CSCI567 Machine Learning (Fall 2025)

Haipeng Luo
University of Southern California

Nov 21, 2025

Exam 2 Logistics

Date: Friday, Dec 5th

Time: 2:00-4:00pm (plus another 20 mins for uploading)

Location: THH 201 (Initial A-R) and SGM 101 (Initial S-Z)

Individual effort, close-book (no cheat sheet), no calculators or any other

electronics, but need your phone to upload your solutions to Gradescope
from 4:00-4:20pm

2/48

Exam 2 Coverage

Coverage: mostly Lec 7-11 (just see the sample)

Exam 2 Coverage

Coverage: mostly Lec 7-11 (just see the sample)

Seven problems in total
@ one problem of 15 multiple-choice multiple-answer questions

e please note the new instructions!!

@ six other homework-like problems, each has a couple sub-problems

o clustering, EM, HMM, RNN/transformer, bandits, RL

3/48

Outline

@ Review of last lecture
© Basics of Reinforcement learning
© Deep Q-Networks and Atari Games

@ Policy Gradient, Actor-Critic, and AlphaGo

4/ 48

Outline

© Review of last lecture

Review of last lecture

UCB for multi-armed bandits

Adaptive exploration-exploitation trade-off via optimism

Upper Confidence Bound (UCB) algorithm
Fort=1,...,T, pick a; = argmax, UCB;, where

Int

Nt—1,a

UCBt,a £ ﬂt—l,a +2

Self-play for dueling bandits (preference feedback)

Exp3 for dueling bandits (selecting b;)

Input: a learning rate parameter 7 > 0

Fort=1,...,T,
@ compute arm distribution q; = softmax (—n Zi_:ll £T>

@ sample b; from q;

@ observe loss feedback I[a; > by] (a; selected by opponent)
@ construct estimator £; €]Rff where for each b: £, = H[b’:g]tw

7/48

Review of last lecture

Losses versus rewards

Exp3 for dueling bandits (CORRECT way to select a;)
Fort=1,...,T,

@ sample a; from arm distribution p; = softmax (—77 Zt;:ll ET)

@ observe reward feedback I[a; > b (bt selected by opponent)

I[ar=a]l]a<b¢]

@ construct estimator £; € Rf where for each a: 4; , = o

e from softmax (77 st rT) to softmax (—77 et ET)

Hav=alllarbe] o p, ~— Har=alllaxb]

[+] frd
from r;, Pra , ia

8 /48

Review of last lecture

How to find Nash Equilibra of a zero-sum game?

Even for games as large as poker, can approximately find one via
self-play and regret minimization!

Self-play for zero-sum games

Input: multi-armed bandit algorithms A and B
Fort=1,...,T,

@ get arm distributions p; and g; from A and B respectively

@ sample a; from p; and b; from g

@ observe M,, 5, (plus noise), feed it as reward to A and as loss to B

v

Low regret = convergence to NE

9/48

Basics of Reinforcement learning
Outline

@ Basics of Reinforcement learning
@ Markov decision process
@ Learning MDPs

Basics of Reinforcement learning

Recent Successes of Deep Reinforcement Learning (RL)

Atari (2013)

11/ 48

Basics of Reinforcement learning

Recent Successes of Deep Reinforcement Learning (RL)

Atari (2013) Go (2015)

11/ 48

Basics of Reinforcement learning

Recent Successes of Deep Reinforcement Learning (RL)

Atari (2013) Go (2015) Dota 2 (2017)

11/ 48

Basics of Reinforcement learning

Recent Successes of Deep Reinforcement Learning (RL)

. 00:01:00

Dota 2 (2017)

Atari (2013)

StarCraft (2019)

11/ 48

Basics of Reinforcement learning

Recent Successes of Deep Reinforcement Learning (RL)

. 00:01:00

Dota 2 (2017)

Atari (2013)

StarCraft (2019) Rubik’s Cube (2019)

11/ 48

Basics of Reinforcement learning

Recent Successes of Deep Reinforcement Learning (RL)

ChatGPT

StarCraft (2019) Rubik’s Cube (2019) ChatGPT (2022)

11/ 48

Basics of Reinforcement learning

Recent Successes of Deep Reinforcement Learning (RL)

ChatGPT

StarCraft (2019) Rubik’s Cube (2019) ChatGPT (2022)

Deep RL = RL + deep neural net models,

11/ 48

Basics of Reinforcement learning

Recent Successes of Deep Reinforcement Learning (RL)

ChatGPT

StarCraft (2019) Rubik’s Cube (2019) ChatGPT (2022)

Deep RL = RL + deep neural net models, so what really is RL?

11/ 48

Basics of Reinforcement learning

Motivation

Multi-armed bandit is among the simplest decision making problems with
limited feedback.

Action

Reward @

Basics of Reinforcement learning

Motivation

Multi-armed bandit is among the simplest decision making problems with
limited feedback.

Environment

Environment

It's often too simple to capture many real-life problems. One thing it fails
to capture is the “state” of the learning agent, which has impacts on the
reward of each action.

12 / 48

Basics of Reinforcement learning

Motivation

Multi-armed bandit is among the simplest decision making problems with
limited feedback.

Environment

Environment

It's often too simple to capture many real-life problems. One thing it fails
to capture is the “state” of the learning agent, which has impacts on the
reward of each action.

o e.g. for Atari games, after making one move, the agent moves to a
different state, with possible different rewards for each action

12 / 48

Basics of Reinforcement learning

Reinforcement learning

Reinforcement learning (RL) is one way to deal with this issue.

Basics of Reinforcement learning

Reinforcement learning

Reinforcement learning (RL) is one way to deal with this issue.

The foundation of RL is Markov Decision Process (MDP),
a combination of Markov model (Lec 8) and multi-armed bandit (Lec 10)

13 / 48

Markov Decision Processes (MDPs)

An MDP is parameterized by five elements

Markov Decision Processes (MDPs)

An MDP is parameterized by five elements

@ S: a set of possible states

Markov Decision Processes (MDPs)

An MDP is parameterized by five elements
@ S: a set of possible states

o A: a set of possible actions

Markov declsion process
Markov Decision Processes (MDPs)

An MDP is parameterized by five elements
@ S: a set of possible states
o A: a set of possible actions

e P: transition probability, P(s'|s,a) is the probability of transiting
from state s to state s’ after taking action a (Markov property)

14 / 48

Markov decison process
Markov Decision Processes (MDPs)

An MDP is parameterized by five elements
@ S: a set of possible states
o A: a set of possible actions

e P: transition probability, P(s'|s,a) is the probability of transiting
from state s to state s’ after taking action a (Markov property)

e 7: reward function, r(s,a) is (expected) reward of action a at state s

14 / 48

Markov decison process
Markov Decision Processes (MDPs)

An MDP is parameterized by five elements
@ S: a set of possible states
o A: a set of possible actions

e P: transition probability, P(s'|s,a) is the probability of transiting
from state s to state s’ after taking action a (Markov property)

e 7: reward function, r(s,a) is (expected) reward of action a at state s

@ 7 € (0,1]: discount factor, informally, 1 dollar tomorrow is only worth
~ when viewed from today (inflation)

14 / 48

Markov decison process
Markov Decision Processes (MDPs)

An MDP is parameterized by five elements
@ S: a set of possible states
o A: a set of possible actions

e P: transition probability, P(s'|s,a) is the probability of transiting
from state s to state s’ after taking action a (Markov property)

e 7: reward function, r(s,a) is (expected) reward of action a at state s

@ 7 € (0,1]: discount factor, informally, 1 dollar tomorrow is only worth
~ when viewed from today (inflation)

Different from simple Markov chains, the state transition is influenced by
the taken action.

