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Administration

@ HW 1 is due on Wed, Sep 17th.

@ recall the late day policy: 3 in total, at most 1 for each homework



Outline

@ Review of Last Lecture

@ Linear Classifiers and Surrogate Losses

© A Detour of Numerical Optimization Methods
@ Perceptron

e Logistic Regression

3/ 55



Outline

Q Review of Last Lecture



Regression

Predicting a continuous outcome variable using past observations

@ temperature, amount of rainfall, house price, etc.

Key difference from classification
@ continuous vs discrete
@ measure prediction errors differently.

o lead to quite different learning algorithms.

Linear Regression: regression with linear models: f(x) = w'a
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Review of Last Lecture

Least square solution

w* = argwmin RSS(w) m? Y1
. 2 &) Y2

= argmin || Xw — y||5 X = . Y= :

w . .

= (XTX) ' Xy zy UN

Two approaches to find the minimum:
o find stationary points by setting gradient = 0

o “complete the square”
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Review of Last Lecture

Regression with nonlinear basis

0.5

Model: f(z) = wT¢(x) where w € RM

Similar least square solution: w* = (<I>T<I')_1 Ty



Underfitting and Overfitting

. > —o6— Traini
M < 2is underfitting the data _e_T;aS'{"”g

@ large training error

o2}
o large test error 205

M > 9 is overfitting the data

@ small training error

©o(

0 3 6
o large test error M
How to prevent overfitting? more data + regularization

w* = argmin (RSS(w) + A\|w|3) = (27® + /\I)*1 3Ty
w
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Review of Last Lecture

General idea to derive ML algorithms

Step 1. Pick a set of models F
o eg F={f(x)=wTz|wecRP}
o eg F={f(z)=w"®()|weR"}

Step 2. Define error/loss L(y',y)

Step 3. Find (regularized) empirical risk minimizer (ERM):

ff= argmlnz L(f(zn),yn) + AR(f)

fer

n=1

ML becomes optimization
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Review of Last Lecture

General idea to derive ML algorithms

Step 1. Pick a set of models F
o eg F={f(x)=wTz|wecRP}
o eg F={f(z)=w"®()|weR"}

Step 2. Define error/loss L(y',y)

Step 3. Find (regularized) empirical risk minimizer (ERM):

ff= argmlnz L(f(zn),yn) + AR(f)

fer

n=1

ML becomes optimization

Today: another exercise of this recipe + a closer look at Step 3
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Classification

Recall the setup:
o input (feature vector): = € RP
e output (label): y € [C] ={1,2,---,C}
@ goal: learn a mapping f : RP — [C]
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Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

This lecture: binary classification
@ Number of classes: C =2

@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...)
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Linear Classifiers and Surrogate Losses

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

This lecture: binary classification
@ Number of classes: C =2

@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:
@ require carrying the training set

@ intuitive but more like a heuristic
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Deriving classification algorithms

Let’s follow the recipe:

Step 1. Pick a set of models F.
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Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTx?

Sign of wTx predicts the label:

. T +1 ifwTz >0
sign(w™x) =\ ) Ty <0

(Sometimes use sgn for sign too.)
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The models

The set of (separating) hyperplanes:

F ={f(x) = sgn(w'x) | w € RP}



Linear Classifiers and Surrogate Losses

The models

The set of (separating) hyperplanes:

F ={f(x) = sgn(w'x) | w € RP}

Good choice for linearly separable data, i.e., Jw s.t.

sgn (men) = Yn

for all n € [N].
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Linear Classifiers and Surrogate Losses

The models

The set of (separating) hyperplanes:

F ={f(x) = sgn(w'x) | w € RP}

Good choice for linearly separable data, i.e., Jw s.t.

sgn(men) =y, Of Ypw xp>0

for all n € [N].
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Linear Classifiers and Surrogate Losses

The models

Still makes sense for “almost” linearly separable data




Linear Classifiers and Surrogate Losses

The models

For clearly not linearly separable data,
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Linear Classifiers and Surrogate Losses

The models

For clearly not linearly separable data,
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Again can apply a nonlinear mapping ®:
F={f(x) = sgn(w" ®(x)) | w € RM}

More discussions in future lectures.

