
CSCI567 Machine Learning (Fall 2025)

Haipeng Luo

University of Southern California

Oct 3, 2025

1 / 59

Exam 1 Logistics

Date: Friday, Oct 17th

Time: 2:00-4:00pm

Location: will be announced on Piazza

Individual effort, close-book (no cheat sheet), no calculators or any other
electronics, but need your phone to upload your solutions to Gradescope
from 4:00-4:20pm

2 / 59

Exam 1 Logistics

Date: Friday, Oct 17th

Time: 2:00-4:00pm

Location: will be announced on Piazza

Individual effort, close-book (no cheat sheet), no calculators or any other
electronics, but need your phone to upload your solutions to Gradescope
from 4:00-4:20pm

2 / 59

Exam 1 Coverage

Coverage: Lectures 1-6.

Five problems in total

one problem of 15 multiple-choice multiple-answer questions

0.5 point for selecting (not selecting) each correct (incorrect) answer

“which of the following is correct?” does not imply one correct answer

four other homework-like problems, each has a couple sub-problems

linear regression, linear classifiers, backpropagation, kernel, SVM

3 / 59

Exam 1 Coverage

Coverage: Lectures 1-6.

Five problems in total

one problem of 15 multiple-choice multiple-answer questions

0.5 point for selecting (not selecting) each correct (incorrect) answer

“which of the following is correct?” does not imply one correct answer

four other homework-like problems, each has a couple sub-problems

linear regression, linear classifiers, backpropagation, kernel, SVM

3 / 59

Exam 1 Coverage

Coverage: Lectures 1-6.

Five problems in total

one problem of 15 multiple-choice multiple-answer questions

0.5 point for selecting (not selecting) each correct (incorrect) answer

“which of the following is correct?” does not imply one correct answer

four other homework-like problems, each has a couple sub-problems

linear regression, linear classifiers, backpropagation, kernel, SVM

3 / 59

Exam 1 Coverage

Coverage: Lectures 1-6.

Five problems in total

one problem of 15 multiple-choice multiple-answer questions

0.5 point for selecting (not selecting) each correct (incorrect) answer

“which of the following is correct?” does not imply one correct answer

four other homework-like problems, each has a couple sub-problems

linear regression, linear classifiers, backpropagation, kernel, SVM

3 / 59

Exam 1 Coverage

Coverage: Lectures 1-6.

Five problems in total

one problem of 15 multiple-choice multiple-answer questions

0.5 point for selecting (not selecting) each correct (incorrect) answer

“which of the following is correct?” does not imply one correct answer

four other homework-like problems, each has a couple sub-problems

linear regression, linear classifiers, backpropagation, kernel, SVM

3 / 59

Exam 1 Coverage

Coverage: Lectures 1-6.

Five problems in total

one problem of 15 multiple-choice multiple-answer questions

0.5 point for selecting (not selecting) each correct (incorrect) answer

“which of the following is correct?” does not imply one correct answer

four other homework-like problems, each has a couple sub-problems

linear regression, linear classifiers, backpropagation, kernel, SVM

3 / 59

Exam 1 Coverage

Coverage: Lectures 1-6.

Five problems in total

one problem of 15 multiple-choice multiple-answer questions

0.5 point for selecting (not selecting) each correct (incorrect) answer

“which of the following is correct?” does not imply one correct answer

four other homework-like problems, each has a couple sub-problems

linear regression, linear classifiers, backpropagation, kernel, SVM

3 / 59

Tips

Best way to prepare: focus on the sample exam (on course website)!

make sure to fully understand those problems (solutions to be posted
next week)

no need to remember most formulas from the lectures

expect to see variants of these questions

sample exam might appear challenging, but hopefully the actual one
is less so given the practice from the sample exam

4 / 59

Tips

Best way to prepare: focus on the sample exam (on course website)!

make sure to fully understand those problems (solutions to be posted
next week)

no need to remember most formulas from the lectures

expect to see variants of these questions

sample exam might appear challenging, but hopefully the actual one
is less so given the practice from the sample exam

4 / 59

Tips

Best way to prepare: focus on the sample exam (on course website)!

make sure to fully understand those problems (solutions to be posted
next week)

no need to remember most formulas from the lectures

expect to see variants of these questions

sample exam might appear challenging, but hopefully the actual one
is less so given the practice from the sample exam

4 / 59

Tips

Best way to prepare: focus on the sample exam (on course website)!

make sure to fully understand those problems (solutions to be posted
next week)

no need to remember most formulas from the lectures

expect to see variants of these questions

sample exam might appear challenging, but hopefully the actual one
is less so given the practice from the sample exam

4 / 59

Tips

Best way to prepare: focus on the sample exam (on course website)!

make sure to fully understand those problems (solutions to be posted
next week)

no need to remember most formulas from the lectures

expect to see variants of these questions

sample exam might appear challenging, but hopefully the actual one
is less so given the practice from the sample exam

4 / 59

Outline

1 Support vector machines

2 Decision tree

3 Boosting

5 / 59

Support vector machines

Outline

1 Support vector machines

2 Decision tree

3 Boosting

6 / 59

Support vector machines

Support vector machines (SVM)

most commonly used classification algorithms before deep learning

works well with the kernel trick

strong theoretical guarantees

We focus on binary classification here.

7 / 59

Support vector machines

Support vector machines (SVM)

most commonly used classification algorithms before deep learning

works well with the kernel trick

strong theoretical guarantees

We focus on binary classification here.

7 / 59

Support vector machines Primal formulation of SVM

Primal formulation

In one sentence: linear model with L2 regularized hinge loss.

Recall

perceptron loss ℓperceptron(z) = max{0,−z} → Perceptron

logistic loss ℓlogistic(z) = log(1 + exp(−z)) → logistic regression

hinge loss ℓhinge(z) = max{0, 1− z} → SVM

8 / 59

Support vector machines Primal formulation of SVM

Primal formulation

In one sentence: linear model with L2 regularized hinge loss. Recall

perceptron loss ℓperceptron(z) = max{0,−z} → Perceptron

logistic loss ℓlogistic(z) = log(1 + exp(−z)) → logistic regression

hinge loss ℓhinge(z) = max{0, 1− z} → SVM

8 / 59

Support vector machines Primal formulation of SVM

Primal formulation

For a linear model (w, b), this means

min
w,b

∑
n

max
{
0, 1− yn(w

Tϕ(xn) + b)
}
+

λ

2
∥w∥22

recall yn ∈ {−1,+1}

a nonlinear mapping ϕ is applied

the bias/intercept term b is used explicitly (think about why after this
lecture)

So why L2 regularized hinge loss?

9 / 59

Support vector machines Primal formulation of SVM

Primal formulation

For a linear model (w, b), this means

min
w,b

∑
n

max
{
0, 1− yn(w

Tϕ(xn) + b)
}
+

λ

2
∥w∥22

recall yn ∈ {−1,+1}

a nonlinear mapping ϕ is applied

the bias/intercept term b is used explicitly (think about why after this
lecture)

So why L2 regularized hinge loss?

9 / 59

Support vector machines Primal formulation of SVM

Primal formulation

For a linear model (w, b), this means

min
w,b

∑
n

max
{
0, 1− yn(w

Tϕ(xn) + b)
}
+

λ

2
∥w∥22

recall yn ∈ {−1,+1}

a nonlinear mapping ϕ is applied

the bias/intercept term b is used explicitly (think about why after this
lecture)

So why L2 regularized hinge loss?

9 / 59

Support vector machines Primal formulation of SVM

Primal formulation

For a linear model (w, b), this means

min
w,b

∑
n

max
{
0, 1− yn(w

Tϕ(xn) + b)
}
+

λ

2
∥w∥22

recall yn ∈ {−1,+1}

a nonlinear mapping ϕ is applied

the bias/intercept term b is used explicitly (think about why after this
lecture)

So why L2 regularized hinge loss?

9 / 59

Support vector machines Primal formulation of SVM

Primal formulation

For a linear model (w, b), this means

min
w,b

∑
n

max
{
0, 1− yn(w

Tϕ(xn) + b)
}
+

λ

2
∥w∥22

recall yn ∈ {−1,+1}

a nonlinear mapping ϕ is applied

the bias/intercept term b is used explicitly (think about why after this
lecture)

So why L2 regularized hinge loss?

9 / 59

Support vector machines Primal formulation of SVM

Geometric motivation: separable case

When data is linearly separable, there are infinitely many hyperplanes
with zero training error:

HH�

H��

So which one should we choose?