14 / 48

Markov decison process
Markov Decision Processes (MDPs)

An MDP is parameterized by five elements
@ S: a set of possible states
o A: a set of possible actions

e P: transition probability, P(s'|s,a) is the probability of transiting
from state s to state s’ after taking action a (Markov property)

e 7: reward function, r(s,a) is (expected) reward of action a at state s
@ 7 € (0,1]: discount factor, informally, 1 dollar tomorrow is only worth

~ when viewed from today (inflation)

Different from simple Markov chains, the state transition is influenced by
the taken action.

Different from Multi-armed bandit, the reward depends on the state.

14 / 48

Basics of Reinforcement learning

Example

Canonical example: a grid world

Basics of Reinforcement learning

Example

Canonical example: a grid world

@ each grid is a state

Basics of Reinforcement learning

Example

Canonical example: a grid world

@ each grid is a state

@ 4 actions: up, down, left, right

Basics of Reinforcement learning

Example

Canonical example: a grid world

transition model P

@ each grid is a state

@ 4 actions: up, down, left, right

Basics of Reinforcement learning

Example

Canonical example: a grid world

transition model P

@ each grid is a state
@ 4 actions: up, down, left, right

@ reward is 1 for diamond, -1 for fire, and 0 everywhere else

Policy

A policy 7 specifies the probability of taking action a at state s as 7(als).

Basics of Reinforcement learning Markov decision process

Policy

A policy 7 specifies the probability of taking action a at state s as 7(als).

If we start from state s; € S and act according to a policy 7, the
discounted rewards for time 1,2,... are respectively

16 / 48

Basics of Reinforcement learning Markov decision process
Policy

A policy 7 specifies the probability of taking action a at state s as 7(als).

If we start from state s; € S and act according to a policy 7, the
discounted rewards for time 1,2,... are respectively

T(Sla a1)7 ’77“(527 a2)7 727"(837 a3)a

where a; ~ m(-|s) and spp1 ~ P(+|s¢, ar)

16 / 48

Basics of Reinforcement learning Markov decision process
Policy

A policy 7 specifies the probability of taking action a at state s as 7(als).

If we start from state s; € S and act according to a policy 7, the
discounted rewards for time 1,2,... are respectively

T(Sla a1)7 ’77“(527 a2)7 727"(837 a3)a

where a; ~ m(-|s¢) and sp41 ~ P(¢|s¢, at)

If we follow the policy forever, the total (discounted) reward is

(o9}
Z’Yt_lr(st, at)]
t=1

E

16 / 48

Optimal Policy and Bellman Equation

First goal: knowing all parameters, how to find the optimal policy

ivt_lr(st,at)] ?

argmax E
g t=1

Optimal Policy and Bellman Equation

First goal: knowing all parameters, how to find the optimal policy

ivt_lr(st,at)] ?

argmax E
g t=1

We first answer a related question: what is the maximum reward one can
achieve starting from an arbitrary state s?

D2 G
Optimal Policy and Bellman Equation

First goal: knowing all parameters, how to find the optimal policy

Z'yt_lr(st,at)] ?

argmax [E
T t=1

We first answer a related question: what is the maximum reward one can
achieve starting from an arbitrary state s?

ifyt_lr(st,at) ‘ 51 = 8]

t=1

V(s) = maxE

17 / 48

D2 G
Optimal Policy and Bellman Equation

First goal: knowing all parameters, how to find the optimal policy

Z'yt_lr(st,at)] ?

argmax [E
T t=1

We first answer a related question: what is the maximum reward one can
achieve starting from an arbitrary state s?

o0
D 7 hr(se ar) ‘ 51=5

t=1

V(s) = maxE

= max (r(s,a) + Z P(s|s, a)V(s'))

s'eS

17 / 48

D2 G
Optimal Policy and Bellman Equation

First goal: knowing all parameters, how to find the optimal policy

th_lr(st,at)] ?

argmax [E
T t=1

We first answer a related question: what is the maximum reward one can
achieve starting from an arbitrary state s?

o0
D 7 hr(se ar) ‘ 51=5

t=1

V(s) = maxE

= max (r(s,a) + Z P(s|s, a)V(s’))

ac
s'eS

V is called the optimal value function.

17 / 48

D2 G
Optimal Policy and Bellman Equation

First goal: knowing all parameters, how to find the optimal policy

th_lr(st,at)] ?

t=1

argmax [E
s

We first answer a related question: what is the maximum reward one can
achieve starting from an arbitrary state s?

V(s) = maxE Z’yt_lr(st,at) ‘ s1=s5
t=1
— P / V /
max (T(s,a) + VSIZE;S (s'ls,a)V (s))

V is called the optimal value function. It satisfies the above Bellman
equation: |S| nonlinear equations with |S| unknowns, how to solve it?
17 / 48

Basics of Reinforcement learning

Value lteration

Value lteration
Initialize Vi(s) =0 forallse€ S

Basics of Reinforcement learning

Value lteration

Value lteration
Initialize Vi(s) =0 forallse€ S

For k =1,2,... (until convergence), perform Bellman update:

Vit1(s) max (r(s,a) + Z P(s’|s,a)Vk(s')) , VseS8

s'eS

Basics of Reinforcement learning

Value lteration

Value lteration

Initialize Vi(s) =0 forallse€ S

For k =1,2,... (until convergence), perform Bellman update:

s'eS

Vit1(s) max (r(s,a) + Z P(s’|s,a)Vk(s')) , VseS8

Value iteration converges exponentially fast! (HW4)

Markov decision process
Value lteration

Value lteration
Initialize Vi(s) =0 for all s € S

For kK =1,2,... (until convergence), perform Bellman update:

Vit1(s) < max (r(s, a) + Z P(s/]s,a)Vk(s')> , VseS§

s'eS

v

Value iteration converges exponentially fast! (HW4)

Knowing V/, the optimal policy 7* is simply

7 (s) = argmax <T(s, a)+ Z P(s']s, a)V(s’))

aceA s'eS

18 / 48

Learning MDPs

Now suppose we do not know the parameters of the MDP
@ transition probability P

@ reward function r

How do we find the optimal policy?

EauneCoRs
Learning MDPs

Now suppose we do not know the parameters of the MDP
@ transition probability P

@ reward function r

How do we find the optimal policy?
@ model-based approaches

@ model-free approaches

19 / 48

Model-Based Approaches

Key idea: learn the model P and r explicitly from samples

Model-Based Approaches

Key idea: learn the model P and r explicitly from samples

Suppose we have a sequence of interactions: s1,a1,71,..., ST, ar, rr,

LTI
Model-Based Approaches

Key idea: learn the model P and r explicitly from samples

Suppose we have a sequence of interactions: s1,a1,71,...,S7,ar, 1,
then the MLE for P and r are simply

P(s'|s,a) oc #transitions from s to s’ after taking action a

r(s,a) = average observed reward at state s after taking action a

20 / 48

LTI
Model-Based Approaches

Key idea: learn the model P and r explicitly from samples

Suppose we have a sequence of interactions: s1,a1,71,...,S7,ar, 1,
then the MLE for P and r are simply

P(s'|s,a) oc #transitions from s to s’ after taking action a

r(s,a) = average observed reward at state s after taking action a

Having estimates of the parameters we can then apply value iteration to
find the optimal policy.