15 / 55



0-1 Loss

Step 2. Define error/loss L(y',y).
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0-1 Loss
Step 2. Define error/loss L(y',y).
Most natural one for classification: 0-1 loss L(y/,y) = I[y’ # y]

For classification, more convenient to look at the loss as a function of
ywTx. That is, with

Eo_l(z) = ]I[Z S 0]

L5

L L L L
2 1 0 1 2

the loss for hyperplane w on example (x,y) is £o.1 (yw ' )
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Linear Classifiers and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

2.0

LS
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Linear Classifiers and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

2.0

LS

0.5

L L
-2 -1 0 1 2

Even worse, minimizing 0-1 loss is NP-hard in general.



Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss
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Solution: find a convex surrogate loss
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Surrogate Losses

Solution: find a convex surrogate loss

2.0

15

0.5

L L
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@ perceptron 10ss fperceptron(2) = max{0, —z} (used in Perceptron)

@ hinge l0ss lhinge(2) = max{0,1 — z}(used in SVM and many others)



Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

2.0

@ perceptron 10ss fperceptron(2) = max{0, —z} (used in Perceptron)
o hinge l0ss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss liogistic(2) = log(1 + exp(—=z)) (used in logistic regression;
the base of log doesn't matter)
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Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

N N
w* = argmme ypwTx,) = argmin — ZE ypwrx,)
weRP n=1 weRP —1

where £(-) can be perceptron/hinge/logistic loss



Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

N N
w* = argmin E L(ypw a:n) = argmln— E L(ypw mn)
weRP weRP

where £(-) can be perceptron/hinge/logistic loss

@ no closed-form in general (unlike linear regression)
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Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:
N N
w* = argmmZE Ypwlx,) = argmln— ZE Ypw )
weRP weRD
where £(-) can be perceptron/hinge/logistic loss

@ no closed-form in general (unlike linear regression)

@ can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense
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Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:
N N
w* = argmmZE YnW a:n) = argmln— ZE YnW ar;n)
weRP weRP
where £(-) can be perceptron/hinge/logistic loss
@ no closed-form in general (unlike linear regression)
@ can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.

19 /55
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@ Second-order methods



A Detour of Numerical Optimization Methods

Numerical optimization

Problem setup
e Given: a function F'(w)

e Goal: minimize F(w) (approximately)



A Detour of Numerical Optimization Methods First-order methods

First-order optimization methods

Two simple yet extremely popular methods
e Gradient Descent (GD): simple and fundamental

e Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems
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A Detour of Numerical Optimization Methods First-order methods

First-order optimization methods

Two simple yet extremely popular methods
e Gradient Descent (GD): simple and fundamental

e Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems

Gradient is sometimes referred to as first-order information of a function.
Therefore, these methods are called first-order methods.
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Gradient Descent (GD)

GD: keep moving in the negative gradient direction



A Detour of Numerical Optimization Methods

Gradient Descent (GD)

GD: keep moving in the negative gradient direction
Start from some (random) w®. For t =0,1,2,...
w) — w® — yVF(w®)

where n > 0 is called step size or learning rate




Firs-order methods
Gradient Descent (GD)

GD: keep moving in the negative gradient direction

Start from some (random) w(®. Fort =0,1,2,...
w) — w® — yVF(w®)

where n > 0 is called step size or learning rate

@ in theory n should be set in terms of some parameters of F'
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Firs-order methods
Gradient Descent (GD)

GD: keep moving in the negative gradient direction

Start from some (random) w(®. Fort =0,1,2,...
w) — w® — yVF(w®)

where n > 0 is called step size or learning rate

@ in theory n should be set in terms of some parameters of F'

@ in practice we often try different small values

Stop when F(w®)) does not change much or ¢ reaches a fixed number
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Why GD?

