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Exam 2 Logistics

Date: Friday, Dec 5th

Time: 2:00-4:00pm (plus another 20 mins for uploading)

Location: THH 201 (Initial A-R) and SGM 101 (Initial S-Z)

Individual effort, close-book (no cheat sheet), no calculators or any other

electronics, but need your phone to upload your solutions to Gradescope
from 4:00-4:20pm
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Exam 2 Coverage

Coverage: mostly Lec 7-11 (just see the sample)

Seven problems in total
@ one problem of 15 multiple-choice multiple-answer questions

e please note the new instructions!!

@ six other homework-like problems, each has a couple sub-problems

o clustering, EM, HMM, RNN/transformer, bandits, RL
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Outline

@ Review of last lecture
© Basics of Reinforcement learning
© Deep Q-Networks and Atari Games

@ Policy Gradient, Actor-Critic, and AlphaGo
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Review of last lecture

UCB for multi-armed bandits

Adaptive exploration-exploitation trade-off via optimism

Upper Confidence Bound (UCB) algorithm
Fort=1,...,T, pick a; = argmax, UCB;, where

Int

Nt—1,a

UCBt,a £ ﬂt—l,a +2




Self-play for dueling bandits (preference feedback)

Exp3 for dueling bandits (selecting b;)

Input: a learning rate parameter 7 > 0

Fort=1,...,T,
@ compute arm distribution q; = softmax (—n Zi_:ll £T>

@ sample b; from q;

@ observe loss feedback I[a; > by] (a; selected by opponent)
@ construct estimator £; € ]Rff where for each b: £, = H[b’:g]tw
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Review of last lecture

Losses versus rewards

Exp3 for dueling bandits (CORRECT way to select a;)
Fort=1,...,T,

@ sample a; from arm distribution p; = softmax (—77 Zt;:ll ET)

@ observe reward feedback I[a; > b (bt selected by opponent)

I[ar=a]l]a<b¢]

@ construct estimator £; € Rf where for each a: 4; , = o

e from softmax (77 st rT) to softmax (—77 et ET)

Hav=alllarbe] o p, ~— Har=alllaxb]

[+ ] frd
from r;, Pra , ia
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Review of last lecture

How to find Nash Equilibra of a zero-sum game?

Even for games as large as poker, can approximately find one via
self-play and regret minimization!

Self-play for zero-sum games

Input: multi-armed bandit algorithms A and B
Fort=1,...,T,

@ get arm distributions p; and g; from A and B respectively

@ sample a; from p; and b; from g

@ observe M,, 5, (plus noise), feed it as reward to A and as loss to B

v

Low regret = convergence to NE
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Basics of Reinforcement learning
Outline

@ Basics of Reinforcement learning
@ Markov decision process
@ Learning MDPs



Basics of Reinforcement learning

Recent Successes of Deep Reinforcement Learning (RL)

Atari (2013)
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Recent Successes of Deep Reinforcement Learning (RL)

. 00:01:00

Dota 2 (2017)

Atari (2013)

StarCraft (2019) Rubik’s Cube (2019)
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Basics of Reinforcement learning

Recent Successes of Deep Reinforcement Learning (RL)

ChatGPT

StarCraft (2019) Rubik’s Cube (2019) ChatGPT (2022)

Deep RL = RL + deep neural net models, so what really is RL?
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limited feedback.

Action

Reward @
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Motivation

Multi-armed bandit is among the simplest decision making problems with
limited feedback.

Environment

Environment

It's often too simple to capture many real-life problems. One thing it fails
to capture is the “state” of the learning agent, which has impacts on the
reward of each action.
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Basics of Reinforcement learning

Motivation

Multi-armed bandit is among the simplest decision making problems with
limited feedback.

Environment

Environment

It's often too simple to capture many real-life problems. One thing it fails
to capture is the “state” of the learning agent, which has impacts on the
reward of each action.

o e.g. for Atari games, after making one move, the agent moves to a
different state, with possible different rewards for each action
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Reinforcement learning

Reinforcement learning (RL) is one way to deal with this issue.