20 / 48

Model-Based Approaches

How do we collect data sy, a1,7r1,82,a2,72,...,S87,ar, r7?

Model-Based Approaches

How do we collect data sy, a1,7r1,82,a2,72,...,S87,ar, r7?

Let's adopt the e-Greedy idea again to ensure exploration.

Model-Based Approaches

How do we collect data sy, a1,7r1,82,a2,72,...,S87,ar, r7?

Let's adopt the e-Greedy idea again to ensure exploration.

A sketch for model-based approaches
Initialize V

Model-Based Approaches

How do we collect data sy, a1,7r1,82,a2,72,...,S87,ar, r7?

Let's adopt the e-Greedy idea again to ensure exploration.

A sketch for model-based approaches
Initialize V

Fort=1,2,...,

o with probability ¢, explore: pick an action uniformly at random

LTI
Model-Based Approaches

How do we collect data s1,a1,71, S2,a9,79,...,S7,ar,rp?

Let's adopt the e-Greedy idea again to ensure exploration.

A sketch for model-based approaches
Initialize V

Fort=1,2,...,
o with probability ¢, explore: pick an action uniformly at random

@ with probability 1 — ¢, exploit: pick the optimal action based on V'

21 /48

LTI
Model-Based Approaches

How do we collect data s1,a1,71, S2,a9,79,...,S7,ar,rp?

Let's adopt the e-Greedy idea again to ensure exploration.

A sketch for model-based approaches
Initialize V

Fort=1,2,...,
o with probability ¢, explore: pick an action uniformly at random
@ with probability 1 — ¢, exploit: pick the optimal action based on V'

@ update the model parameters P, r

21 /48

LTI
Model-Based Approaches

How do we collect data s1,a1,71, S2,a9,79,...,S7,ar,rp?

Let's adopt the e-Greedy idea again to ensure exploration.

A sketch for model-based approaches
Initialize V

Fort=1,2,...,
o with probability ¢, explore: pick an action uniformly at random
@ with probability 1 — ¢, exploit: pick the optimal action based on V'

@ update the model parameters P, r

@ update the value function V' (via value iteration)

21 /48

Model-Free Approaches

Key idea: do not learn the model explicitly.

Model-Free Approaches

Key idea: do not learn the model explicitly. What do we learn then?

Basics of Reinforcement learning Learning MDPs

Model-Free Approaches

Key idea: do not learn the model explicitly. What do we learn then?
Define the @ : § x A — R function as
— P / /’ !/
Q(s,a) = r(s,a) + vZS (5'ls, @) max Q(s',

In words, Q(s,a) is the expected reward one can achieve starting from

state s with action a, then acting optimally.

22/ 48

LTI
Model-Free Approaches

Key idea: do not learn the model explicitly. What do we learn then?

Define the @ : § x A — R function as

Q(s,a) =r(s,a) +~ Z P(s|s,a) max Q(s',a)

s'eS

In words, Q(s,a) is the expected reward one can achieve starting from

state s with action a, then acting optimally.

Clearly, V(s) = max, Q(s, a).

22/ 48

LTI
Model-Free Approaches

Key idea: do not learn the model explicitly. What do we learn then?

Define the @ : § x A — R function as

Q(s,a) =r(s,a) +~ Z P(s|s,a) max Q(s',a)

s'eS

In words, Q(s,a) is the expected reward one can achieve starting from

state s with action a, then acting optimally.

Clearly, V(s) = max, Q(s, a).

Knowing Q(s,a), the optimal policy at state s is simply argmax, Q(s,a).

22/ 48

LTI
Model-Free Approaches

Key idea: do not learn the model explicitly. What do we learn then?

Define the @ : § x A — R function as

Q(s,a) =r(s,a) +~ Z P(s|s,a) max Q(s',a)

s'eS

In words, Q(s,a) is the expected reward one can achieve starting from

state s with action a, then acting optimally.

Clearly, V(s) = max, Q(s,a).
Knowing Q(s,a), the optimal policy at state s is simply argmax, Q(s,a).

Model-free approaches learn the () function directly from samples.

22/ 48

Temporal Difference (TD error)

How to learn the Q function?

Qlove) = r(s.0) +7 3 Pl l.0) mx Q.

Temporal Difference (TD error)

How to learn the Q function?
Q(s,a) =7(s,a) +7 > P(s'|s,a) max Q(s', d)
ves a’eA
Given experience (s, at, ¢, S¢+1), with the current guess on @,
Yy = e +ymaxy Q(si41,4d") is like a sample of the RHS of the equation.

Learing MDPs
Temporal Difference (TD error)

How to learn the Q function?

Qls,0) = r(s,0) + 7 3 P(s']s,0) max Q(s',a)

s'eS

Given experience (¢, at, ¢, S¢+1), with the current guess on @,
Yy = e +ymaxy Q(si41,4d") is like a sample of the RHS of the equation.

So it's natural to do the following update (with learning rate «):

Q(st,ap) < (1 — a)Q(se, ar) + oy

23/ 48

Learing MDPs
Temporal Difference (TD error)

How to learn the Q function?

Qls,0) = r(s,0) + 7 3 P(s']s,0) max Q(s',a)

s'eS

Given experience (¢, at, ¢, S¢+1), with the current guess on @,
Yy = e +ymaxy Q(si41,4d") is like a sample of the RHS of the equation.

So it's natural to do the following update (with learning rate «):

Q(st,ap) < (1 — a)Q(se, ar) + oy
= Q(st,a1) + o (ye — Q(s¢, 1))
—_——

temporal difference

23 /48

Learing MDPs
Temporal Difference (TD error)

How to learn the Q function?
Q(s,a) =r(s,a) +7 Y P(s'|s,a) max Q(s', ')
ves a’'eA
Given experience (¢, at, ¢, S¢+1), with the current guess on @,

Yy = e +ymaxy Q(si41,4d") is like a sample of the RHS of the equation.

So it's natural to do the following update (with learning rate «):

Q(st,ap) < (1 — a)Q(se, ar) + oy
= Q(st,ar) + a(yr — Q(st,ar))
— ———————
temporal difference
d(% (Q(St, at) - .%)2
=Q(st,at) — (2 300 an) >

which is gradient descent w.r.t. squared loss %(Q(st, ag) — yt)z.
23/ 48

Basics of Reinforcement learning

Q-learning

The simplest model-free algorithm:

Q-learning
Initialize Q

Basics of Reinforcement learning

Q-learning

The simplest model-free algorithm:

Q-learning
Initialize Q
Fort=1,2,...,

o with probability ¢, explore: a; is chosen uniformly at random

Basics of Reinforcement learning

Q-learning

The simplest model-free algorithm:
Q-learning
Initialize Q
Fort=1,2,...,
o with probability ¢, explore: a; is chosen uniformly at random

e with probability 1 — ¢, exploit: a; = argmax, Q(s¢, a)

Leaming MDPs
Q-learning

The simplest model-free algorithm:

Q-learning

Initialize)

Fort=1,2,...,
o with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax, Q(s¢, a)

@ execute action ay, receive reward 1y, arrive at state Syy1

24 / 48

Leaming MDPs
Q-learning

The simplest model-free algorithm:

Q-learning

Initialize)

Fort=1,2,...,
o with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax, Q(s¢, a)
@ execute action ay, receive reward 1y, arrive at state Syy1

@ update the @ function

Q(st, at) < Q(s,a1) — a (Q(Suat) — 7 = ymax Q(set1, a))

for some learning rate a.