Intuition: by first-order Taylor approximation

F(w) = Fw®) + VF(w®)T (w — w®)
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Intuition: by first-order Taylor approximation

F(w) ~ F(w®) + VF(w®)T (w — w®)

GD ensures  F(w'™*Y) ~ F(w®) + VF(w®)T (w1 — w®)
= F(w") — | VF(w")|3 < F(w®)



A Detour of Numerical Optimization Methods First-order methods

Intuition: by first-order Taylor approximation

F(w) ~ F(w®) + VF(w®)T(w — w®)

GD ensures  F(w'™*Y) ~ F(w®) + VF(w®)T (w1 — w®)
= F(w) = | VF ()|} < F(w®)

reasonable 7 decreases function value
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A Detour of Numerical Optimization Methods First-order methods

Intuition: by first-order Taylor approximation

F(w) ~ F(w®) + VF(w®)T(w — w®)

GD ensures  F(w'™*Y) ~ F(w®) + VF(w®)T (w1 — w®)
= F(w) = | VF ()|} < F(w®)

reasonable 7 decreases function value but large n is unstable

See Colab Example 1
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A Detour of Numerical Optimization Methods First-order methods

More on learning rate

Learning rate n might need to be changing over iterations

e often decreasing, according to some schedule (e.g., n ~ % or %)

e think F(w) = |w|

Adaptive and automatic step size tuning is an active research area
@ notable examples: AdaGrad, Adam, etc.

@ ideas: tune 7 based on past gradient information
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Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction

SGD: keep moving in some noisy negative gradient direction



Firs-order methods
Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction
SGD: keep moving in some noisy negative gradient direction
w) — w® — yVF(w®)

where VF(w®) is a random variable (called stochastic gradient) s.t.

E [VF('w(t))} = VE(w®) (unbiasedness)
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Firs-order methods
Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction
SGD: keep moving in some noisy negative gradient direction
w) — w® — yVF(w®)

where VF(w®) is a random variable (called stochastic gradient) s.t.

E [VF('w(t))} = VE(w®) (unbiasedness)

See Colab Example 1.

More examples coming soon. Key point: it could be much faster to obtain
a stochastic gradient!
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A Detour of Numerical Optimization Methods

Convergence guarantees — convex objectives

Many for both GD and SGD on convex objectives.
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Convergence guarantees — convex objectives

Many for both GD and SGD on convex objectives.
They tell you how many iterations ¢ (in terms of €) needed to achieve

Fw®) - F(w*) < ¢
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — convex objectives

Many for both GD and SGD on convex objectives.
They tell you how many iterations ¢ (in terms of €) needed to achieve

Fw®) - F(w*) < ¢

@ usually SGD needs more iterations

@ but again each iteration takes less time

27 / 55
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Even for nonconvex objectives, some guarantees exist: e.g. how many
iterations ¢ (in terms of €) needed to achieve
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

Even for nonconvex objectives, some guarantees exist: e.g. how many
iterations ¢ (in terms of €) needed to achieve

IVEw)] < e

e that is, how close w(® is as an approximate stationary point
o for convex objectives, stationary point = global minimizer

@ for nonconvex objectives, what does it mean?
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Convergence guarantees — nonconvex objectives

A stationary point can be a local minimizer
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A stationary point can be a local minimizer or even a local/global
maximizer




A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can be a local minimizer or even a local/global
maximizer (but the latter is not an issue for GD/SGD).
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Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local

maximizer! This is called a saddle point.

flw) = wi —w}

Vf(w) = (2w, —2ws)

so w = (0,0) is stationary

local max for blue direction (w; = 0)
local min for green direction (wg = 0)

but GD gets stuck at (0,0) only if
initialized along the green direction

so not a real issue especially when
initialized randomly (Colab Example 2)
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Convergence guarantees — nonconvex objectives

But not all saddle points look like a “saddle” ...
o f(w)=wi+wj
o Vf(w) = (2w, 3w3)
e so w = (0,0) is stationary

@ not local min/max for blue direction
(w1 =0)

@ GD gets stuck at (0,0) for any initial
point with wy > 0 and small n (Colab
Example 3)

Even worse, distinguishing local min and saddle point is generally NP-hard.
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Summary:
@ GD/SGD converges to a stationary point
@ for convex objectives, this is all we need
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saddle points (random initialization escapes “good” saddle points)
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees

Summary:
@ GD/SGD converges to a stationary point
@ for convex objectives, this is all we need

@ for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

@ recent research shows that many problems have no “bad” saddle
points or even “bad” local minimizers

@ justify the practical effectiveness of GD/SGD (default method to try)
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Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

F(w) ~ F(w®) + VF(w " (w — w®)
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Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

F(w) = F(w®) + VF(w®)T (w — w®)

What if we look at second-order Taylor approximation?

