# Administration

# CSCI567 Machine Learning (Fall 2025)

Haipeng Luo

University of Southern California

Nov 7, 2025

Will discuss HW3 solutions in today's discussion session.

HW4 (last homework) will be released soon.

1 / 51

Review of last lecture

## Outline

- Review of last lecture
- 2 Recurrent Neural Network
- 3 Transformers

# Outline

- Review of last lecture
- 2 Recurrent Neural Network
- Transformers

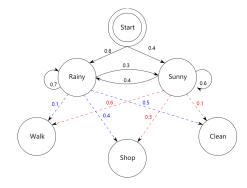
3 / 51

4 / 51

### Hidden Markov Models

#### Model parameters:

- initial distribution  $P(Z_1 = s) = \pi_s$
- transition distribution  $P(Z_{t+1} = s' \mid Z_t = s) = a_{s,s'}$
- emission distribution  $P(X_t = o \mid Z_t = s) = b_{s,o}$



5 / 51

Review of last lecture

# Viterbi Algorithm

Viterbi Algorithm

For each  $s \in [S]$ , compute  $\delta_s(1) = \pi_s b_{s,x_1}$ .

For each  $t = 2, \ldots, T$ ,

ullet for each  $s \in [S]$ , compute

$$\delta_s(t) = b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1)$$

$$\Delta_s(t) = \operatorname*{argmax}_{s'} a_{s',s} \delta_{s'}(t-1)$$

**Backtracking:** let  $z_T^* = \operatorname{argmax}_s \delta_s(T)$ . For each  $t = T, \dots, 2$ : set  $z_{t-1}^* = \Delta_{z_t^*}(t)$ .

Output the most likely path  $z_1^*, \ldots, z_T^*$ .

# Baum-Welch algorithm

**Step 0** Initialize the parameters  $(\pi, A, B)$ 

**Step 1 (E-Step)** Fixing the parameters, compute forward and backward messages for all sample sequences, then use these to compute  $\gamma_s^{(n)}(t)$  and  $\xi_{s,s'}^{(n)}(t)$  for each n,t,s,s'.

Step 2 (M-Step) Update parameters:

$$\pi_s \propto \sum_n \gamma_s^{(n)}(1), \quad a_{s,s'} \propto \sum_n \sum_{t=1}^{T-1} \xi_{s,s'}^{(n)}(t), \quad b_{s,o} \propto \sum_n \sum_{t:x_t=o} \gamma_s^{(n)}(t)$$

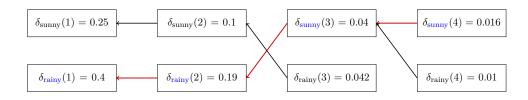
Step 3 Return to Step 1 if not converged

6 / 51

Review of last lecture

## Example

Arrows represent  $\Delta_s(t)$ , backtracking = follow the arrows.



The most likely path is "rainy, rainy, sunny, sunny".

#### Outline

- Review of last lecture
- Recurrent Neural Network
  - RNN: model
  - RNN: training and testing
- 3 Transformers

Recall: language models via HMM

- today the \_\_\_\_\_
- today the price \_\_\_\_\_
- today the price of \_\_\_\_\_
- today the price of gold \_\_\_\_\_

**final result**: today the price of gold per ton, while production of shoe lasts and shoe industry, the bank intervened just after it considered and rejected an IMF demand to rebuild depleted European stocks.

Surprisingly grammatical! but incoherent...

| company |       |
|---------|-------|
| bank    | 0.153 |
| price   | 0.077 |
| italian | 0.039 |
| emirate | 0.039 |
|         |       |

| of  | 0.308 |  |
|-----|-------|--|
| for | 0.050 |  |
| it  | 0.046 |  |
| to  | 0.046 |  |
| is  | 0.031 |  |
|     |       |  |
|     | · ·   |  |

| the  | 0.072 |  |
|------|-------|--|
| 18   | 0.043 |  |
| oil  | 0.043 |  |
| its  | 0.036 |  |
| gold | 0.018 |  |
|      |       |  |

9 / 51

Recurrent Neural Network

### How to improve this?

Key ideas for improvement:

- represent words as vectors, enabling differentiable operations
- flexible sequence to sequence architecture (not just vector to vector)
- shared components (just like filters in CNN)