24 / 48

Basics of Reinforcement learning

Comparisons

Model-based Model-free

What it learns model parameters P,r,... | (@ function

Basics of Reinforcement learning

Comparisons

Model-based Model-free
What it learns model parameters P,r,... | (@ function
Space O(ISPAl) O(IS|]Al)

Basics of Reinforcement learning Learning MDPs

Comparisons

Model-based Model-free
What it learns model parameters P,r,... | (function
Space O(ISP?|A]) O(|S[[-A[)

Sample efficiency

usually better

usually worse

25/ 48

Outline

e Deep Q-Networks and Atari Games

Deep Q-Networks and Atari Games

Function approximation

Algorithms discussed so far (called tabular algorithms) run in time/space
poly(|S||A), which is impractical.

Deep Q-Networks and Atari Games

Function approximation

Algorithms discussed so far (called tabular algorithms) run in time/space
poly(|S||.A]), which is impractical. (Go has about 2 x 107" states!)

Deep Q-Networks and Atari Games

Function approximation

Algorithms discussed so far (called tabular algorithms) run in time/space
poly(|S||.Al), which is impractical. (Go has about 2 x 107" states!)

To overcome this issue, we approximate () by a function parametrized by 6:

Q9(57 a) ~ Q(Sa (I), v (57 a)

27 / 48

Deep Q-Networks and Atari Games

Function approximation

Algorithms discussed so far (called tabular algorithms) run in time/space
poly(|S||.Al), which is impractical. (Go has about 2 x 107" states!)

To overcome this issue, we approximate () by a function parametrized by 6:

Q9(57 a) ~ Q(Sa (l), v (57 a)

o (simplest) linear function approximation: Qy(s,a) = (6, ¢(s,a)) for
some “feature” ¢(s,a)

27 / 48

Deep Q-Networks and Atari Games

Function approximation

Algorithms discussed so far (called tabular algorithms) run in time/space
poly(|S||.Al), which is impractical. (Go has about 2 x 107" states!)

To overcome this issue, we approximate () by a function parametrized by 6:

Q9(57 a) ~ Q(Sa (l), v (57 a)

o (simplest) linear function approximation: Qy(s,a) = (6, ¢(s,a)) for
some “feature” ¢(s,a)

o deep Q-network (DQN): Qp is a neural net with weight 0

27 / 48

Deep Q-Networks and Atari Games

@-learning with function approximation

How to learn 07

Deep Q-Networks and Atari Games

@-learning with function approximation
How to learn 07

Recall in the tabular case, with y; = r; + vy maxy Q(s¢11,d’):

Q(st,ar) < Qs a) + o (yr — Q(s¢, ar))
|

temporal difference

Deep Q-Networks and Atari Games

@-learning with function approximation
How to learn 07

Recall in the tabular case, with y; = r; + vy maxy Q(s¢11,d’):

Q(st,ar) < Qs a) + o (yr — Q(s¢, ar))
|

temporal difference
9 (% (Q(st,at) — yt)2>
0Q(st, ar)

= Q(s¢,a¢) — «

Deep Q-Networks and Atari Games

@-learning with function approximation
How to learn 67

Recall in the tabular case, with y; = ry + vy maxy Q(s¢4+1,a’):

Q(s1,ar) Q(st,a) + a (yr — Q(s¢, 1))
temporal difference
9 (5 (Q(st,at) — yt)2
- aan-a2 0Q(srra))

A natural generalization: perform gradient descent on 6 with squared loss
2
% (Qo(st,at) — i)™

28 / 48

Deep Q-Networks and Atari Games

@-learning with function approximation
How to learn 67

Recall in the tabular case, with y; = 1y + v maxy Q(s¢4+1,a):

Q(s1,ar) Q(st,a) + a (yr — Q(s¢, 1))
temporal difference
9 (5 (Q(st,at) — yt)2
- aan-a2 0Q(srra))

A natural generalization: perform gradient descent on 6 with squared loss
2
% (Qo(st,at) — i)™

0« 0—aVy (; (Qo(st,ar) — yt)2>

28 / 48

Deep Q-Networks and Atari Games

@-learning with function approximation
How to learn 67

Recall in the tabular case, with y; = 1y + v maxy Q(s¢4+1,a):

Q(s1,ar) Q(st,a) + a (yr — Q(s¢, 1))
temporal difference
9 (5 (Q(st,at) — yt)2
- aan-a2 0Q(srra))

A natural generalization: perform gradient descent on 6 with squared loss
2
% (Qo(st,at) — i)™

0« 0—aVy (; (Qo(st,ar) — yt)2>
=0 — a(Qo(st,ar) — yt) VoQo(st, ar)

28 / 48

Deep Q-Networks and Atari Games

@-learning with function approximation

Q-learning
Initialize # randomly

Deep Q-Networks and Atari Games

@-learning with function approximation

Q-learning
Initialize # randomly

Fort=1,2,...,

o with probability ¢, explore: a; is chosen uniformly at random

Deep Q-Networks and Atari Games

@-learning with function approximation

Q-learning
Initialize # randomly

Fort=1,2,...,
o with probability ¢, explore: a; is chosen uniformly at random

e with probability 1 — ¢, exploit: a; = argmax, Qy(s¢, a)

Deep Q-Networks and Atari Games

@-learning with function approximation

Q-learning
Initialize # randomly

Fort=1,2,...,
o with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax, Qg(s¢, a)

@ execute action ay, receive reward 1, arrive at state Syy1

29 / 48

Deep Q-Networks and Atari Games

@-learning with function approximation

Q-learning

Initialize 6 randomly

Fort=1,2,...,
o with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax, Qg(s¢, a)
@ execute action ay, receive reward 1, arrive at state Syy1

@ update the parameter of the @) function

0 < 60— a(Qo(st,ar) —y) VoQo(st, ar)

for some learning rate «.

29 / 48

Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games [Deepmind, 2013]

Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games [Deepmind, 2013]
Model each Atari game as an MDP (S, A, P,r,~):

Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games [Deepmind, 2013]

Model each Atari game as an MDP (S, A, P,r,~):
@ states: raw images (84 x 84 after preprocessing)

SPACE
\\NADERZ

30/ 48

Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games [Deepmind, 2013]

Model each Atari game as an MDP (S, A, P,r,~):
@ states: raw images (84 x 84 after preprocessing)

e no feature engineering, end-to-end (from pixel to
action) reinforcement learning, just like humans

SPACE
\\NADERZ

30/ 48

Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games [Deepmind, 2013]
Model each Atari game as an MDP (S, A, P,r,~):

@ states: raw images (84 x 84 after preprocessing)

e no feature engineering, end-to-end (from pixel to

action) reinforcement learning, just like humans .

e stack 4 most recent frames as one state (to make T
things Markovian)

30/ 48

Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games [Deepmind, 2013]

Model each Atari game as an MDP (S, A, P,r,7):
@ states: raw images (84 x 84 after preprocessing)

o no feature engineering, end-to-end (from pixel to
action) reinforcement learning, just like humans S ADEP?

