CSCI567 Machine Learning (Fall 2025)

Haipeng Luo
University of Southern California

Nov 7, 2025



Administration

Will discuss HW?3 solutions in today's discussion session.

HW4 (last homework) will be released soon.



Outline

© Review of last lecture
© Recurrent Neural Network

© Transformers



Outline

© Review of last lecture



Hidden Markov Models

Model parameters:

@ initial distribution
P(Zy=s)=ms

@ transition distribution
P(Ziy1=58"|Zy=5) = as

/"/"‘/,"\\'\04 \0\3:/)/\‘\\\\‘
e emission distribution

P(XtZO‘Zt:S):b&O

5 /51



Baum-Welch algorithm

Step O Initialize the parameters (m, A, B)

Step 1 (E-Step) Fixing the parameters, compute forward and backward

messages for all sample sequences, then use these to compute vgn) (t) and
§(n) (t) for each n,t,s,s’.

s,s’

Step 2 (M-Step) Update parameters:

T-1
s X Z,}/gn)(l)’ Qs s X Z Z {;T;)/ (t), bs,o X Z Z Vgn) (t)

n t=1 n t:xy=o

Step 3 Return to Step 1 if not converged

6 /51



Viterbi Algorithm

Viterbi Algorithm
For each s € [S], compute (1) = msbs 4, .
Foreacht=2,...,T,

e for each s € [S], compute

05(t) = bs o, mse/),xasx’sés/(t -1)

Ag(t) = argmaxay 04 (t — 1)

Sl

Backtracking: let 2} = argmax, 0,(T).
Foreach t =T,...,2: set z; | = A« (t).

Output the most likely path 27,..., 27.




Review of last lecture

Example

Arrows represent A4(t), backtracking = follow the arrows.

Seunny(1) = 0.25

6s\mny(2) =0.1

Brainy(1) = 0.4

Jsunny (3) = 0.04

Orainy(2) = 0.19

Seunny(4) = 0.016

Orainy (3) = 0.042

The most likely path is “rainy, rainy, sunny, sunny”.

Orainy (4) = 0.01

8 /51



Outline

© Recurrent Neural Network
@ RNN: model

@ RNN: training and testing



Recall: language models via HMM

o today the

@ today the price

@ today the price of

@ today the price of gold

final result: today the price of gold per ton, while
production of shoe lasts and shoe industry, the bank
intervened just after it considered and rejected an
IMF demand to rebuild depleted European stocks.

Surprisingly grammatical! but incoherent...

company 0.153
bank 0.153
price 0.077
italian @.039
emirate 0.039
[of 0.308
for 0.050
it 0.046
to 0.046
is 0.031
the 0.072
18 0.043
oil 0.043
its 0.036
gold 0.018

10 / 51



Recurrent Neural Network

How to improve this?

Key ideas for improvement:



Recurrent Neural Network

How to improve this?

Key ideas for improvement:

@ represent words as vectors, enabling differentiable operations



Recurrent Neural Network

How to improve this?

Key ideas for improvement:
@ represent words as vectors, enabling differentiable operations

o flexible sequence to sequence architecture (not just vector to
vector)



Recurrent Neural Network

How to improve this?

Key ideas for improvement:
@ represent words as vectors, enabling differentiable operations

e flexible sequence to sequence architecture (not just vector to
vector)

e shared components (just like filters in CNN)

11 / 51



Recurrent Neural Network

How to improve this?

Key ideas for improvement:
@ represent words as vectors, enabling differentiable operations

e flexible sequence to sequence architecture (not just vector to
vector)

e shared components (just like filters in CNN)

Recurrent Neural Network (RNN) is one solution (popular before
transformers).

11 / 51



Recurrent Neural Network

Acknowledgements

Very useful resources:

@ RNN cheatsheet from Stanford CS 230

@ https://stanford.edu/~shervine/teaching/cs-230/

cheatsheet-recurrent-neural-networks

o Visualizing a tiny RNN
e https://joshvarty.github.io/VisualizingRNNs/

o Character-level RNN
o https://karpathy.github.io/2015/05/21/rnn-effectiveness/

12 / 51


https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://joshvarty.github.io/VisualizingRNNs/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Network

Words as vectors

Simplest approach: one-hot sparse encoding



Recurrent Neural Network

Words as vectors

Simplest approach: one-hot sparse encoding

@ suppose there are d words in the vocabulary



Recurrent Neural Network

Words as vectors

Simplest approach: one-hot sparse encoding
@ suppose there are d words in the vocabulary

@ represent the i-th of them by the d-dimensional basis vector
e; =(0,...,0,1,0,...,0) € R?
/]\

i-th entry

13 / 51



Recurrent Neural Network

Words as vectors

Simplest approach: one-hot sparse encoding
@ suppose there are d words in the vocabulary