**Recurrent Neural Network** (RNN) is one solution (popular before transformers).

Recurrent Neural Network

# Acknowledgements

Very useful resources:

- RNN cheatsheet from Stanford CS 230
  - https://stanford.edu/~shervine/teaching/cs-230/ cheatsheet-recurrent-neural-networks
- Visualizing a tiny RNN
  - https://joshvarty.github.io/VisualizingRNNs/
- Character-level RNN
  - https://karpathy.github.io/2015/05/21/rnn-effectiveness/

#### Recurrent Neural Network

#### Words as vectors

Simplest approach: one-hot sparse encoding

- ullet suppose there are d words in the vocabulary
- ullet represent the i-th of them by the d-dimensional basis vector

$$e_i = (0, \dots, 0, 1, 0, \dots, 0) \in \mathbb{R}^d$$

$$\uparrow$$
*i*-th entry

Issues: does not convey any semantic meanings

13 / 53

Recurrent Neural Network

# Unifying two approaches

Let  $x \in \mathbb{R}^d$  be the one-hot encoding of a word, and matrix  $E \in \mathbb{R}^{d_e \times d}$  be some **embedding matrix**, then Ex is the embedding for this word

- $oldsymbol{e}$  can be fixed (i.e., from word2vec or GloVe), where the i-th column is the embedding for the i-th word
- or *E* can be *learned* (e.g., via backpropagation in DL pipeline), making it application specific (common especially if data are huge)

In the remaining, we simply use one-hot representation, but keep in mind it could be passed through some  $\boldsymbol{E}$  implicitly

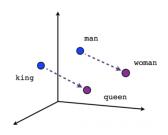
## Words as vectors: embedding

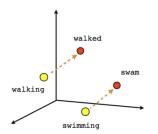
Word embedding: similar words are closer in their vector representation

• popular approaches: word2vec, GloVe

(see project)

- can even perform meaningful algebraic operations
  - example: man is to woman as king is to?
  - can be answered by finding the word with the closest embedding to vec(woman) - vec(man) + vec(king), which happens to be "queen"



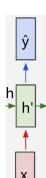


14 / 51

Recurrent Neural Network

RNN: model

# A recurrent layer



from 
$$\widehat{m{y}} = m{f}(m{x})$$
 to  $(\widehat{m{y}}, m{h}') = m{f}(\mathbf{x}, m{h})$ 

ullet h is "hidden state" (like HMM), updated via

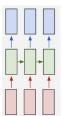
$$h' = \sigma(Wh + Ux + b_h)$$

where  $\sigma$  is an activation function

- $oldsymbol{\hat{y}} = V oldsymbol{h}' + oldsymbol{b}_y$  is the output
- ullet  $oldsymbol{x}, \widehat{oldsymbol{y}} \in \mathbb{R}^d, oldsymbol{h}, oldsymbol{h}' \in \mathbb{R}^{d_h}$
- ullet weight matrices  $oldsymbol{W} \in \mathbb{R}^{d_h imes d_h}, oldsymbol{U} \in \mathbb{R}^{d_h imes d_h}, oldsymbol{V} \in \mathbb{R}^{d imes d_h}$
- ullet bias terms  $oldsymbol{b}_h \in \mathbb{R}^{d_h}$ ,  $oldsymbol{b}_y \in \mathbb{R}^d$

# Recurrent layer applied recursively

Given a **sequence**  $x_1, x_2, \ldots$ , can apply f recursively:



- $h_0 = 0$
- $\bullet$   $(\hat{y}_1, h_1) = f(x_1, h_0)$
- $\bullet$   $(\hat{y}_2, h_2) = f(\mathbf{x}_2, h_1)$
- **.** . .

This is **one** recurrent layer unfolded (over steps), not many different layers.

The same f (i.e,  $W, U, V, b_h, b_y$ ) is **shared** in all steps (similar to CNN's filters shared across different spatial locations).

Hidden state  $h_t$  summarizes information up to step t.