10 / 59

Support vector machines Primal formulation of SVM

Geometric motivation: separable case

When data is linearly separable, there are infinitely many hyperplanes
with zero training error:

HH�

H��

So which one should we choose?

10 / 59

Support vector machines Primal formulation of SVM

Intuition

The further away from data points the better.

How to formalize this intuition?

11 / 59

Support vector machines Primal formulation of SVM

Intuition

The further away from data points the better.

How to formalize this intuition?

11 / 59

Support vector machines Primal formulation of SVM

Distance to hyperplane

What is the distance from a point x to a hyperplane {x : wTx+ b = 0}?

Assume the projection is x− ℓ w
∥w∥2 , then

0 = wT

(
x− ℓ

w

∥w∥2

)
+ b = wTx− ℓ∥w∥+ b

and thus ℓ = wTx+b
∥w∥2 .

Therefore the distance is
|wTx+ b|
∥w∥2

For a hyperplane that correctly classifies (x, y), the distance becomes

y(wTx+ b)

∥w∥2

12 / 59

Support vector machines Primal formulation of SVM

Distance to hyperplane

What is the distance from a point x to a hyperplane {x : wTx+ b = 0}?

Assume the projection is x− ℓ w
∥w∥2 ,

then

0 = wT

(
x− ℓ

w

∥w∥2

)
+ b = wTx− ℓ∥w∥+ b

and thus ℓ = wTx+b
∥w∥2 .

Therefore the distance is
|wTx+ b|
∥w∥2

For a hyperplane that correctly classifies (x, y), the distance becomes

y(wTx+ b)

∥w∥2

12 / 59

Support vector machines Primal formulation of SVM

Distance to hyperplane

What is the distance from a point x to a hyperplane {x : wTx+ b = 0}?

Assume the projection is x− ℓ w
∥w∥2 , then

0 = wT

(
x− ℓ

w

∥w∥2

)
+ b = wTx− ℓ∥w∥+ b

and thus ℓ = wTx+b
∥w∥2 .

Therefore the distance is
|wTx+ b|
∥w∥2

For a hyperplane that correctly classifies (x, y), the distance becomes

y(wTx+ b)

∥w∥2

12 / 59

Support vector machines Primal formulation of SVM

Distance to hyperplane

What is the distance from a point x to a hyperplane {x : wTx+ b = 0}?

Assume the projection is x− ℓ w
∥w∥2 , then

0 = wT

(
x− ℓ

w

∥w∥2

)
+ b = wTx− ℓ∥w∥+ b

and thus ℓ = wTx+b
∥w∥2 .

Therefore the distance is
|wTx+ b|
∥w∥2

For a hyperplane that correctly classifies (x, y), the distance becomes

y(wTx+ b)

∥w∥2

12 / 59

Support vector machines Primal formulation of SVM

Distance to hyperplane

What is the distance from a point x to a hyperplane {x : wTx+ b = 0}?

Assume the projection is x− ℓ w
∥w∥2 , then

0 = wT

(
x− ℓ

w

∥w∥2

)
+ b = wTx− ℓ∥w∥+ b

and thus ℓ = wTx+b
∥w∥2 .

Therefore the distance is
|wTx+ b|
∥w∥2

For a hyperplane that correctly classifies (x, y), the distance becomes

y(wTx+ b)

∥w∥2
12 / 59

Support vector machines Primal formulation of SVM

Maximizing margin

Margin: the smallest distance from all training points to the hyperplane

margin of (w, b) = min
n

yn(w
Tϕ(xn) + b)

∥w∥2

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2

The intuition “the further away the better” translates to solving

max
w,b

min
n

yn(w
Tϕ(xn) + b)

∥w∥2
= max

w,b

1

∥w∥2
min
n

yn(w
Tϕ(xn) + b)

13 / 59

Support vector machines Primal formulation of SVM

Maximizing margin

Margin: the smallest distance from all training points to the hyperplane

margin of (w, b) = min
n

yn(w
Tϕ(xn) + b)

∥w∥2

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2

The intuition “the further away the better” translates to solving

max
w,b

min
n

yn(w
Tϕ(xn) + b)

∥w∥2

= max
w,b

1

∥w∥2
min
n

yn(w
Tϕ(xn) + b)

13 / 59

Support vector machines Primal formulation of SVM

Maximizing margin

Margin: the smallest distance from all training points to the hyperplane

margin of (w, b) = min
n

yn(w
Tϕ(xn) + b)

∥w∥2

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2

The intuition “the further away the better” translates to solving

max
w,b

min
n

yn(w
Tϕ(xn) + b)

∥w∥2
= max

w,b

1

∥w∥2
min
n

yn(w
Tϕ(xn) + b)

13 / 59

Support vector machines Primal formulation of SVM

Rescaling

Note: rescaling (w, b) does not change the hyperplane at all.

We can thus always scale (w, b) s.t. minn yn(w
Tϕ(xn) + b) = 1

The margin then becomes

margin of (w, b)

=
1

∥w∥2
min
n

yn(w
Tϕ(xn) + b)

=
1

∥w∥2

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1

14 / 59

Support vector machines Primal formulation of SVM

Rescaling

Note: rescaling (w, b) does not change the hyperplane at all.

We can thus always scale (w, b) s.t. minn yn(w
Tϕ(xn) + b) = 1

The margin then becomes

margin of (w, b)

=
1

∥w∥2
min
n

yn(w
Tϕ(xn) + b)

=
1

∥w∥2

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1

14 / 59

Support vector machines Primal formulation of SVM

Rescaling

Note: rescaling (w, b) does not change the hyperplane at all.

We can thus always scale (w, b) s.t. minn yn(w
Tϕ(xn) + b) = 1

The margin then becomes

margin of (w, b)

=
1

∥w∥2
min
n

yn(w
Tϕ(xn) + b)

=
1

∥w∥2

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1

14 / 59

Support vector machines Primal formulation of SVM

Rescaling

Note: rescaling (w, b) does not change the hyperplane at all.

We can thus always scale (w, b) s.t. minn yn(w
Tϕ(xn) + b) = 1

The margin then becomes

margin of (w, b)

=
1

∥w∥2
min
n

yn(w
Tϕ(xn) + b)

=
1

∥w∥2

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1

14 / 59

Support vector machines Primal formulation of SVM

Summary for separable data

For a separable training set, we aim to solve

max
w,b

1

∥w∥2
s.t. min

n
yn(w

Tϕ(xn) + b) = 1

This is equivalent to

min
w,b

1

2
∥w∥22

s.t. yn(w
Tϕ(xn) + b) ≥ 1, ∀ n

SVM is thus also called max-margin classifier. The constraints above are
called hard-margin constraints.

15 / 59

Support vector machines Primal formulation of SVM

Summary for separable data

For a separable training set, we aim to solve

max
w,b

1

∥w∥2
s.t. min

n
yn(w

Tϕ(xn) + b) = 1

This is equivalent to

min
w,b

1

2
∥w∥22

s.t. yn(w
Tϕ(xn) + b) ≥ 1, ∀ n

SVM is thus also called max-margin classifier. The constraints above are
called hard-margin constraints.

15 / 59

Support vector machines Primal formulation of SVM

Summary for separable data

For a separable training set, we aim to solve

max
w,b

1

∥w∥2
s.t. min

n
yn(w

Tϕ(xn) + b) = 1

This is equivalent to

min
w,b

1

2
∥w∥22

s.t. yn(w
Tϕ(xn) + b) ≥ 1, ∀ n

SVM is thus also called max-margin classifier. The constraints above are
called hard-margin constraints.

15 / 59

Support vector machines Primal formulation of SVM

General non-separable case

If data is not linearly separable, the previous constraint

yn(w
Tϕ(xn) + b) ≥ 1, ∀ n

is obviously not feasible.

To deal with this issue, we relax them to soft-margin constraints:

yn(w
Tϕ(xn) + b) ≥ 1− ξn, ∀ n

where we introduce slack variables ξn ≥ 0.

16 / 59

Support vector machines Primal formulation of SVM

General non-separable case

If data is not linearly separable, the previous constraint

yn(w
Tϕ(xn) + b) ≥ 1, ∀ n

is obviously not feasible.

To deal with this issue, we relax them to soft-margin constraints:

yn(w
Tϕ(xn) + b) ≥ 1− ξn, ∀ n

where we introduce slack variables ξn ≥ 0.

16 / 59

Support vector machines Primal formulation of SVM

SVM Primal formulation

We want ξn to be as small as possible too.