@ represent the i-th of them by the d-dimensional basis vector
e; =(0,...,0,1,0,...,0) € R?
/]\

i-th entry

Issues: does not convey any semantic meanings

13 / 51



Recurrent Neural Network

Words as vectors: embedding

Word embedding: similar words are closer in their vector representation




Recurrent Neural Network

Words as vectors: embedding

Word embedding: similar words are closer in their vector representation

@ popular approaches: word2vec, GloVe (see project)



Recurrent Neural Network

Words as vectors: embedding

Word embedding: similar words are closer in their vector representation

@ popular approaches: word2vec, GloVe (see project)

@ can even perform meaningful algebraic operations

14 / 51



Recurrent Neural Network

Words as vectors: embedding

Word embedding: similar words are closer in their vector representation

@ popular approaches: word2vec, GloVe (see project)
@ can even perform meaningful algebraic operations

e example: man is to woman as king is to?

14 / 51



Recurrent Neural Network

Words as vectors: embedding

Word embedding: similar words are closer in their vector representation

@ popular approaches: word2vec, GloVe (see project)
@ can even perform meaningful algebraic operations
e example: man is to woman as king is to?

e can be answered by finding the word with the closest embedding to
vec(woman) — vec(man) + vec(king), which happens to be “queen”

14 / 51



Recurrent Neural Network

Words as vectors: embedding

Word embedding: similar words are closer in their vector representation

@ popular approaches: word2vec, GloVe (see project)
@ can even perform meaningful algebraic operations
e example: man is to woman as king is to?

e can be answered by finding the word with the closest embedding to
vec(woman) — vec(man) + vec(king), which happens to be “queen”

walked

o’ i swam

walking R

swimming

14 / 51



Unifying two approaches

Let € R? be the one-hot encoding of a word, and matrix E € R%*4 be
some embedding matrix, then Ex is the embedding for this word



Unifying two approaches

Let € R? be the one-hot encoding of a word, and matrix E € R%*4 be
some embedding matrix, then Ex is the embedding for this word

o FE can be fixed (i.e., from word2vec or GloVe), where the i-th column
is the embedding for the i-th word

15 / 51



Unifying two approaches

Let € R? be the one-hot encoding of a word, and matrix E € R%*4 be
some embedding matrix, then Ex is the embedding for this word

o FE can be fixed (i.e., from word2vec or GloVe), where the i-th column
is the embedding for the i-th word

@ or E can be learned (e.g., via backpropagation in DL pipeline),

15 / 51



Unifying two approaches

Let € R? be the one-hot encoding of a word, and matrix E € R%*4 be
some embedding matrix, then Ex is the embedding for this word

o FE can be fixed (i.e., from word2vec or GloVe), where the i-th column
is the embedding for the i-th word

@ or E can be learned (e.g., via backpropagation in DL pipeline),
making it application specific (common especially if data are huge)

15 / 51



Unifying two approaches

Let € R? be the one-hot encoding of a word, and matrix E € R%*4 be
some embedding matrix, then Ex is the embedding for this word

o FE can be fixed (i.e., from word2vec or GloVe), where the i-th column
is the embedding for the i-th word

@ or E can be learned (e.g., via backpropagation in DL pipeline),
making it application specific (common especially if data are huge)

In the remaining, we simply use one-hot representation, but keep in mind
it could be passed through some E implicitly

15 / 51



Recurrent Neural Network

A recurrent layer

from y = f(x) to



Recurrent Neural Network

A recurrent layer

from y = f(z) to (y,h') = f(x, h)

(=3
= = |- <= |




Recurrent Neural Network

A recurrent layer

from y = f(z) to (y,h') = f(x, h)
e his "hidden state” (like HMM), updated via

h =oc(Wh+ Uz + by)

where o is an activation function

| =2




Recurrent Neural Network RNN: model

A recurrent layer

from y = f(z) to (y,h') = f(x, h)
e his "hidden state” (like HMM), updated via

h =oc(Wh+ Uz +by)

where o is an activation function

v
== |—>[=]

e y = Vh +b, is the output

16 / 51



Recurrent Neural Network RNN: model

A recurrent layer

from y = f(z) to (y,h') = f(x, h)
e his "hidden state” (like HMM), updated via

h =oc(Wh+ Uz +by)

where o is an activation function

v
== |—>[=]

e y = Vh +b, is the output

o,y R h,h € R

16 / 51



Recurrent Neural Network RNN: model

A recurrent layer

from y = f(z) to (y,h') = f(x, h)
e his "hidden state” (like HMM), updated via

h =oc(Wh+ Uz +by)

where o is an activation function

v
== |—>[=]

e y=VHh' +b,is the output

o,y R h,h € R

X o weight matrices W € R% x4 [J ¢ R%xd vV ¢ RI¥dn

16 / 51



Recurrent Neural Network RNN: model

A recurrent layer

from y = f(z) to (y,h') = f(x, h)
e his "hidden state” (like HMM), updated via

h =oc(Wh+ Uz +by)

where o is an activation function

v
== |—>[=]

e y = Vh +b, is the output

o,y R h,h € R

X o weight matrices W € R% x4 [J ¢ R%xd vV ¢ RI¥dn

e bias terms by, € R%, b, € R?

