@ based on the true label @, 1, each ¥; incurs cross-entropy loss

@ many-to-many: machine translation, question answering

(aligned) many-to-many: POS tagging, name entity recognition @ update the RNN parameters using backpropagation over the total loss

19 /51 20 / 51

Recurrent Neural Network RNN: training and testing

Demo

Tiny RNN, predicting the next bit of a binary sequence
@ https://joshvarty.github.io/VisualizingRNNs/
@ the entire vocabulary is just {0,1} (d = 2)

@ one-layer RNN with dj = 3, so parameters are
W e R¥3 U € R¥>*2 V € R?3 b, € R3 b, € R?

21 /51

G Gl i
Generation after training

Keep sampling from softmax(y;) as the next input x;+1 to RNN

Can control how “random” the generation is via softmax(- y)
e 1/f is called temperature

@ larger temperature (smaller 3) leads to more random outputs

e (3 =0, uniform output (maximum entropy)

e [= 00, deterministically output argmax; y;; (“hard” max)

23 / 51

RNN: training and testing
Another demo

Min-Char RNN, predicting the next character of a sequence

@ https://karpathy.github.i0/2015/05/21/rnn-effectiveness/

target chars: “e” i “ “o?
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
output layer 30 s D o
4.1 122 -1.1 2.2
0.3 1.0 0.1 -0.3
hidden layer | -0.1 0.3 05 0.9
0.9 0 -0.3 0.7
1 0 0 0
i 0 1 0 0
input layer 0 0 ' :
0 0 0 0
input chars: “h” “a® “p o

22 /51

G Gl i
Generation after training

A few remarkable examples from Min-Char RNN:
e corpus: IATEX source code of an algebraic geometry book (16MB)
@ generate source code that almost complies

@ the model understands complex syntactic structures

For @,,_, ., where £,,, = 0, hence we can find a closed subset # in H and
any sets F on X, U is a closed immersion of S, then U — T'is a separated algebraic
space.

Proof. Proof of (1). Tt also start we get

S =Spec(R) =U xx U xx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schypyy and U — U is the fibre category of S in U in Section, ?? and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R') — S is smooth or an

U=Uixs, U
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox, is a scheme where 2,2/, " € § such that Oy .- — O, . is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg: (2//5")
and we win.

To prove study we see that F|y is a covering of X’, and T; is an object of Fx/g for
i >0 and F,, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M® =T* @gpec(ry Os,s = ix'F)

24 / 51

https://joshvarty.github.io/VisualizingRNNs/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Network

Generation after training

A few remarkable examples from Min-Char RNN:

@ corpus: Linux source code (474MB of C code); 10M parameters

@ generate codes with very few syntactic errors

static int indicate_policy(void)

int error;

@ uses strings/pointers properly,
if (fd == MARN_EPT) {
Open/C|ose braCkets corrECtIy, /: The kernel blank will coeld it to userspace.
good indentation, ;

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();
even add comments
ret = 1;
goto bail;
}
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = 0; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;
if (fd) {
current = blocked;
}
}
rw->name = "Getjbbregs”;
bprm_self_clearl(&iv->version);
regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
return segtable;

}
Recurrent Neural Network

Final notes
Instead of using a character or a word as each x, often use a token (word
or sub-word)

o “apple” is a token

@ ‘“unbelievable” is 3 tokens (“un”, “believ’, “able”)

@ can reduce the size of vocabulary
Directly applying backpropagation to RNN leads to vanishing/exploding
gradient issues when T is large

o W is applied T times at the end of the sequence (so roughly W)

@ some fixes: Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU)

Recurrent Neural Network

A closer look at some neurons

Some neurons (entries of the hidden state h) are quite interpretable
(even though most are not)

@ can visualize this by coloring the input character based on the value
of this neuron (red = large value, blue = small value)

of the crossing
dubitably pro

oifjitiiieslerezina lies in thelfacHE
ved the fallacy of all the plans for
y's retreat and the soundness of the only possible
one Kutuzov and the general mass of the army
mely, simply to follow the enemy up. The French crowd f
a y increasing speed and all its energy was directed to
It fled like a wounded animal and it was impossi
his was shown not so much by the arrangements it
s by what took place at the bridges. bridges
d soldiers, people from Moscow and women with children
mar=i-carried on by vis inertiae-=
o the ice-covered water and did

A neuron sensitive to the position in line

S L
s
static ini __dequewe signal(scruct sigpending ‘pending,

Outline

© Transformers
@ Self-attention
@ Other components
@ Training and testing

Transformers

Transformers
Qutput
Probabilities
Issues of RNN: must compress all /—F\A - (Aoa@ Nom J~
i 3) ; dd & Norm o
previous info into a single state h = Ptenton
e
Nx Add & Norm
. . Add & N
A solution that dominates all other —— e
, um—H_ead
models currently: transformers Lleton -
Q | J v,
Positional Positional
Encoding Encoding
Input Output
I Embedding I I Embedding I
Inputs Outputs

29 / 51

Key idea: self-attention

Example: “The animal didn’t cross the street because it was too tired”
@ Does “it" refer to “animal” or “street”?
@ trivial for human, but how to design a model that understands this?