o stack 4 most recent frames as one state (to make
things Markovian)

@ 18 possible actions:

AN IRI€EIe iV N>
+ i+ +1+0+0+ 0+ 0+ ™ & J => 15
d8EEEEERGANARARER:

indui oN

30/ 48

Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games [Deepmind, 2013]

Model each Atari game as an MDP (S, A, P,r,7):
@ states: raw images (84 x 84 after preprocessing)

o no feature engineering, end-to-end (from pixel to
action) reinforcement learning, just like humans S ADEP?

o stack 4 most recent frames as one state (to make
things Markovian)

@ 18 possible actions:

AN IRI€EIe iV N>
+ i+ +1+0+0+ 0+ 0+ ™ & J => 15
d8EEEEERGANARARER:

@ transition: determined by each game

indui oN

30/ 48

Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games [Deepmind, 2013]

Model each Atari game as an MDP (S, A, P,r,7):
@ states: raw images (84 x 84 after preprocessing)

o no feature engineering, end-to-end (from pixel to
action) reinforcement learning, just like humans S ADEP?

o stack 4 most recent frames as one state (to make
things Markovian)

@ 18 possible actions:

AN IRI€EIe iV N>
+ i+ +1+0+0+ 0+ 0+ ™ & J => 15
d8EEEEERGANARARER:

@ transition: determined by each game

indui oN

@ reward: change in score

30/ 48

Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games [Deepmind, 2013]

Model each Atari game as an MDP (S, A, P,r,7):
@ states: raw images (84 x 84 after preprocessing)

o no feature engineering, end-to-end (from pixel to
action) reinforcement learning, just like humans

o stack 4 most recent frames as one state (to make
things Markovian)

@ 18 possible actions:

AN IRI€EIe iV N>
+ i+ +1+0+0+ 0+ 0+ ™ & J => 15
d8EEEEERGANARARER:

@ transition: determined by each game

indui oN

@ reward: change in score

@ 7 =0.99 (but note that the game will end at some point)
30/ 48

Deep Q-Network

Convolution Convolution Fully connected
v v v

!
c
<
8
S
5
@
Q
@
Q

L
)
a8
=}
=
8
a
o
‘8
8
=

al -

NEGAMARNE B
N B N Y ¥ NOGMANMBNE:
ololojojololo 2

Deep Q-Network

@ input: 84 x 84 x 4 images

Convolution Convolution Fully connected
v v v

!
c
<
8
S
5
@
Q
@
Q

NEGAMARNE B
N B N Y ¥ NOGMANMBNE:
ololojojololo 2

Deep Q-Network

@ input: 84 x 84 x 4 images

@ 3 convolutional layers + 2 fully-connected layers, 3M parameters

Convolution Convolution Fully connected
v v v

!
c
<
8
S
5
@
Q
@
Q

[
[

M 5
doobbn dddoobh

S

A

) dddobbn dddoon
—

-
]

Deep Q-Network

@ input: 84 x 84 x 4 images
@ 3 convolutional layers + 2 fully-connected layers, 3M parameters

@ each of the 18 outputs specifies the ()-value of the corresponding
action given a certain state input

Convolution Convolution Fully connected Fully connected
v v v 4

O

!!

o
l

dhoooen douoobn

|

<

>
32
©)

|
Arsle]e vy
TEEEEE
olojolojofofok

o

dddoonn ddvoosn g
D R

31/ 48

Training

For each game, run Q-learning for 7' = 50M (around 38 days of game
experience),

Training

For each game, run Q-learning for 7' = 50M (around 38 days of game
experience), with two more tricks:

Training

For each game, run Q-learning for 7' = 50M (around 38 days of game
experience), with two more tricks:

@ use a target network 6 to stabilize training

Training

For each game, run Q-learning for 7' = 50M (around 38 days of game
experience), with two more tricks:

@ use a target network 0 to stabilize training

Yo = Te T ymax Qo(st41,a")

32/ 48

Training

For each game, run Q-learning for 7' = 50M (around 38 days of game
experience), with two more tricks:

@ use a target network 0 to stabilize training

yr =1 + ’yn}lz}x Qo(s141,d) = y =1+ ’ymazlix Qp(st41, a’)

32/ 48

Training

For each game, run Q-learning for 7' = 50M (around 38 days of game
experience), with two more tricks:

@ use a target network 0 to stabilize training

yr =1 + ’yn}lz}x Qo(s141,d) = y =1+ ’ymazlix Qp(st41, a’)

e 0 is a snapshot of #, updated every 10K rounds

32/ 48

Deep Q-Networks and Atari Games
Training

For each game, run Q-learning for 7' = 50M (around 38 days of game
experience), with two more tricks:

@ use a target network 0 to stabilize training

Yy =1¢ + ’YH;?}XQG(SHMGI) = Y="t+ fymz}ng(stH, a')
a

e 0 is a snapshot of #, updated every 10K rounds

@ use experience replay to reduce correlation / increase data efficiency

32/ 48

Deep Q-Networks and Atari Games
Training

For each game, run Q-learning for 7' = 50M (around 38 days of game
experience), with two more tricks:

@ use a target network 0 to stabilize training

yr =1 + ’ynﬁx Qo(s141,d) = y =1+ ’yn}zz/ix Qp(st41, a’)

e 0 is a snapshot of #, updated every 10K rounds

@ use experience replay to reduce correlation / increase data efficiency

e instead of using one sample in each update,

(QO(Styat) - yt)2

32/ 48

Deep Q-Networks and Atari Games
Training

For each game, run Q-learning for 7' = 50M (around 38 days of game
experience), with two more tricks:

@ use a target network 0 to stabilize training

Yy =1¢ + ’YHE}XQG(SHMGI) = Y="t+ fymz}ng(stH, a')
a

e 0 is a snapshot of #, updated every 10K rounds

@ use experience replay to reduce correlation / increase data efficiency

e instead of using one sample in each update, use a minibatch of 32
samples randomly selected from the most recent 1M frames

(Qolsrar) —w)” = > (Qolskran) — i)

kE€minibatch

32/ 48

Deep Q-Networks and Atari Games

More on experience replay

Use a minibatch of samples from previous experience

o target: from (Qo(st,ar) = %) t0 D peminibarch (Qo(sk: ak) = yx)”

Deep Q-Networks and Atari Games

More on experience replay

Use a minibatch of samples from previous experience
o target: from (Q9(8t7at) - yt)z to ZkEminibatch (QQ(Sk,CLk) - yk)z
@ update: from
0 < 0 —a(Qo(st,ar) — yr) VeQo(st, ar)

to

0 0—a Z (Qo(sk,ar) — yx) VoQo(sk, ax)

kE€minibatch

33 /48

Deep Q-Networks and Atari Games

More on experience replay

Use a minibatch of samples from previous experience

o target: from (Q9(St7at) - yt)2 to ZkEminibatch (QG(Sk,CLk) - yk)z

@ update: from

0 < 0 — a(Qo(st,ar) —yt) VoQo(st, ar)

to
0+ 60—« Z (Qo(sk,ar) — yx) VoQo(sk, ax)
keminibatch
@ in the tabular case, it means from (see programming project)
Q(st, at) < Q(st,ar) — a(Q(st,at) — yt)
to