The objective becomes

min
w,b,{ξn}

1

2
∥w∥22 + C

∑
n

ξn

s.t. yn(w
Tϕ(xn) + b) ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

where C is a hyperparameter to balance the two goals.

17 / 59

Support vector machines Primal formulation of SVM

SVM Primal formulation

We want ξn to be as small as possible too. The objective becomes

min
w,b,{ξn}

1

2
∥w∥22 + C

∑
n

ξn

s.t. yn(w
Tϕ(xn) + b) ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

where C is a hyperparameter to balance the two goals.

17 / 59

Support vector machines Primal formulation of SVM

Equivalent form

Formulation

min
w,b,{ξn}

C
∑
n

ξn +
1

2
∥w∥22

s.t. 1− yn(w
Tϕ(xn) + b) ≤ ξn, ∀ n

ξn ≥ 0, ∀ n

is equivalent to

min
w,b,{ξn}

C
∑
n

ξn +
1

2
∥w∥22

s.t. max
{
0, 1− yn(w

Tϕ(xn) + b)
}
= ξn, ∀ n

18 / 59

Support vector machines Primal formulation of SVM

Equivalent form

Formulation

min
w,b,{ξn}

C
∑
n

ξn +
1

2
∥w∥22

s.t. 1− yn(w
Tϕ(xn) + b) ≤ ξn, ∀ n

ξn ≥ 0, ∀ n

is equivalent to

min
w,b,{ξn}

C
∑
n

ξn +
1

2
∥w∥22

s.t. max
{
0, 1− yn(w

Tϕ(xn) + b)
}
= ξn, ∀ n

18 / 59

Support vector machines Primal formulation of SVM

Equivalent form

min
w,b,{ξn}

C
∑
n

ξn +
1

2
∥w∥22

s.t. max
{
0, 1− yn(w

Tϕ(xn) + b)
}
= ξn, ∀ n

is equivalent to

min
w,b

C
∑
n

max
{
0, 1− yn(w

Tϕ(xn) + b)
}
+

1

2
∥w∥22

and

min
w,b

∑
n

max
{
0, 1− yn(w

Tϕ(xn) + b)
}
+

λ

2
∥w∥22

with λ = 1/C. This is exactly minimizing L2 regularized hinge loss!

19 / 59

Support vector machines Primal formulation of SVM

Equivalent form

min
w,b,{ξn}

C
∑
n

ξn +
1

2
∥w∥22

s.t. max
{
0, 1− yn(w

Tϕ(xn) + b)
}
= ξn, ∀ n

is equivalent to

min
w,b

C
∑
n

max
{
0, 1− yn(w

Tϕ(xn) + b)
}
+

1

2
∥w∥22

and

min
w,b

∑
n

max
{
0, 1− yn(w

Tϕ(xn) + b)
}
+

λ

2
∥w∥22

with λ = 1/C.

This is exactly minimizing L2 regularized hinge loss!

19 / 59

Support vector machines Primal formulation of SVM

Equivalent form

min
w,b,{ξn}

C
∑
n

ξn +
1

2
∥w∥22

s.t. max
{
0, 1− yn(w

Tϕ(xn) + b)
}
= ξn, ∀ n

is equivalent to

min
w,b

C
∑
n

max
{
0, 1− yn(w

Tϕ(xn) + b)
}
+

1

2
∥w∥22

and

min
w,b

∑
n

max
{
0, 1− yn(w

Tϕ(xn) + b)
}
+

λ

2
∥w∥22

with λ = 1/C. This is exactly minimizing L2 regularized hinge loss!

19 / 59

Support vector machines Primal formulation of SVM

Optimization

min
w,b,{ξn}

C
∑
n

ξn +
1

2
∥w∥22

s.t. 1− yn(w
Tϕ(xn) + b) ≤ ξn, ∀ n

ξn ≥ 0, ∀ n

It is a convex (quadratic in fact) problem

thus can apply any convex optimization algorithms, e.g. SGD

there are more specialized and efficient algorithms

but usually we apply kernel trick, which requires solving the dual
problem

20 / 59

Support vector machines Primal formulation of SVM

Optimization

min
w,b,{ξn}

C
∑
n

ξn +
1

2
∥w∥22

s.t. 1− yn(w
Tϕ(xn) + b) ≤ ξn, ∀ n

ξn ≥ 0, ∀ n

It is a convex (quadratic in fact) problem

thus can apply any convex optimization algorithms, e.g. SGD

there are more specialized and efficient algorithms

but usually we apply kernel trick, which requires solving the dual
problem

20 / 59

Support vector machines Primal formulation of SVM

Optimization

min
w,b,{ξn}

C
∑
n

ξn +
1

2
∥w∥22

s.t. 1− yn(w
Tϕ(xn) + b) ≤ ξn, ∀ n

ξn ≥ 0, ∀ n

It is a convex (quadratic in fact) problem

thus can apply any convex optimization algorithms, e.g. SGD

there are more specialized and efficient algorithms

but usually we apply kernel trick, which requires solving the dual
problem

20 / 59

Support vector machines Primal formulation of SVM

Optimization

min
w,b,{ξn}

C
∑
n

ξn +
1

2
∥w∥22

s.t. 1− yn(w
Tϕ(xn) + b) ≤ ξn, ∀ n

ξn ≥ 0, ∀ n

It is a convex (quadratic in fact) problem

thus can apply any convex optimization algorithms, e.g. SGD

there are more specialized and efficient algorithms

but usually we apply kernel trick, which requires solving the dual
problem

20 / 59

Support vector machines Dual formulation of SVM

The dual formulation

Similar to Perceptron, it turns out that the primal solution w∗ is also a
linear combination of data

w∗ =

N∑
n=1

α∗
nynϕ(xn)

where α∗
1, . . . , α

∗
N are solutions of the dual formulation of SVM:

max
α1,...,αN

∑
n

αn −
1

2

∑
m,n

ymynαmαnϕ(xm)Tϕ(xn)

s.t.
∑
n

αnyn = 0 and 0 ≤ αn ≤ C, ∀ n

a quadratic program, many efficient optimization algorithms exist

immediately kernelizable by replacing ϕ(xm)Tϕ(xn) with k(xm,xn)

21 / 59

Support vector machines Dual formulation of SVM

The dual formulation

Similar to Perceptron, it turns out that the primal solution w∗ is also a
linear combination of data

w∗ =

N∑
n=1

α∗
nynϕ(xn)

where α∗
1, . . . , α

∗
N are solutions of the dual formulation of SVM:

max
α1,...,αN

∑
n

αn −
1

2

∑
m,n

ymynαmαnϕ(xm)Tϕ(xn)

s.t.
∑
n

αnyn = 0 and 0 ≤ αn ≤ C, ∀ n

a quadratic program, many efficient optimization algorithms exist

immediately kernelizable by replacing ϕ(xm)Tϕ(xn) with k(xm,xn)

21 / 59

Support vector machines Dual formulation of SVM

The dual formulation

Similar to Perceptron, it turns out that the primal solution w∗ is also a
linear combination of data

w∗ =

N∑
n=1

α∗
nynϕ(xn)

where α∗
1, . . . , α

∗
N are solutions of the dual formulation of SVM:

max
α1,...,αN

∑
n

αn −
1

2

∑
m,n

ymynαmαnϕ(xm)Tϕ(xn)

s.t.
∑
n

αnyn = 0 and 0 ≤ αn ≤ C, ∀ n

a quadratic program, many efficient optimization algorithms exist

immediately kernelizable by replacing ϕ(xm)Tϕ(xn) with k(xm,xn)

21 / 59

Support vector machines Dual formulation of SVM

The dual formulation

Similar to Perceptron, it turns out that the primal solution w∗ is also a
linear combination of data

w∗ =

N∑
n=1

α∗
nynϕ(xn)

where α∗
1, . . . , α

∗
N are solutions of the dual formulation of SVM:

max
α1,...,αN

∑
n

αn −
1

2

∑
m,n

ymynαmαnϕ(xm)Tϕ(xn)

s.t.
∑
n

αnyn = 0 and 0 ≤ αn ≤ C, ∀ n

a quadratic program, many efficient optimization algorithms exist

immediately kernelizable by replacing ϕ(xm)Tϕ(xn) with k(xm,xn)

21 / 59

Support vector machines Dual formulation of SVM

Making a prediction

How to efficiently make a prediction sgn
(
w∗Tϕ(x) + b∗

)
for a new x?

first term

w∗Tϕ(x) =

N∑
n=1

α∗
nynϕ(xn)

Tϕ(x) =

N∑
n=1

α∗
nynk(xn,x)

second term (derivation omitted):

b∗ = ym −w∗Tϕ(xm)

= ym −
N∑

n=1

α∗
nynk(xn,xm)

for any m such that 0 < α∗
m < C.