Basics of Reinforcement learning

Reinforcement learning

Reinforcement learning (RL) is one way to deal with this issue.

The foundation of RL is Markov Decision Process (MDP),
a combination of Markov model (Lec 8) and multi-armed bandit (Lec 10)
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Markov Decision Processes (MDPs)

An MDP is parameterized by five elements
@ S: a set of possible states
o A: a set of possible actions

e P: transition probability, P(s'|s,a) is the probability of transiting
from state s to state s’ after taking action a (Markov property)
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Markov decison process
Markov Decision Processes (MDPs)

An MDP is parameterized by five elements
@ S: a set of possible states
o A: a set of possible actions

e P: transition probability, P(s'|s,a) is the probability of transiting
from state s to state s’ after taking action a (Markov property)

e 7: reward function, r(s,a) is (expected) reward of action a at state s
@ 7 € (0,1]: discount factor, informally, 1 dollar tomorrow is only worth

~ when viewed from today (inflation)

Different from simple Markov chains, the state transition is influenced by
the taken action.

Different from Multi-armed bandit, the reward depends on the state.

14 / 48
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Basics of Reinforcement learning

Example

Canonical example: a grid world

transition model P

@ each grid is a state
@ 4 actions: up, down, left, right

@ reward is 1 for diamond, -1 for fire, and 0 everywhere else
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A policy 7 specifies the probability of taking action a at state s as 7(als).

If we start from state s; € S and act according to a policy 7, the
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T(Sla a1)7 ’77“(527 a2)7 727"(837 a3)a
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Basics of Reinforcement learning Markov decision process
Policy

A policy 7 specifies the probability of taking action a at state s as 7(als).

If we start from state s; € S and act according to a policy 7, the
discounted rewards for time 1,2,... are respectively

T(Sla a1)7 ’77“(527 a2)7 727"(837 a3)a

where a; ~ m(-|s¢) and sp41 ~ P(¢|s¢, at)

If we follow the policy forever, the total (discounted) reward is

(o9}
Z’Yt_lr(st, at)]
t=1

E
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First goal: knowing all parameters, how to find the optimal policy

ivt_lr(st,at)] ?

argmax E
g t=1




Optimal Policy and Bellman Equation

First goal: knowing all parameters, how to find the optimal policy

ivt_lr(st,at)] ?

argmax E
g t=1

We first answer a related question: what is the maximum reward one can
achieve starting from an arbitrary state s?



D2 G
Optimal Policy and Bellman Equation

First goal: knowing all parameters, how to find the optimal policy

Z'yt_lr(st,at)] ?

argmax [E
T t=1

We first answer a related question: what is the maximum reward one can
achieve starting from an arbitrary state s?
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D2 G
Optimal Policy and Bellman Equation

First goal: knowing all parameters, how to find the optimal policy

th_lr(st,at)] ?

t=1

argmax [E
s

We first answer a related question: what is the maximum reward one can
achieve starting from an arbitrary state s?

V(s) = maxE Z’yt_lr(st,at) ‘ s1=s5
t=1
— P / V /
max (T(s,a) + VSIZE;S (s'ls,a)V (s ))

V is called the optimal value function. It satisfies the above Bellman
equation: |S| nonlinear equations with |S| unknowns, how to solve it?
17 / 48
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Value lteration

Value lteration

Initialize Vi(s) =0 forallse€ S

For k =1,2,... (until convergence), perform Bellman update:

s'eS

Vit1(s) max (r(s,a) + Z P(s’|s,a)Vk(s')) , VseS8

Value iteration converges exponentially fast! (HW4)



Markov decision process
Value lteration

Value lteration
Initialize Vi(s) =0 for all s € S

For kK =1,2,... (until convergence), perform Bellman update:

Vit1(s) < max (r(s, a) + Z P(s/]s,a)Vk(s')> , VseS§

s'eS

v

Value iteration converges exponentially fast! (HW4)

Knowing V/, the optimal policy 7* is simply

7 (s) = argmax <T(s, a)+ Z P(s']s, a)V(s’))

aceA s'eS
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Learning MDPs

Now suppose we do not know the parameters of the MDP
@ transition probability P

@ reward function r

How do we find the optimal policy?