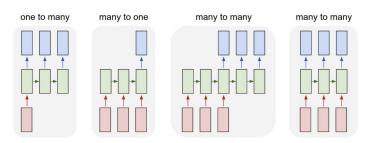
Recurrent Neural Network

17 / 51

RNN: model

# A flexible sequence-to-sequence model

Many possible structures and applications:

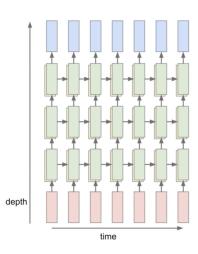


- one-to-many: image captioning
- many-to-one: sentiment classification
- many-to-many: machine translation, question answering
- (aligned) many-to-many: POS tagging, name entity recognition

# Making it "deep"

Stack multiple recurrent layers:

- hidden states become the inputs of the next layer
- ullet different layers learn different  $oldsymbol{W}, oldsymbol{U}, oldsymbol{b}_h$
- ullet last layer learns  $oldsymbol{V}, oldsymbol{b}_{y}$  and output  $\widehat{oldsymbol{y}}$



18 / 51

Recurrent Neural Network

RNN: training and testing

### How to train an RNN

Take **text generation** (unsupervised learning) as an example:

ullet given a corpus, train an RNN that learns  $P(oldsymbol{x}_t \mid oldsymbol{x}_{1:t-1})$ 

For each sequence  $oldsymbol{x}_1,\dots,oldsymbol{x}_T\in\mathbb{R}^d$  (one-hot representation) in the corpus

- ullet feed  $m{x}_1,\ldots,m{x}_{T-1}$  into the current RNN to get  $\widehat{m{y}}_1,\ldots,\widehat{m{y}}_{T-1}\in\mathbb{R}^d$
- each  $\widehat{y}_t$  defines a distribution over the next word via softmax:  $P(\text{next word} = i) \propto \exp(\widehat{y}_{t,i})$
- ullet based on the true label  $x_{t+1}$ , each  $\widehat{y}_t$  incurs cross-entropy loss

$$-\ln\left(\frac{\exp(\widehat{\boldsymbol{y}}_t^{\top}\boldsymbol{x}_{t+1})}{\sum_{i=1}^{d}\exp(\widehat{\boldsymbol{y}}_{t,i})}\right)$$

• update the RNN parameters using backpropagation over the total loss

#### Recurrent Neural Network RNN: training and testing

#### Demo

Tiny RNN, predicting the next bit of a binary sequence

- https://joshvarty.github.io/VisualizingRNNs/
- the entire vocabulary is just  $\{0,1\}$  (d=2)
- one-layer RNN with  $d_h = 3$ , so parameters are  $oldsymbol{W} \in \mathbb{R}^{3 imes 3}, oldsymbol{U} \in \mathbb{R}^{3 imes 2}, oldsymbol{V} \in \mathbb{R}^{2 imes 3}, oldsymbol{b}_h \in \mathbb{R}^3, oldsymbol{b}_u \in \mathbb{R}^2$

21 / 51

23 / 51

Recurrent Neural Network

RNN: training and testing

# Generation after training

Keep sampling from softmax $(\widehat{y}_t)$  as the next input  $x_{t+1}$  to RNN

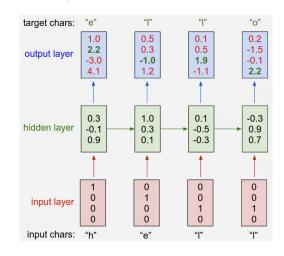
Can control how "random" the generation is via softmax( $\beta \cdot \hat{y}_t$ )

- $1/\beta$  is called temperature
- larger temperature (smaller  $\beta$ ) leads to more random outputs
  - $\beta = 0$ , uniform output (maximum entropy)
  - $\beta = \infty$ , deterministically output  $\operatorname{argmax}_{i} \widehat{y}_{t,i}$  ("hard" max)

#### Another demo

#### Min-Char RNN, predicting the next character of a sequence

https://karpathy.github.io/2015/05/21/rnn-effectiveness/



Recurrent Neural Network

RNN: training and testing

# Generation after training

A few remarkable examples from Min-Char RNN:

- corpus: LATEX source code of an algebraic geometry book (16MB)
- generate source code that almost complies
- the model understands complex syntactic structures

For  $\bigoplus_{n=1,...,m}$  where  $\mathcal{L}_{m_{\bullet}}=0$ , hence we can find a closed subset  $\mathcal{H}$  in  $\mathcal{H}$  and any sets  $\mathcal{F}$  on X,U is a closed immersion of S, then  $U\to T$  is a separated algebraic