1
F(w) =~ F(w®) + VF(w®)T (w — w®) + 5w = w )T Hy(w — w®)
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Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

F(w) = F(w®) + VF(w®)T (w — w®)

What if we look at second-order Taylor approximation?
1
F(w) ~ F(w®) + VE(wT (w — w®) + 5w = wNTHy(w — w®)

where H; = V2F(w®) € RP*P is the Hessian of F at w, i.e.,

0?F (w)

tij =
" 8wi8wj w=w?)

(think “second derivative” when D = 1)
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A Detour of Numerical Optimization Methods [EES{Ielelyls Belde [N T [

Newton method
If we minimize the second-order approximation (via “complete the square”)

F(w)

~
~

Flw®) + VE(w®)T (w — w®) + %(w — w )T H (w — w®)
1 T
=5 (’w —w® H[1VF(w(t))) H; <'w —w® + H,flVF(w(t))) + cnt

wAt WA{t+1}
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A Detour of Numerical Optimization Methods [EES{Ielelyls Belde [N T [

Newton method

If we minimize the second-order approximation (via “complete the square”)

F(w)

~ Fw®) + VF(w®)T (w — w?) + %(w — w )T H (w — w®)
_1

2

T
('w —w® + H[1VF(w(t))) H; <'w —w® + H,flVF(w(t))) + cnt

for strictly convex F' (so H; is positive
definite), we obtain Newton method:

w) — w® — H'VF(w®)

wAt WA{t+1}
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Comparing GD and Newton

w) — w® -V F(w®) (GD)
w)  w® — H'WF(w®) (Newton)

Both are iterative optimization procedures,
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e
Comparing GD and Newton

w — w® — v F(w®) (GD)
w  w® — H 'Y F(w®) (Newton)

Both are iterative optimization procedures, but Newton method

@ has no learning rate 7 (so no tuning needed!)
@ converges super fast in terms of #iterations (for convex objectives)

e e.g. how many iterations needed when applied to a quadratic?

computing Hessian in each iteration is very slow though

@ does not really make sense for nonconvex objectives

35/ 55



Outline

@ Perceptron



Recall the perceptron loss

T
perceptron yn'w mn)

ZIH

max{0, —y,w wn}

2|H



Recall the perceptron loss

ZIH

max{0, —y,w'xz,}

N

T
Z perceptron yn'w mn)
N

2|H

Let's approximately minimize it with GD/SGD.



Applying GD to perceptron loss

Objective

N
1
F(w) = ¥ Z max{0, —y,w x,}
n=1



Applying GD to perceptron loss

Objective

N
1
F(w) = ¥ Z max{0, —y,w xz,}

Gradient (or really sub-gradient) is

N
1
=N Z =1 ynw z, < 0lypxn,

n=1

(only misclassified examples contribute to the gradient)
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Gradient (or really sub-gradient) is

| X
Z ]Iyn'w z, < 0lypxn,

n:l
(only misclassified examples contribute to the gradient)

GD update
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Applying GD to perceptron loss

Objective

N
1
F(w) = ¥ Z max{0, —y,w xz,}

Gradient (or really sub-gradient) is

N
1
=N Z =1 ynw z, < 0lypxn,

n=

—

(only misclassified examples contribute to the gradient)
GD update

N
w < w+ Z ynw x, < O]ynwn

L
N

Slow: each update makes one pass of the entire training set!
38 / 55



Applying SGD to perceptron loss

How to construct a stochastic gradient?



Applying SGD to perceptron loss

How to construct a stochastic gradient?
One common trick: pick one example n € [N] uniformly at random, let
VE(w®) = ~Iy,w z, < 0)ynz,

clearly unbiased (convince yourself).
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Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —]I[yana:n < Olynxy

clearly unbiased (convince yourself).

SGD update:
w < w + nl[yanmn < O]ynwn

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!

39 / 55
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The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

Repeat:

@ Pick a data point x,, uniformly at random

o If sgn(w"x,) # yn
W <— W+ YTy

Note:

@ w is always a linear combination of the training examples
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The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

Repeat:

@ Pick a data point x,, uniformly at random

o If sgn(w"x,) # yn
W <— W+ YTy

Note:
@ w is always a linear combination of the training examples

@ why n =17 Does not really matter in terms of prediction of w

40 / 55
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Why does it make sense?