EauneCoRs
Learning MDPs

Now suppose we do not know the parameters of the MDP
@ transition probability P

@ reward function r

How do we find the optimal policy?
@ model-based approaches

@ model-free approaches
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Model-Based Approaches

Key idea: learn the model P and r explicitly from samples

Suppose we have a sequence of interactions: s1,a1,71,...,S7,ar, 1,
then the MLE for P and r are simply

P(s'|s,a) oc #transitions from s to s’ after taking action a

r(s,a) = average observed reward at state s after taking action a
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Model-Based Approaches

Key idea: learn the model P and r explicitly from samples

Suppose we have a sequence of interactions: s1,a1,71,...,S7,ar, 1,
then the MLE for P and r are simply

P(s'|s,a) oc #transitions from s to s’ after taking action a

r(s,a) = average observed reward at state s after taking action a

Having estimates of the parameters we can then apply value iteration to
find the optimal policy.

20 / 48
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LTI
Model-Based Approaches

How do we collect data s1,a1,71, S2,a9,79,...,S7,ar,rp?

Let's adopt the e-Greedy idea again to ensure exploration.

A sketch for model-based approaches
Initialize V

Fort=1,2,...,
o with probability ¢, explore: pick an action uniformly at random

@ with probability 1 — ¢, exploit: pick the optimal action based on V'
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LTI
Model-Based Approaches

How do we collect data s1,a1,71, S2,a9,79,...,S7,ar,rp?

Let's adopt the e-Greedy idea again to ensure exploration.

A sketch for model-based approaches
Initialize V

Fort=1,2,...,
o with probability ¢, explore: pick an action uniformly at random
@ with probability 1 — ¢, exploit: pick the optimal action based on V'

@ update the model parameters P, r

@ update the value function V' (via value iteration)

21 /48
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Basics of Reinforcement learning Learning MDPs

Model-Free Approaches

Key idea: do not learn the model explicitly. What do we learn then?
Define the @ : § x A — R function as
— P / /’ !/
Q(s,a) = r(s,a) + vZS (5'ls, @) max Q(s',

In words, Q(s,a) is the expected reward one can achieve starting from

state s with action a, then acting optimally.
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Model-Free Approaches

Key idea: do not learn the model explicitly. What do we learn then?

Define the @ : § x A — R function as

Q(s,a) =r(s,a) +~ Z P(s|s,a) max Q(s',a)

s'eS

In words, Q(s,a) is the expected reward one can achieve starting from

state s with action a, then acting optimally.

Clearly, V(s) = max, Q(s,a).
Knowing Q(s,a), the optimal policy at state s is simply argmax, Q(s,a).

Model-free approaches learn the () function directly from samples.

22/ 48
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Learing MDPs
Temporal Difference (TD error)

How to learn the Q function?

Qls,0) = r(s,0) + 7 3 P(s']s,0) max Q(s',a)

s'eS

Given experience (¢, at, ¢, S¢+1), with the current guess on @,
Yy = e +ymaxy Q(si41,4d") is like a sample of the RHS of the equation.

So it's natural to do the following update (with learning rate «):

Q(st,ap) < (1 — a)Q(se, ar) + oy
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How to learn the Q function?

Qls,0) = r(s,0) + 7 3 P(s']s,0) max Q(s',a)

s'eS

Given experience (¢, at, ¢, S¢+1), with the current guess on @,
Yy = e +ymaxy Q(si41,4d") is like a sample of the RHS of the equation.

So it's natural to do the following update (with learning rate «):

Q(st,ap) < (1 — a)Q(se, ar) + oy
= Q(st,a1) + o (ye — Q(s¢, 1))
—_——

temporal difference

23 /48



Learing MDPs
Temporal Difference (TD error)

How to learn the Q function?
Q(s,a) =r(s,a) +7 Y P(s'|s,a) max Q(s', ')
ves a’'eA
Given experience (¢, at, ¢, S¢+1), with the current guess on @,

Yy = e +ymaxy Q(si41,4d") is like a sample of the RHS of the equation.