@ intuitively, when looking at the word “it”, the model should pay
attention to the word “animal”

@ An attention head does exactly this

31/51

Transformers

Acknowledgements

Very useful resources:

e original paper: “Attention Is All You Need" (200K+ citation by now)

o https://arxiv.org/pdf/1706.03762

@ The lllustrated Transformer (most pictures are from here)
e https://jalammar.github.io/illustrated-transformer/

@ a super cool Nano-GPT visualization
e https://bbycroft.net/1lm

@ A Multiscale Visualization of Attention
e https://arxiv.org/pdf/1906.05714

30 / 51

Self-attention
Attention head

An attention head

o takes a sequence of inputs &1, ..., x7 € R? and outputs another
sequence zi, ..., zy € R% (similar to hidden states of RNN)

@ parametrized by three matrices (and corresponding biases, omitted for
simplicity): Wy € Rk VW, € R&%4e Wy, € REXdw

e computes a query vector for each input x; as q; = Wga:t € R

e computes a key vector for each input x; as k; = Wf}r:ct € R

e computes a value vector for each input x; as v; = WJa:t € R

@ the output z; is the “answer” to the query of q;

32/51

https://arxiv.org/pdf/1706.03762
https://jalammar.github.io/illustrated-transformer/
https://bbycroft.net/llm
https://arxiv.org/pdf/1906.05714

G Toicaion
Attention head (cont.)

Input Thinking Machines
Embedding x: [T X [
Queries o+ [0 a1
Keys LT LT
Values (IT] [T

ST
Attention head (cont.)

Input Thinking Machines
Embedding \ | | | \ [{ ‘ ‘ |
Queries o [- [
Keys [T mEn
Values Dj] Djj
Score qie ki= qie =
Divide by 8 (Vd;)
Softmax
Softmax

X [TT]

sum (L1 (Il

wa

33 /51

35 / 51

G it
Attention head (cont.)

The output z; is the “answer” to the query of q;. How?

@ imagine: you make a Google query (g;), and it returns a list of
website titles (ki.7); clicking a title (k;) leads you to a website (v;).

@ You then summarize the answer using all websites (v1.7), each with a
different weight based on how relevant/close its title is to your query

e formally, the final answer z; is the weighted sum of vy, .
weights computed via

softmax (thkl thkT)
V&V

where thkT is the attention score from input x; to input o,

.., v, with

34 /51

STEGT
Attention head (cont.)

Matrix notation:

e input matrix X € RT*? obtained by stacking :clT, . ,w;
@ query matrix Q = XWg € RTxdk ' . b
o key matrix K = XWyg € RT*d% e |t
e value matrix V = X Wy, € RTxdv X
@ attention score matrix QK ' € RT*T HH - - HH
@ output matrix Z € RT*% js X

softmax (QKT) Vv e o

Vdj, a

where softmax is applied row-wise

softmax(:Hj) E) :Ii

O(T?) complexity (ignoring d, dy;, d,)

=

36 / 51

Transformers

Visualization of an attention head link

o the darker the color, the larger the attention score

Transformers

Visualization of an attention head link

More examples

@ all from unsupervised learning; no one tells the model to learn these!

o “it” attends to “animal” in one head, and “tired” in another head

[CLS] [CLS] [CLS] [CLS]
the the the the
animal animal animal
didn didn didn
t t t t
cross cross cross cross
the the the the
street street street street
because because because because
it it it it
was was was was
too too too too

tired tired tired
[SEP] [SEP] [SEP] [SEP]

Gender-specific term Name Occupation
Layer: 5 & - Layer: (5 3] Layer:(5 3)
The Wi Later Later The The
girl girl s , doctor doctor
) and and Alice Alice asked asked
-UC’ the the came came the the
boy boy up up nurse
walked walked to to a a
home home Bob Bob question question
She She She - She iio Sho
Layer: (5 4 - Layer: 5 %) - Layer: 5 %
The The Later Later The The
girl girl . . doctor doctor
Q and and Alice Alice asked asked
T the the came came the the
boy boy up up nurse nurse
walked walked to to a &
home home Bob Bob question question
He He i P He He / He

Transformers

Multi-head attention

Pass X to multiple attention-heads, each with different parameters

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
v
ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

Transformers

Multi-head attention (cont.)