If the current weight w makes a mistake
yanccn <0
then after the update w’' = w + y,x,, we have

T T

/T 2T
YnW' Ty = YW Ty + Y5, Ty Ty 2> YpW Ty,



Why does it make sense?

If the current weight w makes a mistake
yanasn <0
then after the update w’ = w + y,x, we have
T
ynw' T, = yan:cn + yiwzwn > yana:n

Thus it is more likely to get it right after the update.
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Example: Iris Dataset

Iris Dataset Scatter Plot (Setosa vs Non-Setosa)

4.5
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Example: Perceptron for Iris Dataset

Iteration 25 Iteration 50

Iteration 1

a 5 5 7 . 4 5 5 7 4 H 6 7
Iteration 200 Iteration 1000




Any theory?

If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0




Any theory?

If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0

There are also guarantees when the data are not linearly separable.
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Logistic Regression

A simple view

In one sentence: find the minimizer of

1
F(w = N Zglogistic(yane'Bn)
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Logistic Regression

A simple view

In one sentence: find the minimizer of

N
1
F('w =~ Zzlogistic(yane'Bn)

n 1

]_ + e—ynw :Bn)

uMz

Before optimizing it: why logistic loss? and why “regression”?



Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities



R T
Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities

One way: sigmoid function + linear model
Py = +1 | x;w) = o(w'x)

where o is the sigmoid function:

0.9]
0.8|
0.7,

1 0.6|

0.5]

0.4
0.3]
0.2]

0.1
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Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability) '
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Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)

o o(w'x) > 0.5 < wlz > 0, consistent
with predicting the label with sgn(wTx)

48 / 55



A TS
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)

o o(w'x) > 0.5 < wlz > 0, consistent
with predicting the label with sgn(wTx)

o larger whx = larger o(w?’

confidence in label 1

x) = higher

48 / 55



A TS
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)

o o(w'x) > 0.5 < wlz > 0, consistent
with predicting the label with sgn(wTx)

o larger whx = larger o(w?’

confidence in label 1

x) = higher

@ 0(z)+o(—z)=1forall z

48 / 55



A probabilistic view
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)

o o(wTz) > 0.5 < wlx >0, consistent
with predicting the label with sgn(wTx)

o larger whx = larger o(w?’

confidence in label 1

x) = higher

@ 0(z)+o(—2z)=1forall z
The probability of label —1 is naturally
1-Ply=+1|z;w)=1-o(w'e) =o(—w'x)
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A probabilistic view
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)

o o(wTz) > 0.5 < wlx >0, consistent
with predicting the label with sgn(wTx)

o larger whx = larger o(w?’

confidence in label 1

x) = higher

@ 0(z)+o(—z)=1forall z

The probability of label —1 is naturally

1-Ply=+1|z;w)=1-o(w'e) =o(—w'x)

and thus )
. _ T\ — .
Py | @iw) = o(yw’a) = —— o

48 / 55



Logistic Regression

How to regress with discrete labels?

What we observe are labels, not probabilities.



Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view
@ assume data is independently generated in this way by some w

e perform Maximum Likelihood Estimation (MLE)
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Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view
@ assume data is independently generated in this way by some w

e perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1,--- , y, given
T1,-++ ,Zp, as a function of some w?

N
P(w) = H P(yn | n; w)

MLE: find w* that maximizes the probability P(w)

49 / 55



The MLE solution

N
w* = argmax P(w) = argmax H P(yn | n;w)

w n=1
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N
= argmax InP Ty W
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The MLE solution

N
w* = argmax P(w) = argmax H P(yn | n;w)

w n=1

N N
= argmax InP Tn;w) = argmin —InP Ty, W
gw Z (n | Tn;w) gw Z (Un | &n;w)

n=1 n=1

N
= argmin Z In(1+ e_y"wTw")
w n=1



A probabilistic view
The MLE solution

N
w* = argmax P(w) = argmax H P(yn | n;w)
w

w n=1

N N
= argmaxz InP(yy, | n;w) = argminz —InP(y, | n; w)
w n=1 w n=1

N N
= argmin Z In(1+ e_y"“’Tm") = argmin Z €|ogist;c(yn'wTaf;n)

w n=1 w n=1
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A probabilistic view
The MLE solution