(b∗ should be precomputed)

22 / 59

Support vector machines Dual formulation of SVM

Making a prediction

How to efficiently make a prediction sgn
(
w∗Tϕ(x) + b∗

)
for a new x?

first term

w∗Tϕ(x) =

N∑
n=1

α∗
nynϕ(xn)

Tϕ(x)

=

N∑
n=1

α∗
nynk(xn,x)

second term (derivation omitted):

b∗ = ym −w∗Tϕ(xm)

= ym −
N∑

n=1

α∗
nynk(xn,xm)

for any m such that 0 < α∗
m < C.

(b∗ should be precomputed)

22 / 59

Support vector machines Dual formulation of SVM

Making a prediction

How to efficiently make a prediction sgn
(
w∗Tϕ(x) + b∗

)
for a new x?

first term

w∗Tϕ(x) =

N∑
n=1

α∗
nynϕ(xn)

Tϕ(x) =

N∑
n=1

α∗
nynk(xn,x)

second term (derivation omitted):

b∗ = ym −w∗Tϕ(xm)

= ym −
N∑

n=1

α∗
nynk(xn,xm)

for any m such that 0 < α∗
m < C.

(b∗ should be precomputed)

22 / 59

Support vector machines Dual formulation of SVM

Making a prediction

How to efficiently make a prediction sgn
(
w∗Tϕ(x) + b∗

)
for a new x?

first term

w∗Tϕ(x) =

N∑
n=1

α∗
nynϕ(xn)

Tϕ(x) =

N∑
n=1

α∗
nynk(xn,x)

second term (derivation omitted):

b∗ = ym −w∗Tϕ(xm)

= ym −
N∑

n=1

α∗
nynk(xn,xm)

for any m such that 0 < α∗
m < C.

(b∗ should be precomputed)

22 / 59

Support vector machines Dual formulation of SVM

Making a prediction

How to efficiently make a prediction sgn
(
w∗Tϕ(x) + b∗

)
for a new x?

first term

w∗Tϕ(x) =

N∑
n=1

α∗
nynϕ(xn)

Tϕ(x) =

N∑
n=1

α∗
nynk(xn,x)

second term (derivation omitted):

b∗ = ym −w∗Tϕ(xm) = ym −
N∑

n=1

α∗
nynk(xn,xm)

for any m such that 0 < α∗
m < C.

(b∗ should be precomputed)

22 / 59

Support vector machines Dual formulation of SVM

Making a prediction

How to efficiently make a prediction sgn
(
w∗Tϕ(x) + b∗

)
for a new x?

first term

w∗Tϕ(x) =

N∑
n=1

α∗
nynϕ(xn)

Tϕ(x) =

N∑
n=1

α∗
nynk(xn,x)

second term (derivation omitted):

b∗ = ym −w∗Tϕ(xm) = ym −
N∑

n=1

α∗
nynk(xn,xm)

for any m such that 0 < α∗
m < C. (b∗ should be precomputed)

22 / 59

Support vector machines Dual formulation of SVM

A closer look at αn

Observe:

w∗ =

N∑
n=1

α∗
nynϕ(xn)

=
∑

n:α∗
n>0

α∗
nynϕ(xn)

A point with α∗
n > 0 is called a “support vector”.

Hence the name Support Vector Machine (SVM).

23 / 59

Support vector machines Dual formulation of SVM

A closer look at αn

Observe:

w∗ =

N∑
n=1

α∗
nynϕ(xn) =

∑
n:α∗

n>0

α∗
nynϕ(xn)

A point with α∗
n > 0 is called a “support vector”.

Hence the name Support Vector Machine (SVM).

23 / 59

Support vector machines Dual formulation of SVM

A closer look at αn

Observe:

w∗ =

N∑
n=1

α∗
nynϕ(xn) =

∑
n:α∗

n>0

α∗
nynϕ(xn)

A point with α∗
n > 0 is called a “support vector”.

Hence the name Support Vector Machine (SVM).

23 / 59

Support vector machines Dual formulation of SVM

A closer look at αn

Observe:

w∗ =

N∑
n=1

α∗
nynϕ(xn) =

∑
n:α∗

n>0

α∗
nynϕ(xn)

A point with α∗
n > 0 is called a “support vector”.

Hence the name Support Vector Machine (SVM).

23 / 59

Support vector machines Dual formulation of SVM

Geometric interpretation of support vectors

A support vector satisfies α∗
n > 0 and

1− ξ∗n − yn(w
∗Tϕ(xn) + b∗) = 0

When

ξ∗n = 0, yn(w
∗Tϕ(xn) + b∗) = 1

and thus the point is 1/∥w∗∥2
away from the hyperplane.

ξ∗n < 1, the point is classified
correctly but does not satisfy
the large margin constraint.

ξ∗n > 1, the point is
misclassified.

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

Support vectors (circled with the
orange line) are the only points that
matter!

24 / 59

Support vector machines Dual formulation of SVM

Geometric interpretation of support vectors

A support vector satisfies α∗
n > 0 and

1− ξ∗n − yn(w
∗Tϕ(xn) + b∗) = 0

When

ξ∗n = 0, yn(w
∗Tϕ(xn) + b∗) = 1

and thus the point is 1/∥w∗∥2
away from the hyperplane.

ξ∗n < 1, the point is classified
correctly but does not satisfy
the large margin constraint.

ξ∗n > 1, the point is
misclassified.

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

Support vectors (circled with the
orange line) are the only points that
matter!

24 / 59

Support vector machines Dual formulation of SVM

Geometric interpretation of support vectors

A support vector satisfies α∗
n > 0 and

1− ξ∗n − yn(w
∗Tϕ(xn) + b∗) = 0

When

ξ∗n = 0, yn(w
∗Tϕ(xn) + b∗) = 1

and thus the point is 1/∥w∗∥2
away from the hyperplane.

ξ∗n < 1, the point is classified
correctly but does not satisfy
the large margin constraint.

ξ∗n > 1, the point is
misclassified.

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

Support vectors (circled with the
orange line) are the only points that
matter!

24 / 59

Support vector machines Dual formulation of SVM

Geometric interpretation of support vectors

A support vector satisfies α∗
n > 0 and

1− ξ∗n − yn(w
∗Tϕ(xn) + b∗) = 0

When

ξ∗n = 0, yn(w
∗Tϕ(xn) + b∗) = 1

and thus the point is 1/∥w∗∥2
away from the hyperplane.

ξ∗n < 1, the point is classified
correctly but does not satisfy
the large margin constraint.

ξ∗n > 1, the point is
misclassified.

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

Support vectors (circled with the
orange line) are the only points that
matter!

24 / 59

Support vector machines Dual formulation of SVM

Geometric interpretation of support vectors

A support vector satisfies α∗
n > 0 and

1− ξ∗n − yn(w
∗Tϕ(xn) + b∗) = 0

When

ξ∗n = 0, yn(w
∗Tϕ(xn) + b∗) = 1

and thus the point is 1/∥w∗∥2
away from the hyperplane.

ξ∗n < 1, the point is classified
correctly but does not satisfy
the large margin constraint.

ξ∗n > 1, the point is
misclassified.

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

Support vectors (circled with the
orange line) are the only points that
matter!

24 / 59

Support vector machines Dual formulation of SVM

An example

One drawback of kernel method: non-parametric, need to keep all
training points potentially

For SVM, very often #support vectors≪ N

See also Colab demo.

25 / 59

Support vector machines Dual formulation of SVM

An example

One drawback of kernel method: non-parametric, need to keep all
training points potentially

For SVM, very often #support vectors≪ N

See also Colab demo.

25 / 59

Support vector machines Dual formulation of SVM

An example

One drawback of kernel method: non-parametric, need to keep all
training points potentially

For SVM, very often #support vectors≪ N

See also Colab demo.

25 / 59

Support vector machines Dual formulation of SVM

An example

One drawback of kernel method: non-parametric, need to keep all
training points potentially

For SVM, very often #support vectors≪ N

See also Colab demo.