Q(sk,ar) < Q(sk,ar) — a(Q(sg,ar) — yx), Yk € minibatch

33 /48

Deep Q-Networks and Atari Games

Results

o tested on 49 Atari Games, 5 mins each game for 30 times

Deep Q-Networks and Atari Games

Results

o tested on 49 Atari Games, 5 mins each game for 30 times

@ same model architecture, same algorithm, same hyperparameters

Deep Q-Networks and Atari Games

Results

o tested on 49 Atari Games, 5 mins each game for 30 times
@ same model architecture, same algorithm, same hyperparameters

@ compared against best linear learner and a professional human tester

Deep Q-Networks and Atari Games

Results

o tested on 49 Atari Games, 5 mins each game for 30 times
@ same model architecture, same algorithm, same hyperparameters

@ compared against best linear learner and a professional human tester

DQN score — random play score % 100%

o report human score — random play score

34 /48

Deep Q-Networks and Atari Gam

Results

a\pcoo_‘e\eoow $com n\oocva\nccm .*eoom a\uoor
1)) 1 1 1 L 1 1

L=
g

£

Jouesn seoul 3seg

|onaj-uewiny mojaq

onoqe 10 [eAs-uewny e

l
!

‘aBusney S,eWNZOlUON
543 a1EAUd
eyneIo
S1qIs014
SploJBISY
Uewoeq 'Sy
Buymog
»ung eignog
|sanbeag
aunjua
ualy
Jepluy
uoxxez
piey Jany
IsiaH yueg
apadijus)
pueLIWwOg Jaddoyd
10M O Pz
su0z apmeg
Xuzjsy
O¥3IH
198.0
Aoso0H 2]
umoq pue dn
fqiaq Buiysiy
onpu3
1 swiL
femoaiq
Ja)sep n4-Buny|
weuyyuen |
Jopiy weag
‘siapenu] soeds
Buog
sus).
puog sawer
‘oosebuey
Jauuny peoy
nessy
st
sweg siy1 swen
oeny uowaq
Jaydog
loquig Aze
snuepy
ueloqoy
J8uung seys
noxeaig
Buxog

[quId 03PIA

Outline

@ Policy Gradient, Actor-Critic, and AlphaGo

Policy Gradient, Actor-Critic, and AlphaGo

Learning policies directly

Another popular class of RL algorithms learns the policy directly:

Policy Gradient, Actor-Critic, and AlphaGo

Learning policies directly

Another popular class of RL algorithms learns the policy directly:

max “expected reward of policy 7"
s

Policy Gradient, Actor-Critic, and AlphaGo

Learning policies directly

Another popular class of RL algorithms learns the policy directly:

max “expected reward of policy 7"
™

To handle large scale problems, consider a parameterized policy class
II={n,:pecQ} (eg., aset of neural nets)

37 /48

Policy Gradient, Actor-Critic, and AlphaGo

Learning policies directly

Another popular class of RL algorithms learns the policy directly:

max “expected reward of policy 7"
™

To handle large scale problems, consider a parameterized policy class
II={n,:pecQ} (eg., aset of neural nets) and solve

max “expected reward of policy 7,"
pE

37 /48

Policy Gradient, Actor-Critic, and AlphaGo

Learning policies directly

Another popular class of RL algorithms learns the policy directly:

max “expected reward of policy 7"
s
To handle large scale problems, consider a parameterized policy class
II={n,:pecQ} (eg., aset of neural nets) and solve

max “expected reward of policy 7,"
pE

via stochastic gradient descent

37 /48

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem

For simplicity, suppose v = 1 and a trajectory ends after H steps.

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem

For simplicity, suppose v = 1 and a trajectory ends after H steps.

Expected reward of 7, can be written as

R(m,) = Z Py(1)R(7)

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem

For simplicity, suppose v = 1 and a trajectory ends after H steps.

Expected reward of 7, can be written as
R(m,) = Z Py(1)R(7)

o 7= (s1,a1,...,Sm,ap) ranges over all possible H-step trajectories

38 /48

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem

For simplicity, suppose v = 1 and a trajectory ends after H steps.

Expected reward of 7, can be written as
R(m,) = Z Py(1)R(7)

o 7= (s1,a1,...,Sm,ap) ranges over all possible H-step trajectories

@ P,(7) is the probability of encountering trajectory 7 under policy m,

38 /48

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem

For simplicity, suppose v = 1 and a trajectory ends after H steps.

Expected reward of 7, can be written as
R(m,) = Z Py(1)R(7)

o 7= (s1,a1,...,Sm,ap) ranges over all possible H-step trajectories
@ P,(7) is the probability of encountering trajectory 7 under policy m,

o R(1)= Zthl r(sh,ap) is the cumulative reward for trajectory 7

38 /48

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem

For simplicity, suppose v = 1 and a trajectory ends after H steps.

Expected reward of 7, can be written as
R(m,) = Z Py(1)R(7)

o 7= (s1,a1,...,Sm,ap) ranges over all possible H-step trajectories
@ P,(7) is the probability of encountering trajectory 7 under policy m,

o R(1)= Zthl r(sh,ap) is the cumulative reward for trajectory 7

So we have
VoR(mp) = Z VpPy(T)R(T)

38 /48

Policy gradient theorem
For simplicity, suppose v = 1 and a trajectory ends after H steps.

Expected reward of 7, can be written as
R(m,) = Z Py(1)R(7)

o 7= (s1,a1,...,Sm,ap) ranges over all possible H-step trajectories
@ P,(7) is the probability of encountering trajectory 7 under policy m,

o R(1)= Zthl r(sh,ap) is the cumulative reward for trajectory 7

So we have
VpR(m,) = Z Vo Pp(T)R(7)

How do we efficiently compute/approximate it?

38 /48

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem (cont.)

V,R(m,) = Z YV Pp(T)R(T)

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem (cont.)

Vo Bp(7)
F, (7)

VoR(m,) = V,Py(T)R(1) = Y _ Py(r) R(7)

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem (cont.)

V,R(m,) Zv P,(T)R(r) = ZP,,(T)V]‘;?(T)R(T)

= ZP)V, log P,(T)R(7) (log derivative trick)

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem (cont.)

V,R(r,) Zv P(r)R(r) =Y By(r) V]f;f o) Ry
= ZP)V, log P,(T)R(T) (log derivative trick)

= IET [V, log Py(T)R(T)] (written as an expectation)

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem (cont.)

V,R(r,) ZV Py(r)R(r) =3 Py(7) Volol7) gy
= ZP)V, log P,(1)R(T) (log derivative trick)

=]ET [V, log P,(7)R(T)] (written as an expectation)
=K, [Vp log (Hleﬂ'p(ah\sh)P(shH\sh, ah)) R(T)]

39 /48

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem (cont.)
V,P,(T
V,R(m,) Zv P,(T)R(7) = ZP,,(T);;P()R(T)
= ZP)V, log P,(1)R(T) (log derivative trick)

=]ET [V, log P,(7)R(T)] (written as an expectation)
=]ET [vp IOg (Hﬁzlﬂ-p(ah‘gh)P<Sh+l‘Slu ah)) R(T)]

H
<Z V,log Wp(ahfsh)> R(7)

h=1

(transition doesn’t matter!)