N
w* = argmax P(w) = argmax H P(yn | n;w)
w

w n=1

N N
= argmaxz InP(yy, | n;w) = argminz —InP(y, | n; w)
w n=1 w n=1

N N
= argmin Z In(1+ e_y"“’Tm") = argmin Z €|ogist;c(yn'wTaf;n)
w n=1 w n=1

= argmin F'(w)
w

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!
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Back to algorithms: apply SGD again

w < w — NV F(w)

=w - nvwelogistic(yanwn) (n € [N] is drawn u.a.r.)
aflogistic(z)
—won (TR L e
_e_z
=w — T’ (1 + e_z Z:yanmn) ynwn

w + o (—ypw Ty )y xn



e
Back to algorithms: apply SGD again

w — w — nVF(w)

=w— nvwglogistic(yanxn) (n S [N] is drawn u.a.r.)
8elogistic(z)
= w — _ - €T
K < 0z z=ynwTae, Ynin
= w — x
" <1 +e % z:yan:cn) Ynin

_yanwn)ynwn

(
= w + NP(—yn | Tn; W)Yy
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e
Back to algorithms: apply SGD again

w — w — nVF(w)

=w— nvwglogistic(yanxn) (n S [N] is drawn u.a.r.)
8elogistic(z)
= w — _ - €T
K < 0z z=ynwTae, Ynin
—wen <1 +e F z:yan:cn) nin

=w+ na(—yana:n)yna:n

=w + NP(=yn | Tn; W)ynn
This is a soft version of Perceptron!
P(—y,|@n; w)  versus [y, # sgn(w’x,)]
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Applying Newton to logistic loss

v'wglogistic(yn'men) = _J(_yana’n)ynmn

90(2)
0z

v»?uflogistic(yn'men) = ( ) y,%:):n:n};
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Applying Newton to logistic loss

v'wglogistic(yn'wal’n) = _J(_yana’n)ynmn

0o (z)
v121:€|0gistic(yn'wa’?n) = ( P ?/?zwnw};
e ”? T
- ((1 + 6—2)2 z:—yanmn) Lniy




Applying Newton to logistic loss

v'wglogistic(yn'wal’n) = _J(_yana’n)ynmn

v»?uflogistic(yn'men) = ( ) y,%:):n:c};

z=—ynwTxy,

e * T
= | 77— In
((1+e—z)2 z=—yanmn) neLy
T

= O'(yn'wTa:n) (1 - U(yanwn)) Lndy




e
Applying Newton to logistic loss

vwglogistic(yn"-UT:Bn) = *U(*yanwn)ynmn
T

= Ty
( 1 +e z Z=yn’UJTzn> e
T

= o(ynw Ccn) (1 - U(yanmn)) Lndy

V2 gloglstlc(ynw mn )yimnmz

z—fyanzn

Exercises:

@ why is the Hessian of logistic loss positive semidefinite?
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e
Applying Newton to logistic loss

vwflogistic(yn’men) = *U(*yanwn)ynwn
T

= L
( 1+e Z z:yan:z:n) nen
T

= o(ynw Ccn) (1 - U(yanmn)) Lndy

V2 Eloglstlc(ynw mn )yimnmg

z—fyanzn

Exercises:
@ why is the Hessian of logistic loss positive semidefinite?

@ can we apply Newton method to perceptron/hinge loss?
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Logistic Regression

Summary

Linear models for classification:
Step 1. Model is the set of separating hyperplanes

F = {(z) = sgn(w”"@) | w € R}



Logistic Regression

Step 2. Pick the surrogate loss

2.0

0.5

@ perceptron 10ss Lperceptron(2) = max{0, —z} (used in Perceptron)
o hinge loss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss ogistic(2) = log(1 +exp(—z)) (used in logistic regression)



Logistic Regression Algorithms

Step 3. Find empirical risk minimizer (ERM):

w* = argmin — Zf ypw ' x,)

w€RDP
using
e GD: w < w — nVEF(w)
e SGD:  w + w — nVF(w) (E[VF(w)] = VF(w))

e Newton: w + w — (VzF(w))_1 VF(w)
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