25 / 59

Support vector machines Dual formulation of SVM

Summary

SVM: max-margin linear classifier

Primal (equivalent to minimizing L2 regularized hinge loss):

min
w,b,{ξn}

C
∑
n

ξn +
1

2
∥w∥22

s.t. 1− yn(w
Tϕ(xn) + b) ≤ ξn, ∀ n

ξn ≥ 0, ∀ n

Dual (kernelizable, reveals what training points are support vectors):

max
{αn}

∑
n

αn −
1

2

∑
m,n

ymynαmαnϕ(xm)Tϕ(xn)

s.t.
∑
n

αnyn = 0 and 0 ≤ αn ≤ C, ∀ n

26 / 59

Support vector machines Dual formulation of SVM

Summary

SVM: max-margin linear classifier

Primal (equivalent to minimizing L2 regularized hinge loss):

min
w,b,{ξn}

C
∑
n

ξn +
1

2
∥w∥22

s.t. 1− yn(w
Tϕ(xn) + b) ≤ ξn, ∀ n

ξn ≥ 0, ∀ n

Dual (kernelizable, reveals what training points are support vectors):

max
{αn}

∑
n

αn −
1

2

∑
m,n

ymynαmαnϕ(xm)Tϕ(xn)

s.t.
∑
n

αnyn = 0 and 0 ≤ αn ≤ C, ∀ n

26 / 59

Support vector machines Dual formulation of SVM

Summary

SVM: max-margin linear classifier

Primal (equivalent to minimizing L2 regularized hinge loss):

min
w,b,{ξn}

C
∑
n

ξn +
1

2
∥w∥22

s.t. 1− yn(w
Tϕ(xn) + b) ≤ ξn, ∀ n

ξn ≥ 0, ∀ n

Dual (kernelizable, reveals what training points are support vectors):

max
{αn}

∑
n

αn −
1

2

∑
m,n

ymynαmαnϕ(xm)Tϕ(xn)

s.t.
∑
n

αnyn = 0 and 0 ≤ αn ≤ C, ∀ n

26 / 59

Decision tree

Outline

1 Support vector machines

2 Decision tree

3 Boosting

27 / 59

Decision tree The model

Decision tree

We have seen different ML models for classification/regression:

linear models, neural nets and other nonlinear models induced by
kernels

Decision tree is yet another one:

nonlinear in general

works for both classification and regression; we focus on classification

one key advantage is good interpretability

still very popular for small tabular data, especially when used in
ensemble (i.e., “forest”)

28 / 59

Decision tree The model

Decision tree

We have seen different ML models for classification/regression:

linear models, neural nets and other nonlinear models induced by
kernels

Decision tree is yet another one:

nonlinear in general

works for both classification and regression; we focus on classification

one key advantage is good interpretability

still very popular for small tabular data, especially when used in
ensemble (i.e., “forest”)

28 / 59

Decision tree The model

Decision tree

We have seen different ML models for classification/regression:

linear models, neural nets and other nonlinear models induced by
kernels

Decision tree is yet another one:

nonlinear in general

works for both classification and regression; we focus on classification

one key advantage is good interpretability

still very popular for small tabular data, especially when used in
ensemble (i.e., “forest”)

28 / 59

Decision tree The model

Decision tree

We have seen different ML models for classification/regression:

linear models, neural nets and other nonlinear models induced by
kernels

Decision tree is yet another one:

nonlinear in general

works for both classification and regression; we focus on classification

one key advantage is good interpretability

still very popular for small tabular data, especially when used in
ensemble (i.e., “forest”)

28 / 59

Decision tree The model

Decision tree

We have seen different ML models for classification/regression:

linear models, neural nets and other nonlinear models induced by
kernels

Decision tree is yet another one:

nonlinear in general

works for both classification and regression; we focus on classification

one key advantage is good interpretability

still very popular for small tabular data, especially when used in
ensemble (i.e., “forest”)

28 / 59

Decision tree The model

Decision tree

We have seen different ML models for classification/regression:

linear models, neural nets and other nonlinear models induced by
kernels

Decision tree is yet another one:

nonlinear in general

works for both classification and regression; we focus on classification

one key advantage is good interpretability

still very popular for small tabular data, especially when used in
ensemble (i.e., “forest”)

28 / 59

Decision tree The model

Tree-based models outperform neural nets sometimes

29 / 59

Decision tree The model

Example

Many decisions are made based on some tree structure

Medical treatment

Fever

𝑇 > 100 𝑇 < 100

Treatment #1 Muscle Pain

Treatment #2

High

Treatment #3

Low

Salary in a company

Degree

High School College Graduate

Work Experience Work Experience Work Experience

< 5yr > 5yr

$𝑿𝟏 $𝑿𝟐

< 5yr > 5yr

$𝑿𝟑 $𝑿𝟒

< 5yr > 5yr

$𝑿𝟓 $𝑿𝟔

30 / 59

Decision tree The model

Example

Many decisions are made based on some tree structure

Medical treatment

Fever

𝑇 > 100 𝑇 < 100

Treatment #1 Muscle Pain

Treatment #2

High

Treatment #3

Low

Salary in a company

Degree

High School College Graduate

Work Experience Work Experience Work Experience

< 5yr > 5yr

$𝑿𝟏 $𝑿𝟐

< 5yr > 5yr

$𝑿𝟑 $𝑿𝟒

< 5yr > 5yr

$𝑿𝟓 $𝑿𝟔

30 / 59

Decision tree The model

Tree terminology

Node

Root

Edge

Leaf

31 / 59

Decision tree The model

A more abstract example of decision trees

Input: x = (x1, x2)

Output: f(x) determined
naturally by traversing the tree

start from the root

test at each node to decide
which child to visit next

finally the leaf gives the
prediction f(x)

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

For example, f((θ1 − 1, θ2 + 1)) = B

Complex to formally write down, but easy to represent pictorially or as
codes.

32 / 59

Decision tree The model

A more abstract example of decision trees

Input: x = (x1, x2)

Output: f(x) determined
naturally by traversing the tree

start from the root

test at each node to decide
which child to visit next

finally the leaf gives the
prediction f(x)

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

For example, f((θ1 − 1, θ2 + 1)) = B

Complex to formally write down, but easy to represent pictorially or as
codes.

32 / 59

Decision tree The model

A more abstract example of decision trees

Input: x = (x1, x2)

Output: f(x) determined
naturally by traversing the tree

start from the root

test at each node to decide
which child to visit next

finally the leaf gives the
prediction f(x)

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

For example, f((θ1 − 1, θ2 + 1)) = B

Complex to formally write down, but easy to represent pictorially or as
codes.

32 / 59

Decision tree The model

A more abstract example of decision trees

Input: x = (x1, x2)

Output: f(x) determined
naturally by traversing the tree

start from the root

test at each node to decide
which child to visit next

finally the leaf gives the
prediction f(x)

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

For example, f((θ1 − 1, θ2 + 1)) = B

Complex to formally write down, but easy to represent pictorially or as
codes.

32 / 59

Decision tree The model

A more abstract example of decision trees

Input: x = (x1, x2)

Output: f(x) determined
naturally by traversing the tree

start from the root

test at each node to decide
which child to visit next

finally the leaf gives the
prediction f(x)

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

For example, f((θ1 − 1, θ2 + 1)) = B

Complex to formally write down, but easy to represent pictorially or as
codes.

32 / 59

Decision tree The model

A more abstract example of decision trees

Input: x = (x1, x2)

Output: f(x) determined
naturally by traversing the tree

start from the root

test at each node to decide
which child to visit next

finally the leaf gives the
prediction f(x)

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

For example, f((θ1 − 1, θ2 + 1)) = B

Complex to formally write down, but easy to represent pictorially or as
codes.

32 / 59

Decision tree The model

A more abstract example of decision trees

Input: x = (x1, x2)

Output: f(x) determined
naturally by traversing the tree

start from the root

test at each node to decide
which child to visit next

finally the leaf gives the
prediction f(x)

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

For example, f((θ1 − 1, θ2 + 1)) = B

Complex to formally write down, but easy to represent pictorially or as
codes.

32 / 59

Decision tree The model

The decision boundary

Corresponds to a classifier with boundaries:

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

A

B

C D

E

θ1 θ4

θ2

θ3

x1

x2

33 / 59

Decision tree The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

34 / 59

Decision tree The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

34 / 59

Decision tree The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

34 / 59

Decision tree The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

34 / 59

Decision tree The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

34 / 59

Decision tree The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

34 / 59

Decision tree The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

34 / 59

Decision tree The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)

34 / 59

Decision tree Learning a decision tree

Learning the parameters

So how do we learn all these parameters?

Recall typical approach is to find the parameters that minimize some loss.