39 /48

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem (cont.)
V,P,(T
VoR(m) = SV, BR() = 3 R Vg R
= ZP)V, log P,(1)R(T) (log derivative trick)

=]ET [V, log P,(7)R(T)] (written as an expectation)
=E; [V, log (II}2 7y (an|sn) P(spetlsn, an)) R(T)]

H
<Z V,log Wp(ahfsh)> R(7)

h=1

(transition doesn't matter!)

which can be approximated by sampling n trajectories using 7, and
taking the empirical average:

Z(ZV log 7y (ah |5h)) ()
=1 \h=1

39 /48

Policy Gradient, Actor-Critic, and AlphaGo

Reducing variance of gradient estimators via baselines

The key to make policy gradient work is to reduce variance of gradient
estimators.

Policy Gradient, Actor-Critic, and AlphaGo

Reducing variance of gradient estimators via baselines

The key to make policy gradient work is to reduce variance of gradient
estimators. Subtracting a “baseline” is a standard way to achieve so:

Policy Gradient, Actor-Critic, and AlphaGo

Reducing variance of gradient estimators via baselines

The key to make policy gradient work is to reduce variance of gradient
estimators. Subtracting a “baseline” is a standard way to achieve so:

V,R(r,) = ZV log 7w, (an|sn)R(T)
h=1

40 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Reducing variance of gradient estimators via baselines

The key to make policy gradient work is to reduce variance of gradient
estimators. Subtracting a “baseline” is a standard way to achieve so:

V,R(r,) = ZV log 7w, (an|sn)R(T)

h=1

H
Z V,logm,(aplsy) (R(T) — b(s1., al:hl))]

h=1

40 / 48

Reducing variance of gradient estimators via baselines

The key to make policy gradient work is to reduce variance of gradient
estimators. Subtracting a “baseline” is a standard way to achieve so:

V,R(r,) =

ZV log 7w, (an|sn)R(T)

h=1

H
Z V,logm,(aplsy) (R(T) — b(s1., al:hl))]

h=1

This holds for any b that only depends on s1.;,,a1.;,—1, because

an [Vplog m,(ap|sy)b] =0 Z mp(an|sh) pﬁp(ah|8h)
oy Tp(an|sh)

40 / 48

Reducing variance of gradient estimators via baselines

The key to make policy gradient work is to reduce variance of gradient
estimators. Subtracting a “baseline” is a standard way to achieve so:

V,R(r,) =

ZV log 7w, (an|sn)R(T)

h=1

H
Z V,logm,(aplsy) (R(T) — b(s1., al:hl))]

h=1
This holds for any b that only depends on s1.;,,a1.;,—1, because

an [Vplog m,(ap|sy)b] =0 Z mp(an|sh) pﬁp(ah|8h)

oy Tp(an|sh)
= bV, Z 71'p(ah|5h)
ap€A

40 / 48

Reducing variance of gradient estimators via baselines

The key to make policy gradient work is to reduce variance of gradient
estimators. Subtracting a “baseline” is a standard way to achieve so:

V,R(r,) =

ZV log 7w, (an|sn)R(T)

h=1

H
Z V,logm,(aplsy) (R(T) — b(s1., al:hl))]

h=1

This holds for any b that only depends on s1.;,,a1.;,—1, because

an [Vplog m,(ap|sy)b] =0 Z mp(an|sh) pﬁp(ah|8h)
oy Tp(an|sh)
= bV, Z mp(anlsy) = 0V,1
ap€A

40 / 48

Reducing variance of gradient estimators via baselines

The key to make policy gradient work is to reduce variance of gradient
estimators. Subtracting a “baseline” is a standard way to achieve so:

V,R(r,) =

ZV log 7w, (an|sn)R(T)

h=1

H
Z V,logm,(aplsy) (R(T) — b(s1., al:hl))]

h=1

This holds for any b that only depends on s1.;,,a1.;,—1, because

an [Vplog m,(ap|sy)b] =0 Z mp(an|sh) Vomp(anlsn)
v Tp(an|sh)
= bV, Z mp(anlsy) = 0V,1 =0
ap€A

40 / 48

Which baselines?

V,R(m,) = ZV log m,(ap|sp) (R(T) — b(s1.4, a1:1-1))
h=1

Want b(s1.p,a1.,—1) to be close to R(7),

Which baselines?

V,R(my) = ZV log my(an|sn) (R(T) = b(s1:8, a1:n-1))
h=1

Want b(s1.p,a1.,—1) to be close to R(7), leading to an idealized choice:

“observed reward before h" + “expected reward starting from h"

41/ 48

Which baselines?

V,R(m,) =

ZV log 7p(an|sn) (R(T) — b(sl:lual:hl))]

h=1
Want b(s1.p,a1.,—1) to be close to R(7), leading to an idealized choice:

“observed reward before h" + “expected reward starting from h"

h—1 H
= (Z r(sh/,ah/)> —I—E Z r(sh/,ah/) ‘ Sp! = Sh]

h'=1 h'=h

Vﬂ'p (Sh)

41/ 48

Which baselines?

V,R(m,) =

ZV log 7p(an|sn) (R(T) — b(sl:lual:hl))]

h=1
Want b(s1.p,a1.,—1) to be close to R(7), leading to an idealized choice:

“observed reward before h" + “expected reward starting from h"

h—1 H
= (Z r(sh/,ah/)> —I—E Z r(sh/,ah/) ‘ Sp! = Sh]

h'=1 h'=h

N~

VTrp (Sh)

Vi, called a critic,

41/ 48

Which baselines?

V,R(m,) =E;

H
> "V, logm,(an|sn) (R(T) = bs1.h, al;hl))]
h=1

Want b(s1.p,a1.,—1) to be close to R(7), leading to an idealized choice:

“observed reward before h" + “expected reward starting from h"
h—1 H

= (Z T(Sh/,ah/)> +E Z r(sh/,ah/) ‘ Sp! = Sh]
h'=1 h'=h

VTrp (Sh)

Vr,, called a critic, is usually approximated by another network 6:

“observed reward before h" + “estimated reward starting from h"

41/ 48

Which baselines?

V,R(m,) =

ZV log 7p(an|sn) (R(T) — b(51;h7(11:h1))]

h=1
Want b(s1.p,a1.,—1) to be close to R(7), leading to an idealized choice:

“observed reward before h" + “expected reward starting from h"

h—1 H
= (Z r(sh/,ah/)> —I—E Z r(sh/,ah/) ‘ Sp! = Sh]

h'=1 h'=h

VTrp(Sh)
Vr,, called a critic, is usually approximated by another network 6:
“observed reward before h" + “estimated reward starting from A"
h—1
(32 o) vt
h=1

41/ 48

Actor-Critic methods

Repeat:

o Critic evaluates the current policy 7, by fitting Vy from samples using

square loss:
m H H 2
D’lll’lzz <Vb (])) Z T (sh/ ’ah’))
j=1 h=1 h'=h

Actor-Critic methods

Repeat:

@ Critic evaluates the current policy 7, by fitting Vp from samples using
square loss:

mmzz (Ve (s17) - XI:: R))2

@ Actor improves the current policy 7, via stochastic gradient descent:

H
p—p—— ZZV logwp(ah]sh) <Z r (85;,),(]/2/)> — Vg(sg))>

i=1 h=1 h'=h

=R(r)=b(s) af}))

42 /48

Case study: AlphaGo [DeeprnaNzo15]

Model Go as an MDP (S, A, P,r,~):

43 / 48

Case study: AlphaGo [DeeprnaNzo15]