Proof. Proof of (1). It also start we get

 $S = \operatorname{Spec}(R) = U \times_X U \times_X U$ 

and the comparicoly in the fibre product covering we have to prove the lemma generated by  $\coprod Z \times_U U \to V$ . Consider the maps M along the set of points  $Sch_{fppf}$  and  $U \to U$  is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset  $W \subset U$  in Sh(G) such that  $Spec(R') \to S$  is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that  $f_i$  is of finite presentation over S. We claim that  $\mathcal{O}_{X,x}$  is a scheme where  $x, x', s'' \in S'$  such that  $\mathcal{O}_{X,x'} \to \mathcal{O}'_{X',x'}$  is separated. By Algebra, Lemma ?? we can define a map of complexes  $GL_{S'}(x'/S'')$ 

To prove study we see that  $\mathcal{F}|_U$  is a covering of  $\mathcal{X}'$ , and  $\mathcal{T}_i$  is an object of  $\mathcal{F}_{X/S}$  for i > 0 and  $\mathcal{F}_{\nu}$  exists and let  $\mathcal{F}_{i}$  be a presheaf of  $\mathcal{O}_{X}$ -modules on  $\mathcal{C}$  as a  $\mathcal{F}$ -module. In particular  $\mathcal{F} = U/\mathcal{F}$  we have to show that

$$\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{Spec(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F}$$

 $\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$ 

22 / 51

# Generation after training

A few remarkable examples from Min-Char RNN:

- corpus: Linux source code (474MB of C code); 10M parameters
- generate codes with very few syntactic errors
- uses strings/pointers properly, open/close brackets correctly, good indentation, even add comments

```
static int indicate_policy(void
 if (fd == MARN EPT) {
   * The kernel blank will coeld it to userspace
   if (ss->segment < mem_total)</pre>
    unblock_graph_and_set_blocked();
   ret = 1:
   goto bail;
  segaddr = in_SB(in.addr);
 selector = seg / 16;
 setup works = true;
 for (i = 0: i < blocks: i++) {
  seq = buf[i++];
   bpf = bd->bd.next + i * search;
   if (fd) {
    current = blocked;
 rw->name = "Getibbregs";
 bprm self clearl(&iv->version);
 regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12
 return segtable;
```

25 / 51

Recurrent Neural Network

RNN: training and testing

#### Final notes

Instead of using a character or a word as each x, often use a token (word or sub-word)

- "apple" is a token
- "unbelievable" is 3 tokens ("un", "believ", "able")
- can reduce the size of vocabulary

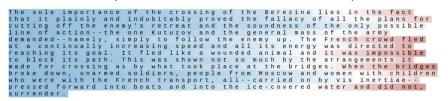
Directly applying backpropagation to RNN leads to vanishing/exploding gradient issues when T is large

- $oldsymbol{w}$  is applied T times at the end of the sequence (so roughly  $oldsymbol{W}^T$ )
- some fixes: Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)

#### A closer look at some neurons

Some neurons (entries of the hidden state h) are quite **interpretable** (even though most are not)

• can visualize this by coloring the input character based on the value of this neuron (red = large value, blue = small value)



A neuron sensitive to the **position** in line



26 / 51

static int\_\_dequeue\_signal(struct sigpending \*pending, siginfo\_t \*info)

Transformers

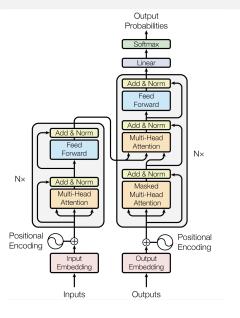
#### Outline

- Review of last lecture
- 2 Recurrent Neural Network
- Transformers
  - Self-attention
  - Other components
  - Training and testing

### **Transformers**

Issues of RNN: must compress all previous info into a single state h

A solution that dominates all other models currently: **transformers** 



29 / 51

Transformers

Self-attention

# Key idea: self-attention

Example: "The animal didn't cross the street because it was too tired"

- Does "it" refer to "animal" or "street"?
- trivial for human, but how to design a model that understands this?
- intuitively, when looking at the word "it", the model should pay attention to the word "animal"
- An attention head does exactly this

Transformers

## Acknowledgements

Very useful resources:

- original paper: "Attention Is All You Need" (200K+ citation by now)
  - https://arxiv.org/pdf/1706.03762
- The Illustrated Transformer (most pictures are from here)
  - https://jalammar.github.io/illustrated-transformer/
- a super cool Nano-GPT visualization
  - https://bbycroft.net/llm
- A Multiscale Visualization of Attention
  - https://arxiv.org/pdf/1906.05714

30 / 51

Transformers

Self-attention

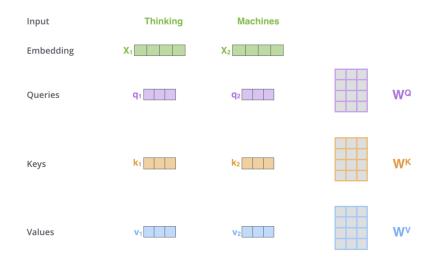
## Attention head

An attention head

- takes a sequence of inputs  $x_1, \ldots, x_T \in \mathbb{R}^d$  and outputs another sequence  $z_1, \ldots, z_T \in \mathbb{R}^{d_v}$  (similar to **hidden states** of RNN)
- parametrized by three matrices (and corresponding biases, omitted for simplicity):  $W_Q \in \mathbb{R}^{d \times d_k}, W_K \in \mathbb{R}^{d \times d_k}, W_V \in \mathbb{R}^{d \times d_v}$ 
  - ullet computes a query vector for each input  $oldsymbol{x}_t$  as  $oldsymbol{q}_t = oldsymbol{W}_Q^ op oldsymbol{x}_t \in \mathbb{R}^{d_k}$
  - ullet computes a key vector for each input  $oldsymbol{x}_t$  as  $oldsymbol{k}_t = oldsymbol{W}_K^ op oldsymbol{x}_t \in \mathbb{R}^{d_k}$
  - ullet computes a value vector for each input  $oldsymbol{x}_t$  as  $oldsymbol{v}_t = oldsymbol{W}_V^ op oldsymbol{x}_t \in \mathbb{R}^{d_v}$
- ullet the output  $oldsymbol{z}_t$  is the "answer" to the query of  $oldsymbol{q}_t$

#### Self-attention

# Attention head (cont.)



Attention head (cont.)

The output  $z_t$  is the "answer" to the query of  $q_t$ . How?

- imagine: you make a Google query  $(q_t)$ , and it returns a list of website titles  $(k_{1:T})$ ; clicking a title  $(k_{\tau})$  leads you to a website  $(v_{\tau})$ .
- ullet You then summarize the answer using all websites  $(oldsymbol{v}_{1:T})$ , each with a different weight based on how relevant/close its title is to your query
- formally, the final answer  $z_t$  is the **weighted sum** of  $v_1, \ldots, v_T$ , with weights computed via

$$\mathsf{softmax}\left(\frac{{q_t}^\top {\color{red} k_1}}{\sqrt{d_k}}, \ldots, \frac{{q_t}^\top {\color{red} k_T}}{\sqrt{d_k}}\right)$$

Self-attention

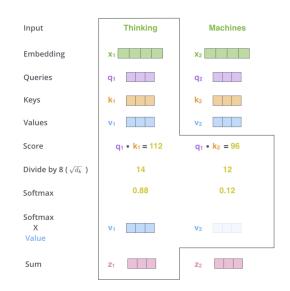
where  $oldsymbol{q}_t^{ op} oldsymbol{k}_{ au}$  is the **attention score** from input  $oldsymbol{x}_t$  to input  $oldsymbol{x}_{ au}$ 

33 / 51

Transformers

Self-attention

# Attention head (cont.)



Attention head (cont.)