So it's natural to do the following update (with learning rate «):

Q(st,ap) < (1 — a)Q(se, ar) + oy
= Q(st,ar) + a(yr — Q(st,ar))
— ———————
temporal difference
d(% (Q(St, at) - .%)2
=Q(st,at) — (2 300 an) >

which is gradient descent w.r.t. squared loss %(Q(st, ag) — yt)z.
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Initialize Q
Fort=1,2,...,
o with probability ¢, explore: a; is chosen uniformly at random
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Leaming MDPs
Q-learning

The simplest model-free algorithm:

Q-learning

Initialize )

Fort=1,2,...,
o with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax, Q(s¢, a)

@ execute action ay, receive reward 1y, arrive at state Syy1

24 / 48



Leaming MDPs
Q-learning

The simplest model-free algorithm:

Q-learning

Initialize )

Fort=1,2,...,
o with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax, Q(s¢, a)
@ execute action ay, receive reward 1y, arrive at state Syy1

@ update the @ function

Q(st, at) < Q(s,a1) — a (Q(Suat) — 7 = ymax Q(set1, a))

for some learning rate a.

24 / 48
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Basics of Reinforcement learning Learning MDPs

Comparisons

Model-based Model-free
What it learns model parameters P,r,... | ( function
Space O(ISP?|A]) O(|S[[-A[)

Sample efficiency

usually better

usually worse

25/ 48
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Deep Q-Networks and Atari Games

Function approximation

Algorithms discussed so far (called tabular algorithms) run in time/space
poly(|S||.Al), which is impractical. (Go has about 2 x 107" states!)

To overcome this issue, we approximate () by a function parametrized by 6:

Q9(57 a) ~ Q(Sa (l), v (57 a)

o (simplest) linear function approximation: Qy(s,a) = (6, ¢(s,a)) for
some “feature” ¢(s,a)

o deep Q-network (DQN): Qp is a neural net with weight 0

27 / 48
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@-learning with function approximation
How to learn 07

Recall in the tabular case, with y; = r; + vy maxy Q(s¢11,d’):

Q(st,ar) < Qs a) + o (yr — Q(s¢, ar))
|

temporal difference
9 (% (Q(st,at) — yt)2>
0Q(st, ar)

= Q(s¢,a¢) — «



Deep Q-Networks and Atari Games

@-learning with function approximation
How to learn 67

Recall in the tabular case, with y; = ry + vy maxy Q(s¢4+1,a’):

Q(s1,ar)  Q(st,a) + a (yr — Q(s¢, 1))
temporal difference
9 (5 (Q(st,at) — yt)2
- aan-a2 0Q(srra) )

A natural generalization: perform gradient descent on 6 with squared loss
2
% (Qo(st,at) — i)™
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Deep Q-Networks and Atari Games

@-learning with function approximation
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Recall in the tabular case, with y; = 1y + v maxy Q(s¢4+1,a):

Q(s1,ar)  Q(st,a) + a (yr — Q(s¢, 1))
temporal difference
9 (5 (Q(st,at) — yt)2
- aan-a2 0Q(srra) )

A natural generalization: perform gradient descent on 6 with squared loss
2
% (Qo(st,at) — i)™

0« 0—aVy (; (Qo(st,ar) — yt)2>
=0 — a(Qo(st,ar) — yt) VoQo(st, ar)

28 / 48



Deep Q-Networks and Atari Games

@-learning with function approximation

Q-learning
Initialize # randomly




Deep Q-Networks and Atari Games

@-learning with function approximation

Q-learning
Initialize # randomly

Fort=1,2,...,

o with probability ¢, explore: a; is chosen uniformly at random




Deep Q-Networks and Atari Games

@-learning with function approximation

Q-learning
Initialize # randomly

Fort=1,2,...,
o with probability ¢, explore: a; is chosen uniformly at random

e with probability 1 — ¢, exploit: a; = argmax, Qy(s¢, a)