This is unfortunately not feasible for trees

For Z nodes, there are roughly #featuresZ different ways to decide
“which feature to test on each node”, which is a lot.

enumerating all these configurations to find the one that minimizes
some loss is too computationally expensive.

Instead, we turn to some greedy top-down approach.

35 / 59

Decision tree Learning a decision tree

Learning the parameters

So how do we learn all these parameters?

Recall typical approach is to find the parameters that minimize some loss.

This is unfortunately not feasible for trees

For Z nodes, there are roughly #featuresZ different ways to decide
“which feature to test on each node”, which is a lot.

enumerating all these configurations to find the one that minimizes
some loss is too computationally expensive.

Instead, we turn to some greedy top-down approach.

35 / 59

Decision tree Learning a decision tree

Learning the parameters

So how do we learn all these parameters?

Recall typical approach is to find the parameters that minimize some loss.

This is unfortunately not feasible for trees

For Z nodes, there are roughly #featuresZ different ways to decide
“which feature to test on each node”, which is a lot.

enumerating all these configurations to find the one that minimizes
some loss is too computationally expensive.

Instead, we turn to some greedy top-down approach.

35 / 59

Decision tree Learning a decision tree

Learning the parameters

So how do we learn all these parameters?

Recall typical approach is to find the parameters that minimize some loss.

This is unfortunately not feasible for trees

For Z nodes, there are roughly #featuresZ different ways to decide
“which feature to test on each node”, which is a lot.

enumerating all these configurations to find the one that minimizes
some loss is too computationally expensive.

Instead, we turn to some greedy top-down approach.

35 / 59

Decision tree Learning a decision tree

Learning the parameters

So how do we learn all these parameters?

Recall typical approach is to find the parameters that minimize some loss.

This is unfortunately not feasible for trees

For Z nodes, there are roughly #featuresZ different ways to decide
“which feature to test on each node”, which is a lot.

enumerating all these configurations to find the one that minimizes
some loss is too computationally expensive.

Instead, we turn to some greedy top-down approach.

35 / 59

Decision tree Learning a decision tree

Learning the parameters

So how do we learn all these parameters?

Recall typical approach is to find the parameters that minimize some loss.

This is unfortunately not feasible for trees

For Z nodes, there are roughly #featuresZ different ways to decide
“which feature to test on each node”, which is a lot.

enumerating all these configurations to find the one that minimizes
some loss is too computationally expensive.

Instead, we turn to some greedy top-down approach.

35 / 59

Decision tree Learning a decision tree

A running example [Russell & Norvig, AIMA]

predict whether a customer will wait for a table at a restaurant

12 training examples

10 features (all discrete)

36 / 59

Decision tree Learning a decision tree

First step: how to build the root?

I.e., which feature should we test at the root? Examples:

Which split is better?

intuitively “patrons” is a better feature since it leads to “more pure”
or “more certain” children

how to quantify this intuition?

37 / 59

Decision tree Learning a decision tree

First step: how to build the root?

I.e., which feature should we test at the root? Examples:

Which split is better?

intuitively “patrons” is a better feature since it leads to “more pure”
or “more certain” children

how to quantify this intuition?

37 / 59

Decision tree Learning a decision tree

First step: how to build the root?

I.e., which feature should we test at the root? Examples:

Which split is better?

intuitively “patrons” is a better feature since it leads to “more pure”
or “more certain” children

how to quantify this intuition?

37 / 59

Decision tree Learning a decision tree

First step: how to build the root?

I.e., which feature should we test at the root? Examples:

Which split is better?

intuitively “patrons” is a better feature since it leads to “more pure”
or “more certain” children

how to quantify this intuition?

37 / 59

Decision tree Learning a decision tree

Measure of uncertainty of a node

It should be a function of the distribution of classes

e.g. a node with 2 positive and 4
negative examples can be
summarized by a distribution P
with P (Y = +1) = 1/3 and
P (Y = −1) = 2/3

One classic uncertainty measure of a distribution is its (Shannon) entropy:

H(P) = −
C∑

k=1

P (Y = k) logP (Y = k)

38 / 59

Decision tree Learning a decision tree

Measure of uncertainty of a node

It should be a function of the distribution of classes

e.g. a node with 2 positive and 4
negative examples can be
summarized by a distribution P
with P (Y = +1) = 1/3 and
P (Y = −1) = 2/3

One classic uncertainty measure of a distribution is its (Shannon) entropy:

H(P) = −
C∑

k=1

P (Y = k) logP (Y = k)

38 / 59

Decision tree Learning a decision tree

Measure of uncertainty of a node

It should be a function of the distribution of classes

e.g. a node with 2 positive and 4
negative examples can be
summarized by a distribution P
with P (Y = +1) = 1/3 and
P (Y = −1) = 2/3

One classic uncertainty measure of a distribution is its (Shannon) entropy:

H(P) = −
C∑

k=1

P (Y = k) logP (Y = k)

38 / 59

Decision tree Learning a decision tree

Properties of entropy

H(P) = −
C∑

k=1

P (Y = k) logP (Y = k)

the base of log can be 2, e or 10

always non-negative

it’s the smallest codeword length to encode symbols drawn from P

maximized if P is uniform (max = logC): most uncertain case

minimized if P focuses on one class (min = 0): most certain case

e.g. P = (1, 0, . . . , 0)

0 log 0 is defined naturally as limz→0+ z log z = 0

39 / 59

Decision tree Learning a decision tree

Properties of entropy

H(P) = −
C∑

k=1

P (Y = k) logP (Y = k)

the base of log can be 2, e or 10

always non-negative

it’s the smallest codeword length to encode symbols drawn from P

maximized if P is uniform (max = logC): most uncertain case

minimized if P focuses on one class (min = 0): most certain case

e.g. P = (1, 0, . . . , 0)

0 log 0 is defined naturally as limz→0+ z log z = 0

39 / 59

Decision tree Learning a decision tree

Properties of entropy

H(P) = −
C∑

k=1

P (Y = k) logP (Y = k)

the base of log can be 2, e or 10

always non-negative

it’s the smallest codeword length to encode symbols drawn from P

maximized if P is uniform (max = logC): most uncertain case

minimized if P focuses on one class (min = 0): most certain case

e.g. P = (1, 0, . . . , 0)

0 log 0 is defined naturally as limz→0+ z log z = 0

39 / 59

Decision tree Learning a decision tree

Properties of entropy

H(P) = −
C∑

k=1

P (Y = k) logP (Y = k)

the base of log can be 2, e or 10

always non-negative

it’s the smallest codeword length to encode symbols drawn from P

maximized if P is uniform (max = logC): most uncertain case

minimized if P focuses on one class (min = 0): most certain case

e.g. P = (1, 0, . . . , 0)

0 log 0 is defined naturally as limz→0+ z log z = 0

39 / 59

Decision tree Learning a decision tree

Properties of entropy

H(P) = −
C∑

k=1

P (Y = k) logP (Y = k)

the base of log can be 2, e or 10

always non-negative

it’s the smallest codeword length to encode symbols drawn from P

maximized if P is uniform (max = logC): most uncertain case

minimized if P focuses on one class (min = 0): most certain case

e.g. P = (1, 0, . . . , 0)

0 log 0 is defined naturally as limz→0+ z log z = 0

39 / 59

Decision tree Learning a decision tree

Properties of entropy

H(P) = −
C∑

k=1

P (Y = k) logP (Y = k)

the base of log can be 2, e or 10

always non-negative

it’s the smallest codeword length to encode symbols drawn from P

maximized if P is uniform (max = logC): most uncertain case

minimized if P focuses on one class (min = 0): most certain case

e.g. P = (1, 0, . . . , 0)

0 log 0 is defined naturally as limz→0+ z log z = 0

39 / 59

Decision tree Learning a decision tree

Examples of computing entropy

With base e and 4 classes:

40 / 59

Decision tree Learning a decision tree

Another example

Entropy in each child if root tests on “patrons”

So how good is choosing “patrons” overall?
Very naturally, we take the weighted average of entropy:

2

12
× 0 +

4

12
× 0 +

6

12
× 0.9 = 0.45

41 / 59

Decision tree Learning a decision tree

Another example

Entropy in each child if root tests on “patrons”

So how good is choosing “patrons” overall?