16 / 51



Recurrent Neural Network

Recurrent layer applied recursively

Given a sequence x1, o, ..., can apply f recursively:



Recurrent Neural Network

Recurrent layer applied recursively

Given a sequence x1, o, ..., can apply f recursively:
BIRER e hp=0
ttt Sy
il o (y1,h1) = f(x1, ho)
ttt




Recurrent Neural Network

Recurrent layer applied recursively

Given a sequence x1, o, ..., can apply f recursively:
1] o h() =0
TTT .
. ® (y1,h1) = f(x1, ho)
ttt ° (Y2, h2) = f(w2, h1)
L L L °




Recurrent Neural Network

Recurrent layer applied recursively

Given a sequence x1, o, ..., can apply f recursively:
1] o h() =0
TTT .
. ® (y1,h1) = f(x1, ho)
ttt ° (Y2, h2) = f(w2, h1)
L L L °

This is one recurrent layer unfolded (over steps), not many different layers.



Recurrent Neural Network RNN: model

Recurrent layer applied recursively

Given a sequence x1, o, ..., can apply f recursively:
] o ho =0
ot SR —
o (y1,h1) = f(z1, ho)
ttt ° (Y2, h2) = f(w2,h1)
I I I ° ...

This is one recurrent layer unfolded (over steps), not many different layers.

The same f (i.e, W, U,V , by, by) is shared in all steps (similar to CNN's
filters shared across different spatial locations).

17 / 51



Recurrent Neural Network RNN: model

Recurrent layer applied recursively

Given a sequence x1, o, ..., can apply f recursively:
] o ho =0
T1T N
L[] ® (Y1, h1) = f(z1, ho)
ttt ° (Y2, h2) = f(w2,h1)
I I I ° ...

This is one recurrent layer unfolded (over steps), not many different layers.

The same f (i.e, W, U,V , by, by) is shared in all steps (similar to CNN's
filters shared across different spatial locations).

Hidden state h; summarizes information up to step ¢.

17 / 51



Making it “deep”

Stack multiple recurrent layers:

depth




Making it “deep”

Stack multiple recurrent layers:

@ hidden states become the inputs of
the next layer

depth




Making it “deep”

Stack multiple recurrent layers:

@ hidden states become the inputs of
the next layer

o different layers learn different
W.,U, by, T

depth




Making it “deep”

Stack multiple recurrent layers:

@ hidden states become the inputs of
the next layer

fffrffff

o different layers learn different ST e e
W, U,b, fffrffff
o last layer learns V', b, and output y g2 A A i i s

depth




A flexible sequence-to-sequence model

Many possible structures and applications:

one to many many to one many to many many

e S
o EEe PUARS [UER
] 000 ooo




Recurrent Neural Network RNN: model

A flexible sequence-to-sequence model

Many possible structures and applications:

one to many

o

t

|

many to one

a

i[i[s

@ one-to-many: image captioning

19 / 51



Recurrent Neural Network RNN: model

A flexible sequence-to-sequence model

Many possible structures and applications:

one to many

o

t

|

many to one

a

i[i[s

@ one-to-many: image captioning

@ many-to-one: sentiment classification

19 / 51



Recurrent Neural Network RNN: model

A flexible sequence-to-sequence model

Many possible structures and applications:

one to many many to one many to many
o
i THA] L

(I Tl

@ one-to-many: image captioning

many to many

-

—
—

=

-
(g
B

@ many-to-one: sentiment classification

@ many-to-many: machine translation, question answering

19 / 51



Recurrent Neural Network RNN: model

A flexible sequence-to-sequence model

Many possible structures and applications:

one to many many to one many to many many to many
00 " unn o
LI, It Uy

0 OO0 ooo

@ one-to-many: image captioning

%ﬂ:l
—

-
-
-

@ many-to-one: sentiment classification

@ many-to-many: machine translation, question answering

(aligned) many-to-many: POS tagging, name entity recognition

19 / 51



How to train an RNN

Take text generation (unsupervised learning) as an example:



How to train an RNN

Take text generation (unsupervised learning) as an example:

@ given a corpus, train an RNN that learns P(x; | ©1.4—1)



RNN: training and testing
How to train an RNN

Take text generation (unsupervised learning) as an example:
@ given a corpus, train an RNN that learns P(x; | ©1.4—1)
For each sequence x1,. ..,z € R? (one-hot representation) in the corpus

o feed x1,..., @y into the current RNN to get 71,...,yr_ 1 € R?