Deep Q-Networks and Atari Games

@-learning with function approximation

Q-learning
Initialize # randomly

Fort=1,2,...,
o with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax, Qg(s¢, a)

@ execute action ay, receive reward 1, arrive at state Syy1

29 / 48



Deep Q-Networks and Atari Games

@-learning with function approximation

Q-learning

Initialize 6 randomly

Fort=1,2,...,
o with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax, Qg(s¢, a)
@ execute action ay, receive reward 1, arrive at state Syy1

@ update the parameter of the @) function

0 < 60— a(Qo(st,ar) —y) VoQo(st, ar)

for some learning rate «.

29 / 48
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@ states: raw images (84 x 84 after preprocessing)
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action) reinforcement learning, just like humans S ADEP?

o stack 4 most recent frames as one state (to make
things Markovian)

@ 18 possible actions:

AN IRI€EIe iV N>
+ i+ +1+0+0+ 0+ 0+ ™ & J => 15
d8EEEEERGANARARER:

indui oN

30/ 48



Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games [Deepmind, 2013]

Model each Atari game as an MDP (S, A, P,r,7):
@ states: raw images (84 x 84 after preprocessing)

o no feature engineering, end-to-end (from pixel to
action) reinforcement learning, just like humans S ADEP?

o stack 4 most recent frames as one state (to make
things Markovian)

@ 18 possible actions:

AN IRI€EIe iV N>
+ i+ +1+0+0+ 0+ 0+ ™ & J => 15
d8EEEEERGANARARER:

@ transition: determined by each game

indui oN

30/ 48



Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games [Deepmind, 2013]

Model each Atari game as an MDP (S, A, P,r,7):
@ states: raw images (84 x 84 after preprocessing)

o no feature engineering, end-to-end (from pixel to
action) reinforcement learning, just like humans S ADEP?

o stack 4 most recent frames as one state (to make
things Markovian)

@ 18 possible actions:

AN IRI€EIe iV N>
+ i+ +1+0+0+ 0+ 0+ ™ & J => 15
d8EEEEERGANARARER:

@ transition: determined by each game

indui oN

@ reward: change in score

30/ 48



Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games [Deepmind, 2013]

Model each Atari game as an MDP (S, A, P,r,7):
@ states: raw images (84 x 84 after preprocessing)

o no feature engineering, end-to-end (from pixel to
action) reinforcement learning, just like humans

o stack 4 most recent frames as one state (to make
things Markovian)

@ 18 possible actions:

AN IRI€EIe iV N>
+ i+ +1+0+0+ 0+ 0+ ™ & J => 15
d8EEEEERGANARARER:

@ transition: determined by each game

indui oN

@ reward: change in score

@ 7 =0.99 (but note that the game will end at some point)
30/ 48
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Deep Q-Network

@ input: 84 x 84 x 4 images
@ 3 convolutional layers + 2 fully-connected layers, 3M parameters

@ each of the 18 outputs specifies the ()-value of the corresponding
action given a certain state input
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For each game, run Q-learning for 7' = 50M (around 38 days of game
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@ use a target network 0 to stabilize training

Yo = Te T ymax Qo(st41,a")
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Deep Q-Networks and Atari Games
Training

For each game, run Q-learning for 7' = 50M (around 38 days of game
experience), with two more tricks:

@ use a target network 0 to stabilize training

Yy =1¢ + ’YHE}XQG(SHMGI) = Y="t+ fymz}ng(stH, a')
a

e 0 is a snapshot of #, updated every 10K rounds

@ use experience replay to reduce correlation / increase data efficiency

e instead of using one sample in each update, use a minibatch of 32
samples randomly selected from the most recent 1M frames

(Qolsrar) —w)” = > (Qolskran) — i)

kE€minibatch

32/ 48
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More on experience replay