Very naturally, we take the weighted average of entropy:

2

12
× 0 +

4

12
× 0 +

6

12
× 0.9 = 0.45

41 / 59

Decision tree Learning a decision tree

Another example

Entropy in each child if root tests on “patrons”

So how good is choosing “patrons” overall?
Very naturally, we take the weighted average of entropy:

2

12
× 0 +

4

12
× 0 +

6

12
× 0.9 = 0.45

41 / 59

Decision tree Learning a decision tree

Measure of uncertainty of a split

Suppose we split based on a discrete feature A, the uncertainty can be
measured by the conditional entropy:

H(Y | A)

=
∑
a

P (A = a)H(Y | A = a)

=
∑
a

P (A = a)

(
−

C∑
k=1

P (Y | A = a) logP (Y | A = a)

)
=
∑
a

“fraction of example at node A = a”× “entropy at node A = a”

Pick the feature that leads to the smallest conditional entropy.

42 / 59

Decision tree Learning a decision tree

Measure of uncertainty of a split

Suppose we split based on a discrete feature A, the uncertainty can be
measured by the conditional entropy:

H(Y | A)

=
∑
a

P (A = a)H(Y | A = a)

=
∑
a

P (A = a)

(
−

C∑
k=1

P (Y | A = a) logP (Y | A = a)

)
=
∑
a

“fraction of example at node A = a”× “entropy at node A = a”

Pick the feature that leads to the smallest conditional entropy.

42 / 59

Decision tree Learning a decision tree

Measure of uncertainty of a split

Suppose we split based on a discrete feature A, the uncertainty can be
measured by the conditional entropy:

H(Y | A)

=
∑
a

P (A = a)H(Y | A = a)

=
∑
a

P (A = a)

(
−

C∑
k=1

P (Y | A = a) logP (Y | A = a)

)

=
∑
a

“fraction of example at node A = a”× “entropy at node A = a”

Pick the feature that leads to the smallest conditional entropy.

42 / 59

Decision tree Learning a decision tree

Measure of uncertainty of a split

Suppose we split based on a discrete feature A, the uncertainty can be
measured by the conditional entropy:

H(Y | A)

=
∑
a

P (A = a)H(Y | A = a)

=
∑
a

P (A = a)

(
−

C∑
k=1

P (Y | A = a) logP (Y | A = a)

)
=
∑
a

“fraction of example at node A = a”× “entropy at node A = a”

Pick the feature that leads to the smallest conditional entropy.

42 / 59

Decision tree Learning a decision tree

Measure of uncertainty of a split

Suppose we split based on a discrete feature A, the uncertainty can be
measured by the conditional entropy:

H(Y | A)

=
∑
a

P (A = a)H(Y | A = a)

=
∑
a

P (A = a)

(
−

C∑
k=1

P (Y | A = a) logP (Y | A = a)

)
=
∑
a

“fraction of example at node A = a”× “entropy at node A = a”

Pick the feature that leads to the smallest conditional entropy.

42 / 59

Decision tree Learning a decision tree

Deciding the root

The conditional entropy is 2
12 × 1 + 2

12 × 1 + 4
12 × 1 + 4

12 × 1 = 1 > 0.45

So splitting with “patrons” is better than splitting with “type”.

In fact by similar calculation “patrons” is the best split among all features.

We are now done with building the root (this is also called a stump).

43 / 59

Decision tree Learning a decision tree

Deciding the root

The conditional entropy is 2
12 × 1 + 2

12 × 1 + 4
12 × 1 + 4

12 × 1 = 1 > 0.45

So splitting with “patrons” is better than splitting with “type”.

In fact by similar calculation “patrons” is the best split among all features.

We are now done with building the root (this is also called a stump).

43 / 59

Decision tree Learning a decision tree

Deciding the root

The conditional entropy is 2
12 × 1 + 2

12 × 1 + 4
12 × 1 + 4

12 × 1 = 1 > 0.45

So splitting with “patrons” is better than splitting with “type”.

In fact by similar calculation “patrons” is the best split among all features.

We are now done with building the root (this is also called a stump).

43 / 59

Decision tree Learning a decision tree

Deciding the root

The conditional entropy is 2
12 × 1 + 2

12 × 1 + 4
12 × 1 + 4

12 × 1 = 1 > 0.45

So splitting with “patrons” is better than splitting with “type”.

In fact by similar calculation “patrons” is the best split among all features.

We are now done with building the root (this is also called a stump).

43 / 59

Decision tree Learning a decision tree

Deciding the root

The conditional entropy is 2
12 × 1 + 2

12 × 1 + 4
12 × 1 + 4

12 × 1 = 1 > 0.45

So splitting with “patrons” is better than splitting with “type”.

In fact by similar calculation “patrons” is the best split among all features.

We are now done with building the root (this is also called a stump).

43 / 59

Decision tree Learning a decision tree

Repeat recursively

Split each child in the same way.

but no need to split children “none”
and “some”: they are pure already
and become leaves

for “full”, repeat, focusing on those
6 examples:

44 / 59

Decision tree Learning a decision tree

Repeat recursively

Split each child in the same way.

but no need to split children “none”
and “some”: they are pure already
and become leaves

for “full”, repeat, focusing on those
6 examples:

44 / 59

Decision tree Learning a decision tree

Repeat recursively

Split each child in the same way.

but no need to split children “none”
and “some”: they are pure already
and become leaves

for “full”, repeat, focusing on those
6 examples:

44 / 59

Decision tree Learning a decision tree

Again, very easy to interpret.

45 / 59

Decision tree Learning a decision tree

Random Forests

Random forest is an ensemble of trees:

each tree is built using a bootstrapped dataset (that is, a set of
points randomly sampled from the training set with replacement)

each split of each tree is selected from a random subset of features

final prediction is the plurality vote of all tress (for classification
tasks) or the averaged prediction of all trees (for regression tasks)

much better performance than a single tree, trivially parallelizable!

46 / 59

Decision tree Learning a decision tree

Random Forests

Random forest is an ensemble of trees:

each tree is built using a bootstrapped dataset (that is, a set of
points randomly sampled from the training set with replacement)

each split of each tree is selected from a random subset of features

final prediction is the plurality vote of all tress (for classification
tasks) or the averaged prediction of all trees (for regression tasks)

much better performance than a single tree, trivially parallelizable!

46 / 59

Decision tree Learning a decision tree

Random Forests

Random forest is an ensemble of trees:

each tree is built using a bootstrapped dataset (that is, a set of
points randomly sampled from the training set with replacement)

each split of each tree is selected from a random subset of features

final prediction is the plurality vote of all tress (for classification
tasks) or the averaged prediction of all trees (for regression tasks)

much better performance than a single tree, trivially parallelizable!

46 / 59

Decision tree Learning a decision tree

Random Forests

Random forest is an ensemble of trees:

each tree is built using a bootstrapped dataset (that is, a set of
points randomly sampled from the training set with replacement)

each split of each tree is selected from a random subset of features

final prediction is the plurality vote of all tress (for classification
tasks) or the averaged prediction of all trees (for regression tasks)

much better performance than a single tree, trivially parallelizable!

46 / 59

Decision tree Learning a decision tree

Random Forests

Random forest is an ensemble of trees:

each tree is built using a bootstrapped dataset (that is, a set of
points randomly sampled from the training set with replacement)

each split of each tree is selected from a random subset of features

final prediction is the plurality vote of all tress (for classification
tasks) or the averaged prediction of all trees (for regression tasks)

much better performance than a single tree, trivially parallelizable!

46 / 59

Boosting

Outline

1 Support vector machines

2 Decision tree

3 Boosting

47 / 59

Boosting Examples

Introduction

Boosting (an even more powerful/general ensemble method):

is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

works very well in practice (especially in combination with trees)

often is resistant to overfitting

has strong theoretical guarantees

We again focus on binary classification.

48 / 59

Boosting Examples

Introduction

Boosting (an even more powerful/general ensemble method):

is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

works very well in practice (especially in combination with trees)

often is resistant to overfitting

has strong theoretical guarantees

We again focus on binary classification.

48 / 59

Boosting Examples

Introduction

Boosting (an even more powerful/general ensemble method):

is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

works very well in practice (especially in combination with trees)

often is resistant to overfitting

has strong theoretical guarantees

We again focus on binary classification.

48 / 59

Boosting Examples

Introduction

Boosting (an even more powerful/general ensemble method):

is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

works very well in practice (especially in combination with trees)

often is resistant to overfitting

has strong theoretical guarantees

We again focus on binary classification.

48 / 59

Boosting Examples

Introduction

Boosting (an even more powerful/general ensemble method):

is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

works very well in practice (especially in combination with trees)

often is resistant to overfitting

has strong theoretical guarantees

We again focus on binary classification.