Concatenate outputs of different heads and then project again

o final output dimension is R7*¢ same as inputs X

2) Multiply with a weight
matrix W that was trained
jointly with the model

T T T T T T TR 17 %

1) Concatenate all the attention heads

wo

3) The result would be the ” matrix that captures information
from all the attention heads. We can send this forward to the FFNN

. HHH

https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing#scrollTo=twSVFOM9SopW
https://arxiv.org/pdf/1906.05714

Transformers Transformers

Zooming out: a complete encoder Zooming out: a complete encoder (cont.)
. . Two more components to stabilize and (C ———)
,-»(Add & Normalize) Speed up training: E (Feed;mard) (FeedF:rward)
% T P 7
o | Cremronars) | (feedroruars) 1. Residual pathway L
o " X
g1, Add & Normalize) | » averNorn .
2| ~C T 5) @ add input to output, Z < Z + X 5-'[Lavernorn(S - ERERD J
' (Self-Attention) § [[1:1:1 [D‘ED
e e an idea from Residual Networks to N pT—)
exncoone @& & deal with vanishing gradients = = =,
x: [- [" & é
Thinking Vachines 2. Layer normalization: x — r—
Thinking Machines
Positional encoding e for each z; € R?, normalize it to zero-mean and unit-variance (across

o fix the issue that attention-head does not have positional info features)

e similar but different from batch normalization (where you normalize

e via a positional embedding matrix Ep € R¥*T | fixed or learned, ormatl
each feature to zero-mean and unit-variance across samples)

o x; < x; + Epey, i.e., add the t-th column of Ep to a¢

Transformers Transformers

Zooming out: stacking encoders and decoders A closer look at decoders
p 1 N :(‘,(. Add & Normalize .) (Li:ear)
[ENC:DER J [DECiDER J g ~(Feed-F:rwar-d) ----- g "F-e-e?-F:rward D ’ DECO;ER o
5] -»(Add & Normalize) L L
(ENCODER] [DECODER J z ¢ r T - .,»(Add & Normalize)
4 £ E (Self-Attention) 2: ' L LY
(ENCODER] [DECODER] k ________ Y Y ——— T J é :‘ (Feed Forward) (Feed Forward)
1 | Of Stooomee- L el [
[ENCt)DER] [DECSDER] C«»(Add & Normalize) a :,‘P(. Add & Normalize .)
= T o= |} G| Crtonmd) | it
Ly)y g ,'P(Add & Normalize) ,.(Add & Normalize)
(ENCODER] [DECODER J = 4 4 E 4 4
\ T g, i C Self-Attention) i C Self-Attention)
A ——— Bovccccmcmenmnmn 7y eeemmeee e
i 3 & &
x: I x2 [T
Thinking Machines
Encoder: summarizes the input into a useful representation
Decoder: generates outputs Extra component: encoder-decoder attention

Other components
Encoder-decoder attention

Same idea as self-attention, except key and value matrices are computed
using output Zg,c of the final encoder:

@ query matrix Q = XWg € R Laec X di, (as usual)
o key matrix Kenc = ZencWk € R encxd

o value matrix Vepe = Zen Wy € Renexdv

Intuition: find answer from the encoded representation of original inputs

45 / 51
Training
?
Kencdec Vencdec Linear + Soft
i (Inear T0 max)
ENCODERS DECODERS
EMBEDDING * * * * * * *
WITHTIME L0000 [0 0 OO0 0 0
SIGNAL
EMBEDDINGS O OImd 11 0 B
INPUT Je suis étudiant true answer: | am a student
Use cross-entropy loss again, and apply
@ teacher forcing: use the true answer as inputs of the decoder
47 / 51

Generating answers

f

Linear + Softmax)

ENCODERS DECODERS
EMBEDDING t t t 4 4
WITHTIME [T [O00 [OO O
SIGNAL
EMBEDDINGS
INPUT Je suis étudiant PREVIOUS am

OUTPUTS

Use previously generated text as inputs of the decoder

46 / 51

Tl e
Teaching forcing and causal mask

In teaching forcing, to avoid generating a word by peeking at future words,
need to use a causal mask in the decoder’s self-attention heads:

QK"+« QK" + M

where _ .
0 —o0 — —00
0 0 —00 —00
M = O O 0 tt — 00 e RTdecXTdec
0 0 0 e 0 |

so a word at position ¢ never attends to words at positions > ¢

Q: should we use causal mask for encoder-decoder attention heads?

48 / 51

U e Lainss o
That's it! Large language models

| Quout Large language models (LLMs) are all based on transformers
robabillities

@ estimated #parameters for GPT5: trillions

Add & Norm

Feed
Forward
J
/—H ((Add & Norm J—~ ChatGPT
Add & Norm Multi-Head
Feed Attention
Forward

Add & Norm

N ‘/S

Nx Add & Norm ——
Mu\ti-Head Mu\ti-Head
“Aﬁemlon - . Attentlon) o % Cl d 00 LLaMA
s Llaude
Q J —
Positional A Positional
Encoding ¥ Encoding
Input Output
I Embe:dlng I I Embuedging I
Inputs Outputs A cool 3D visualization of a nano-GPT: https://bbycroft.net/1lm

49 / 51 50 / 51

Training Large language models

Unsupervised pre-training

@ via next word prediction using a huge training set (e.g., the entire
internet)

Fine-tuning

@ using a labeled dataset for a specific task (translation, question
answering, etc.)

Reinforcement Learning with Human Feedback (RLHF)
@ get preference feedback from human: which answer is better?

@ more on this in the next two weeks

51 /51

https://bbycroft.net/llm

	Review of last lecture
	Recurrent Neural Network
	Transformers