Model Go as an MDP (S, A, P,r,~):

@ states: each 19 x 19 position of the
game is pre-processed into an
19 x 19 x 48 image stack consisting of
feature planes

43 / 48

Case study: AlphaGo [DeeprnaNzo15]

Model Go as an MDP (S, A, P,r,~):

@ states: each 19 x 19 position of the
game is pre-processed into an
19 x 19 x 48 image stack consisting of
feature planes

@ actions: all legal next moves

43 / 48

Case study: AlphaGo [Deepmind, 2015]

Model Go as an MDP (S, A, P,r,~):

@ states: each 19 x 19 position of the
game is pre-processed into an
19 x 19 x 48 image stack consisting of
feature planes

@ actions: all legal next moves

@ transition: determined by the opponent

43 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Ca

se study: AlphaGo [Deepmind, 2015]

Model Go as an MDP (S, A, P,r,~):

states: each 19 x 19 position of the

game is pre-processed into an
19 x 19 x 48 image stack consisting of
feature planes

actions: all legal next moves
transition: determined by the opponent @@ |

©00=@x
reward: only the ending state has

reward (1 if win, —1 if lose)

43 / 48

Case study: AlphaGo [Deepmind, 2015]

Model Go as an MDP (S, A, P,r,~):

@ states: each 19 x 19 position of the
game is pre-processed into an
19 x 19 x 48 image stack consisting of
feature planes

@ actions: all legal next moves

@ transition: determined by the opponent oo 3e

©00=@x

@ reward: only the ending state has ©
reward (1 if win, —1 if lose)

o v=1

43 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Policy /value networks

Both 7, and Vj are large convolutional neural nets:

Training

Step 1: first train a policy m, using pure supervised learning from 30M
expert moves (a_multiclass classification task)

Policy Gradient, Actor-Critic, and AlphaGo

Training

Step 1: first train a policy m, using pure supervised learning from 30M
expert moves (a_multiclass classification task)

Step 2: use actor-critic to train policy network 7, and value network Vj

45 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Training

Step 1: first train a policy m, using pure supervised learning from 30M
expert moves (a_multiclass classification task)

Step 2: use actor-critic to train policy network 7, and value network Vj

@ initialize p as o

45 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Training

Step 1: first train a policy m, using pure supervised learning from 30M
expert moves (a_multiclass classification task)

Step 2: use actor-critic to train policy network 7, and value network Vj

@ initialize p as o

o self-play: every 500 iterations, add current p to an opponent pool; in
each iteration, randomly sampled one from this pool as the opponent

45 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Training

Step 1: first train a policy m, using pure supervised learning from 30M
expert moves (a_multiclass classification task)

Step 2: use actor-critic to train policy network 7, and value network Vj

@ initialize p as o

o self-play: every 500 iterations, add current p to an opponent pool; in
each iteration, randomly sampled one from this pool as the opponent

@ trained for 10K iterations, each with 128 games

45 / 48

Testing (actual play)

“Monte-Carlo Tree Search” with the help of policy/value networks:

Testing (actual play)

“Monte-Carlo Tree Search” with the help of policy/value networks:
e select a move with highest estimated quality @ + UCB (inversely
proportional to #visits, just like bandits)

a Selection

Q+uP) max

46 / 48

Testing (actual play)

“Monte-Carlo Tree Search” with the help of policy/value networks:

e select a move with highest estimated quality @ + UCB (inversely
proportional to #visits, just like bandits)

e expand a leaf (when visited more than a certain times) using 7,

a Selection b Expansion
mak Q +u(P)

Q+uP) max

46 / 48

Testing (actual play)

“Monte-Carlo Tree Search” with the help of policy/value networks:
e select a move with highest estimated quality @ + UCB (inversely
proportional to #visits, just like bandits)

e expand a leaf (when visited more than a certain times) using 7,
o evaluate the leaf by averaging Vy's prediction and a random rollout

a Selection b Expansion c Evaluation

Q+u(P) maqﬁ p”(m) ﬁ Vg(%) ﬁ

46 / 48

Testing (actual play)

“Monte-Carlo Tree Search” with the help of policy/value networks:
e select a move with highest estimated quality @ + UCB (inversely
proportional to #visits, just like bandits)

e expand a leaf (when visited more than a certain times) using 7,
o evaluate the leaf by averaging Vy's prediction and a random rollout
e update the quality @) value along the traversed edges

a Selection b Expansion c Evaluation d Backup

C3 U
Q+ulP) magﬁ p(ﬁ) % ”ﬁ(ﬁ) %

I
YN o @

46 / 48

Testing (actual play)

“Monte-Carlo Tree Search” with the help of policy/value networks:
e select a move with highest estimated quality @ + UCB (inversely
proportional to #visits, just like bandits)

expand a leaf (when visited more than a certain times) using 7,
evaluate the leaf by averaging Vj's prediction and a random rollout
update the quality) value along the traversed edges

when the search halts, select the most visited move at the root

a Selection b Expansion c Evaluation d Backup

ﬂmj& culp a o 15 1§ # ﬁ{i’i :
Q+ulP) magﬁ p(ﬁ) ﬁ V”(m) ﬁ %
N\ "l

(+#)

|
@))

46 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Results

@ 99.8% win rate against other Go programs

>
g3
58
a e
e

Elo Rating

(1) nfy
Jouuibeg

peinguisip
oneydly
oneydly
InH ue4q
au0lg Azeu)
uaz

1yoed

oBeng
opnun

Policy Gradient, Actor-Critic, and AlphaGo

Results

@ 99.8% win rate against other Go programs
@ 5-0 Fan Hui (2013/2014/2015 European Go champion)

(d) uep
[BUOISSB}0Id

oz
o 3
=
=
ec

Elo Rating

ar > 1T O N T T @
g5 5 5 g 5 8 § 2
e & I < = 8 o
20 0 T o 8
6’00 6
=3 >

@

47 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Results

@ 99.8% win rate against other Go programs
@ 5-0 Fan Hui (2013/2014/2015 European Go champion)

@ first superhuman Al for Go, previously believed to be a decade away

3,500

3,000

(@ uep
[BUOISSB}0Id

2,500

2,000

Elo Rating
(p) uep
Inajewy

1,500

1,000

500

04

a» » T O N T T ®
253 5§35 828 ¢
e & I < = 8 o
20 0 T o 8
6’00 6
a S

@

47 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Summary

A brief introduction to (deep) RL:

e foundation: MDP, value iteration, model-based/free learning

Policy Gradient, Actor-Critic, and AlphaGo

Summary

A brief introduction to (deep) RL:

e foundation: MDP, value iteration, model-based/free learning

o large-scale and practical deep RL methods:

48 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Summary

A brief introduction to (deep) RL:

e foundation: MDP, value iteration, model-based/free learning

o large-scale and practical deep RL methods:

e (-learning with function approximation, DQN, and their success in
Atari games

48 / 48

Policy Gradient, Actor-Critic, and AlphaGo

Summary

A brief introduction to (deep) RL:

e foundation: MDP, value iteration, model-based/free learning

o large-scale and practical deep RL methods:

e (-learning with function approximation, DQN, and their success in
Atari games

e policy gradient, actor-critic methods, and their success in Go

48 / 48

	Review of last lecture
	Basics of Reinforcement learning
	Deep Q-Networks and Atari Games
	Policy Gradient, Actor-Critic, and AlphaGo