48 / 59

Boosting Examples

Introduction

Boosting (an even more powerful/general ensemble method):

is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

works very well in practice (especially in combination with trees)

often is resistant to overfitting

has strong theoretical guarantees

We again focus on binary classification.

48 / 59

Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers

49 / 59

Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers

49 / 59

Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers

49 / 59

Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers

49 / 59

Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers

49 / 59

Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers

49 / 59

Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers

49 / 59

Boosting Examples

The base algorithm

A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h← A(S,D)

this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by “weighted total loss”)

even if it’s not obvious how to deal with weight directly, we can
always resample according to D to create a new unweighted dataset

50 / 59

Boosting Examples

The base algorithm

A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h← A(S,D)

this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by “weighted total loss”)

even if it’s not obvious how to deal with weight directly, we can
always resample according to D to create a new unweighted dataset

50 / 59

Boosting Examples

The base algorithm

A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h← A(S,D)

this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by “weighted total loss”)

even if it’s not obvious how to deal with weight directly, we can
always resample according to D to create a new unweighted dataset

50 / 59

Boosting Examples

The base algorithm

A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h← A(S,D)

this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by “weighted total loss”)

even if it’s not obvious how to deal with weight directly, we can
always resample according to D to create a new unweighted dataset

50 / 59

Boosting Examples

Boosting Algorithms

Given:

a training set S

a base algorithm A

Two things to specify a boosting algorithm:

how to reweight the examples?

how to combine all the weak classifiers?

Focus on AdaBoost, one of the most successful boosting algorithms.

51 / 59

Boosting Examples

Boosting Algorithms

Given:

a training set S

a base algorithm A

Two things to specify a boosting algorithm:

how to reweight the examples?

how to combine all the weak classifiers?

Focus on AdaBoost, one of the most successful boosting algorithms.

51 / 59

Boosting Examples

Boosting Algorithms

Given:

a training set S

a base algorithm A

Two things to specify a boosting algorithm:

how to reweight the examples?

how to combine all the weak classifiers?

Focus on AdaBoost, one of the most successful boosting algorithms.

51 / 59

Boosting AdaBoost

The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize D1 to be uniform

For t = 1, . . . , T

obtain a weak classifier ht ← A(S,Dt)

calculate the importance of ht as

βt =
1

2
ln

(
1− ϵt
ϵt

)
(βt > 0⇔ ϵt < 0.5)

where ϵt =
∑

n:ht(xn)̸=yn
Dt(n) is the weighted error of ht.

update distributions

Dt+1(n) ∝ Dt(n)e
−βtynht(xn) =

{
Dt(n)e

−βt if ht(xn) = yn

Dt(n)e
βt else

Output the final classifier H(x) = sgn
(∑T

t=1 βtht(x)
)

52 / 59

Boosting AdaBoost

The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize D1 to be uniform

For t = 1, . . . , T

obtain a weak classifier ht ← A(S,Dt)

calculate the importance of ht as

βt =
1

2
ln

(
1− ϵt
ϵt

)
(βt > 0⇔ ϵt < 0.5)

where ϵt =
∑

n:ht(xn)̸=yn
Dt(n) is the weighted error of ht.

update distributions

Dt+1(n) ∝ Dt(n)e
−βtynht(xn) =

{
Dt(n)e

−βt if ht(xn) = yn

Dt(n)e
βt else

Output the final classifier H(x) = sgn
(∑T

t=1 βtht(x)
)

52 / 59

Boosting AdaBoost

The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize D1 to be uniform

For t = 1, . . . , T

obtain a weak classifier ht ← A(S,Dt)

calculate the importance of ht as

βt =
1

2
ln

(
1− ϵt
ϵt

)
(βt > 0⇔ ϵt < 0.5)

where ϵt =
∑

n:ht(xn)̸=yn
Dt(n) is the weighted error of ht.

update distributions

Dt+1(n) ∝ Dt(n)e
−βtynht(xn) =

{
Dt(n)e

−βt if ht(xn) = yn

Dt(n)e
βt else

Output the final classifier H(x) = sgn
(∑T

t=1 βtht(x)
)

52 / 59

Boosting AdaBoost

The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize D1 to be uniform

For t = 1, . . . , T

obtain a weak classifier ht ← A(S,Dt)

calculate the importance of ht as

βt =
1

2
ln

(
1− ϵt
ϵt

)
(βt > 0⇔ ϵt < 0.5)

where ϵt =
∑

n:ht(xn)̸=yn
Dt(n) is the weighted error of ht.

update distributions

Dt+1(n) ∝ Dt(n)e
−βtynht(xn) =

{
Dt(n)e

−βt if ht(xn) = yn

Dt(n)e
βt else

Output the final classifier H(x) = sgn
(∑T

t=1 βtht(x)
)

52 / 59

Boosting AdaBoost

The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize D1 to be uniform

For t = 1, . . . , T

obtain a weak classifier ht ← A(S,Dt)

calculate the importance of ht as

βt =
1

2
ln

(
1− ϵt
ϵt

)
(βt > 0⇔ ϵt < 0.5)

where ϵt =
∑

n:ht(xn)̸=yn
Dt(n) is the weighted error of ht.

update distributions

Dt+1(n) ∝ Dt(n)e
−βtynht(xn) =

{
Dt(n)e

−βt if ht(xn) = yn

Dt(n)e
βt else

Output the final classifier H(x) = sgn
(∑T

t=1 βtht(x)
)

52 / 59

Boosting AdaBoost

Example

10 data points in R2

The size of + or - indicates the
weight, which starts from uniform D1

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

Base algorithm is decision stump:

Observe that no stump can predict very accurately for this dataset

53 / 59

Boosting AdaBoost

Example

10 data points in R2

The size of + or - indicates the
weight, which starts from uniform D1

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

Base algorithm is decision stump:

Observe that no stump can predict very accurately for this dataset

53 / 59

Boosting AdaBoost

Example

10 data points in R2

The size of + or - indicates the
weight, which starts from uniform D1

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

Base algorithm is decision stump:

Observe that no stump can predict very accurately for this dataset

53 / 59

Boosting AdaBoost

Round 1: t = 1

Round 1Round 1Round 1Round 1Round 1

h1

!

"1
1

=0.30
=0.42

2D

3 misclassified (circled): ϵ1 = 0.3→ β1 =
1
2 ln

(
1−ϵt
ϵt

)
≈ 0.42.

D2 puts more weights on those examples

54 / 59

Boosting AdaBoost

Round 1: t = 1

Round 1Round 1Round 1Round 1Round 1

h1

!

"1
1

=0.30
=0.42

2D

3 misclassified (circled): ϵ1 = 0.3→ β1 =
1
2 ln

(
1−ϵt
ϵt

)
≈ 0.42.

D2 puts more weights on those examples

54 / 59

Boosting AdaBoost

Round 2: t = 2

Round 2Round 2Round 2Round 2Round 2

!

"2
2

=0.21
=0.65

h2 3D

3 misclassified (circled): ϵ2 = 0.21→ β2 = 0.65.

D3 puts more weights on those examples

55 / 59

Boosting AdaBoost

Round 2: t = 2

Round 2Round 2Round 2Round 2Round 2

!

"2
2

=0.21
=0.65

h2 3D

3 misclassified (circled): ϵ2 = 0.21→ β2 = 0.65.

D3 puts more weights on those examples

55 / 59

Boosting AdaBoost

Round 3: t = 3

Round 3Round 3Round 3Round 3Round 3

h3

!

"3
3=0.92
=0.14

again 3 misclassified (circled): ϵ3 = 0.14→ β3 = 0.92.

56 / 59

Boosting AdaBoost

Final classifier: combining 3 classifiers
Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

All data points are now classified correctly, even though each weak
classifier makes 3 mistakes.

57 / 59

Boosting AdaBoost

Final classifier: combining 3 classifiers
Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

All data points are now classified correctly, even though each weak
classifier makes 3 mistakes.

57 / 59

Boosting AdaBoost

Overfitting

When T is large, the model is very complicated and overfitting can happen

58 / 59

Boosting AdaBoost

Overfitting

When T is large, the model is very complicated and overfitting can happen

58 / 59

Boosting AdaBoost

Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

Used to be a mystery, but by now rigorous theory has been developed to
explain this phenomenon.

59 / 59

Boosting AdaBoost

Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

Used to be a mystery, but by now rigorous theory has been developed to
explain this phenomenon.

59 / 59

Boosting AdaBoost

Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

Used to be a mystery, but by now rigorous theory has been developed to
explain this phenomenon.

59 / 59