Matrix notation:

ullet input matrix  $oldsymbol{X} \in \mathbb{R}^{T imes d}$ , obtained by stacking  $oldsymbol{x}_1^ op, \dots, oldsymbol{x}_T^ op$ 

Transformers

ullet query matrix  $oldsymbol{Q} = oldsymbol{X} oldsymbol{W}_O \in \mathbb{R}^{T imes d_k}$ 

ullet key matrix  $oldsymbol{K} = oldsymbol{X} oldsymbol{W}_K \in \mathbb{R}^{T imes d_k}$ 

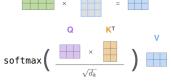
ullet value matrix  $oldsymbol{V} = oldsymbol{X} oldsymbol{W}_V \in \mathbb{R}^{T imes d_v}$ 

ullet attention score matrix  $oldsymbol{Q} oldsymbol{K}^ op \in \mathbb{R}^{T imes T}$ 

ullet output matrix  $oldsymbol{Z} \in \mathbb{R}^{T imes d_v}$  is

$$\mathsf{softmax}\left(rac{oldsymbol{Q}oldsymbol{K}^ op}{\sqrt{d_k}}
ight)oldsymbol{V}$$

where softmax is applied row-wise



 $O(T^2)$  complexity (ignoring  $d, d_k, d_v$ )

#### Transformers

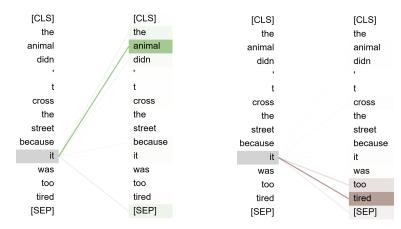
#### Self-attention

### Visualization of an attention head

link

• the darker the color, the larger the attention score

• "it" attends to "animal" in one head, and "tired" in another head



37 / 51

Transformers

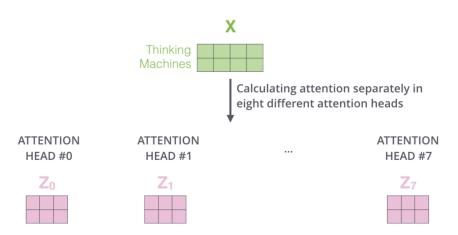
Self-attention

#### Multi-head attention

Pass  $oldsymbol{X}$  to multiple attention-heads, each with different parameters

Transformers

Self-attention

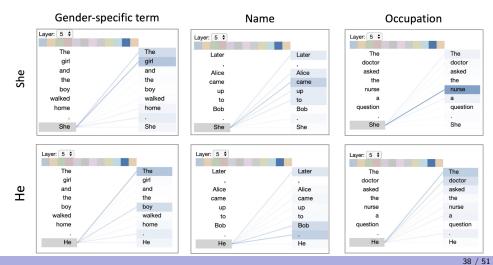


### Visualization of an attention head

attention head

More examples

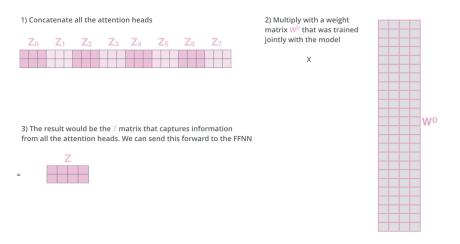
• all from unsupervised learning; no one tells the model to learn these!



# Multi-head attention (cont.)

Concatenate outputs of different heads and then project again

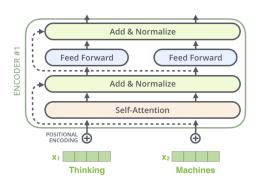
ullet final output dimension is  $\mathbb{R}^{T imes d}$ , same as inputs  $oldsymbol{X}$ 



link

#### Transformers Other components

# Zooming out: a complete encoder



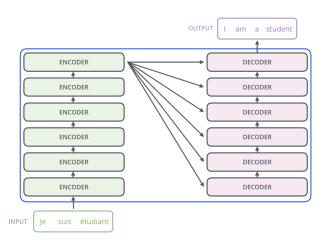
#### **Positional encoding**

- fix the issue that attention-head does not have positional info
- ullet via a **positional embedding matrix**  $oldsymbol{E}_P \in \mathbb{R}^{d imes T}$ , fixed or learned,
- ullet  $x_t \leftarrow x_t + E_P e_t$ , i.e., add the t-th column of  $E_P$  to  $x_t$

41 / 51

Transformers Other components

# Zooming out: stacking encoders and decoders



Encoder: summarizes the input into a useful representation

Decoder: generates outputs

# Zooming out: a complete encoder (cont.)

Two more components to stabilize and speed up training:

#### 1. Residual pathway

- ullet add input to output,  $oldsymbol{Z} \leftarrow oldsymbol{Z} + oldsymbol{X}$
- an idea from Residual Networks to deal with vanishing gradients