Use a minibatch of samples from previous experience
o target: from (Q9(8t7at) - yt)z to ZkEminibatch (QQ(Sk,CLk) - yk)z
@ update: from
0 < 0 —a(Qo(st,ar) — yr) VeQo(st, ar)

to

0 0—a Z (Qo(sk,ar) — yx) VoQo(sk, ax)

kE€minibatch
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Deep Q-Networks and Atari Games

More on experience replay

Use a minibatch of samples from previous experience

o target: from (Q9(St7at) - yt)2 to ZkEminibatch (QG(Sk,CLk) - yk)z

@ update: from

0 < 0 — a(Qo(st,ar) —yt) VoQo(st, ar)

to
0+ 60—« Z (Qo(sk,ar) — yx) VoQo(sk, ax)
keminibatch
@ in the tabular case, it means from (see programming project)
Q(st, at) < Q(st,ar) — a(Q(st,at) — yt)
to

Q(sk,ar) < Q(sk,ar) — a(Q(sg,ar) — yx), Yk € minibatch

33 /48
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Deep Q-Networks and Atari Games

Results

o tested on 49 Atari Games, 5 mins each game for 30 times
@ same model architecture, same algorithm, same hyperparameters

@ compared against best linear learner and a professional human tester

DQN score — random play score % 100%

o report human score — random play score

34 /48
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Policy Gradient, Actor-Critic, and AlphaGo

Learning policies directly

Another popular class of RL algorithms learns the policy directly:

max “expected reward of policy 7"
s
To handle large scale problems, consider a parameterized policy class
II={n,:pecQ} (eg., aset of neural nets) and solve

max “expected reward of policy 7,"
pE

via stochastic gradient descent

37 /48
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Policy gradient theorem
For simplicity, suppose v = 1 and a trajectory ends after H steps.

Expected reward of 7, can be written as
R(m,) = Z Py(1)R(7)

o 7= (s1,a1,...,Sm,ap) ranges over all possible H-step trajectories
@ P,(7) is the probability of encountering trajectory 7 under policy m,

o R(1)= Zthl r(sh,ap) is the cumulative reward for trajectory 7

So we have
VpR(m,) = Z Vo Pp(T)R(7)

How do we efficiently compute/approximate it?

38 /48
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Policy gradient theorem (cont.)

Vo Bp(7)
F, (7)

VoR(m,) = V,Py(T)R(1) = Y _ Py(r) R(7)
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Policy gradient theorem (cont.)

V,R(r,) ZV Py(r)R(r) =3 Py(7) Volol7) gy
= ZP )V, log P,(1)R(T) (log derivative trick)

= ]ET [V, log P,(7)R(T)] (written as an expectation)
=K, [Vp log (Hleﬂ'p(ah\sh)P(shH\sh, ah)) R(T)]
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Policy gradient theorem (cont.)
V,P,(T
V,R(m,) Zv P,(T)R(7) = ZP,,(T);;P()R(T)
= ZP )V, log P,(1)R(T) (log derivative trick)

= ]ET [V, log P,(7)R(T)] (written as an expectation)
= ]ET [vp IOg (Hﬁzlﬂ-p(ah‘gh)P<Sh+l‘Slu ah)) R(T)]

H
<Z V,log Wp(ahfsh)> R(7)

h=1

(transition doesn’t matter!)
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Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem (cont.)
V,P,(T
VoR(m) = SV, BR() = 3 R Vg R
= ZP )V, log P,(1)R(T) (log derivative trick)

= ]ET [V, log P,(7)R(T)] (written as an expectation)
=E; [V, log (II}2 7y (an|sn) P(spetlsn, an)) R(T)]

H
<Z V,log Wp(ahfsh)> R(7)

h=1

(transition doesn't matter!)

which can be approximated by sampling n trajectories using 7, and
taking the empirical average:

Z(ZV log 7y ( ah |5h )) ( )
=1 \h=1

39 /48
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V,R(my) = ZV log my(an|sn) (R(T) = b(s1:8, a1:n-1))
h=1

Want b(s1.p,a1.,—1) to be close to R(7), leading to an idealized choice:

“observed reward before h" + “expected reward starting from h"
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Want b(s1.p,a1.,—1) to be close to R(7), leading to an idealized choice:

“observed reward before h" + “expected reward starting from h"

h—1 H
= (Z r(sh/,ah/)> —I—E Z r(sh/,ah/) ‘ Sp! = Sh]

h'=1 h'=h

VTrp(Sh)
Vr,, called a critic, is usually approximated by another network 6:
“observed reward before h" + “estimated reward starting from A"
h—1
(32 o) vt
h=1
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Actor-Critic methods

Repeat:

o Critic evaluates the current policy 7, by fitting Vy from samples using

square loss:
m H H 2
D’lll’lzz <Vb ( ])) Z T (sh/ ’ah’ ))
j=1 h=1 h'=h



Actor-Critic methods

Repeat:

@ Critic evaluates the current policy 7, by fitting Vp from samples using
square loss:

mmzz (Ve (s17) - XI:: R ))2

@ Actor improves the current policy 7, via stochastic gradient descent:

H
p—p—— ZZV logwp(ah ]sh ) <Z r (85;,),(]/2/)> — Vg(sg))>

i=1 h=1 h'=h

=R(r)=b(s) af}) )
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Case study: AlphaGo [DeeprnaNzo15]

Model Go as an MDP (S, A, P,r,~):
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Ca

se study: AlphaGo [Deepmind, 2015]

Model Go as an MDP (S, A, P,r,~):

states: each 19 x 19 position of the

game is pre-processed into an
19 x 19 x 48 image stack consisting of
feature planes

actions: all legal next moves
transition: determined by the opponent @@ |

©00=@x
reward: only the ending state has
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Case study: AlphaGo [Deepmind, 2015]

Model Go as an MDP (S, A, P,r,~):

@ states: each 19 x 19 position of the
game is pre-processed into an
19 x 19 x 48 image stack consisting of
feature planes

@ actions: all legal next moves

@ transition: determined by the opponent oo 3e

©00=@x

@ reward: only the ending state has ©
reward (1 if win, —1 if lose)

o v=1

43 / 48



Policy Gradient, Actor-Critic, and AlphaGo

Policy /value networks

Both 7, and Vj are large convolutional neural nets:
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Training

Step 1: first train a policy m, using pure supervised learning from 30M
expert moves (a_multiclass classification task)

Step 2: use actor-critic to train policy network 7, and value network Vj

@ initialize p as o

o self-play: every 500 iterations, add current p to an opponent pool; in
each iteration, randomly sampled one from this pool as the opponent

@ trained for 10K iterations, each with 128 games

45 / 48
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Testing (actual play)

“Monte-Carlo Tree Search” with the help of policy/value networks:
e select a move with highest estimated quality @ + UCB (inversely
proportional to #visits, just like bandits)

expand a leaf (when visited more than a certain times) using 7,
evaluate the leaf by averaging Vj's prediction and a random rollout
update the quality ) value along the traversed edges

when the search halts, select the most visited move at the root

a Selection b Expansion c Evaluation d Backup

ﬂmj& culp a o 15 1§ # ﬁ{i’i :
Q+ulP) magﬁ p(ﬁ) ﬁ V”(m) ﬁ %
N\ "l
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Policy Gradient, Actor-Critic, and AlphaGo

Results

@ 99.8% win rate against other Go programs
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Results

@ 99.8% win rate against other Go programs
@ 5-0 Fan Hui (2013/2014/2015 European Go champion)
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Policy Gradient, Actor-Critic, and AlphaGo

Results

@ 99.8% win rate against other Go programs
@ 5-0 Fan Hui (2013/2014/2015 European Go champion)

@ first superhuman Al for Go, previously believed to be a decade away
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Summary

A brief introduction to (deep) RL:

e foundation: MDP, value iteration, model-based/free learning

o large-scale and practical deep RL methods:

e (-learning with function approximation, DQN, and their success in
Atari games

e policy gradient, actor-critic methods, and their success in Go
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