# 

#### 2. Layer normalization:

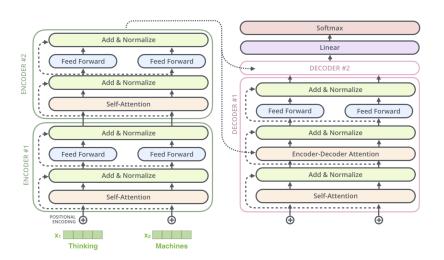
- ullet for each  $oldsymbol{z}_t \in \mathbb{R}^d$ , normalize it to zero-mean and unit-variance (across features)
- similar but different from batch normalization (where you normalize each feature to zero-mean and unit-variance across samples)

Other components

Transformers

42 / 51

A closer look at decoders



Extra component: encoder-decoder attention

### Encoder-decoder attention

Same idea as self-attention, except key and value matrices are computed using output  $Z_{enc}$  of the final encoder:

- ullet query matrix  $oldsymbol{Q} = oldsymbol{X} oldsymbol{W}_Q \in \mathbb{R}^{T_{\mathsf{dec}} imes d_k}$  (as usual)
- ullet key matrix  $oldsymbol{K}_{\mathsf{enc}} = oldsymbol{Z}_{\mathsf{enc}} oldsymbol{W}_K \in \mathbb{R}^{oldsymbol{T}_{\mathsf{enc}} imes d_k}$
- ullet value matrix  $oldsymbol{V}_{\mathsf{enc}} = oldsymbol{Z}_{\mathsf{enc}} oldsymbol{W}_V \in \mathbb{R}^{oldsymbol{T}_{\mathsf{enc}} imes d_v}$

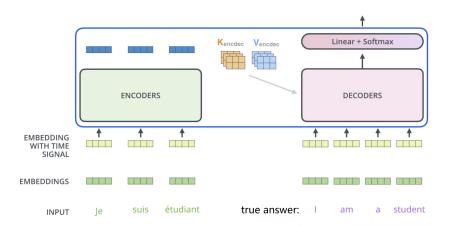
Intuition: find answer from the encoded representation of original inputs

45 / 51

T........

Training and testing

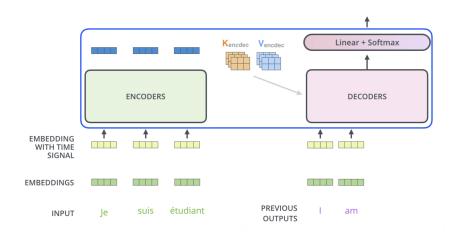
# **Training**



Use cross-entropy loss again, and apply

• teacher forcing: use the true answer as inputs of the decoder

# Generating answers



Use previously generated text as inputs of the decoder

46 / 51

Transformers

Training and testing

# Teaching forcing and causal mask

In teaching forcing, to avoid generating a word by peeking at future words, need to use a causal mask in the decoder's self-attention heads:

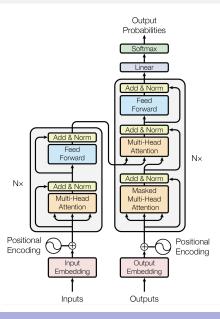
$$QK^{\top} \leftarrow QK^{\top} + M$$

where

$$oldsymbol{M} = egin{bmatrix} 0 & -\infty & -\infty & \cdots & -\infty \ 0 & 0 & -\infty & \cdots & -\infty \ 0 & 0 & 0 & \cdots & -\infty \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{T_{\mathsf{dec}} \times T_{\mathsf{dec}}}$$

so a word at position t never attends to words at positions >t

Q: should we use causal mask for encoder-decoder attention heads?



49 / 51

Transformers

Training and testing

# Training Large language models

#### **Unsupervised pre-training**

• via next word prediction using a *huge* training set (e.g., the entire internet)

#### **Fine-tuning**

 using a labeled dataset for a specific task (translation, question answering, etc.)

### Reinforcement Learning with Human Feedback (RLHF)

- get preference feedback from human: which answer is better?
- more on this in the next two weeks

Transformers Training and testing

# Large language models

Large language models (LLMs) are all based on transformers

• estimated #parameters for GPT5: trillions



A cool 3D visualization of a nano-GPT: https://bbycroft.net/llm