20 / 51



RNN: training and testing
How to train an RNN

Take text generation (unsupervised learning) as an example:
@ given a corpus, train an RNN that learns P(x; | ©1.4—1)

For each sequence x1,. ..,z € R? (one-hot representation) in the corpus
o feed x1,..., @y into the current RNN to get 71,...,yr_ 1 € R?

@ each y; defines a distribution over the next word via softmax:
P(next word = i) o< exp(¥Yy.i)

20 / 51



RNN: training and testing
How to train an RNN

Take text generation (unsupervised learning) as an example:
@ given a corpus, train an RNN that learns P(x; | ©1.4—1)

For each sequence x1,. ..,z € R? (one-hot representation) in the corpus
o feed x1,..., @y into the current RNN to get 71,...,yr_ 1 € R?

@ each y; defines a distribution over the next word via softmax:
P(next word = i) o< exp(¥Yy.i)

@ based on the true label x;,1, each y; incurs cross-entropy loss
1y [ e )
d ~
i1 eXp(Yt.i)

20 / 51



RNN: training and testing
How to train an RNN

Take text generation (unsupervised learning) as an example:
@ given a corpus, train an RNN that learns P(x; | ©1.4—1)

For each sequence x1,. ..,z € R? (one-hot representation) in the corpus
o feed x1,..., @y into the current RNN to get 71,...,yr_ 1 € R?

@ each y; defines a distribution over the next word via softmax:
P(next word = i) o< exp(¥Yy.i)

@ based on the true label x;,1, each y; incurs cross-entropy loss

1y [ e )
d ~
i1 eXp(Yt.i)
@ update the RNN parameters using backpropagation over the total loss

20 / 51



Recurrent Neural Network

Demo

Tiny RNN, predicting the next bit of a binary sequence

@ https://joshvarty.github.io/VisualizingRNNs/


https://joshvarty.github.io/VisualizingRNNs/

Recurrent Neural Network RNN: training and testing

Demo

Tiny RNN, predicting the next bit of a binary sequence
@ https://joshvarty.github.io/VisualizingRNNs/

@ the entire vocabulary is just {0,1} (d = 2)

21 /51


https://joshvarty.github.io/VisualizingRNNs/

Recurrent Neural Network RNN: training and testing

Demo

Tiny RNN, predicting the next bit of a binary sequence
@ https://joshvarty.github.io/VisualizingRNNs/
@ the entire vocabulary is just {0,1} (d = 2)

@ one-layer RNN with dj, = 3, so parameters are
W e R¥>3 U € R?2 V € R?*3 by, € R3,b, € R?

21/ 51


https://joshvarty.github.io/VisualizingRNNs/

RNN: training and testing
Another demo

Min-Char RNN, predicting the next character of a sequence

@ https://karpathy.github.io/2015/05/21/rnn-effectiveness/

target chars: “e” B € “g?
1.0 0.5 0.1 0.2
22 0.3 0.5 -1.5
output layer 30 i = iy
4.1 1.2 -1.1 22
0.3 1.0 0.1 -0.3
hidden layer | -0.1 0.3 0l5 0.9
0.9 0.1 -0.3 0.7
1 0 0 0
i 0 1 0 0
input layer 0 0 - >
0 0 0 0
input chars:  “n” Co “r g

22 / 51


https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Network

Generation after training

Keep sampling from softmax(y;) as the next input ;1 to RNN



Recurrent Neural Network

Generation after training

Keep sampling from softmax(y;) as the next input ;1 to RNN

Can control how “random” the generation is via softmax(/3 - y;)



Recurrent Neural Network

Generation after training

Keep sampling from softmax(y;) as the next input ;1 to RNN

Can control how “random” the generation is via softmax(/3 - y;)

e 1/5 is called temperature



Recurrent Neural Network RNN: training and testing

Generation after training

Keep sampling from softmax(y;) as the next input x;;; to RNN

Can control how “random” the generation is via softmax (/3 - y)

e 1/p is called temperature

o larger temperature (smaller 3) leads to more random outputs

23 / 51



Recurrent Neural Network RNN: training and testing

Generation after training

Keep sampling from softmax(y;) as the next input x;;; to RNN

Can control how “random” the generation is via softmax (/3 - y)

e 1/p is called temperature

o larger temperature (smaller 3) leads to more random outputs

e =0, uniform output (maximum entropy)

23 / 51



Recurrent Neural Network RNN: training and testing

Generation after training

Keep sampling from softmax(y;) as the next input x;;; to RNN

Can control how “random” the generation is via softmax (/3 - y)

e 1/p is called temperature

o larger temperature (smaller 3) leads to more random outputs

e =0, uniform output (maximum entropy)

e 3 = oo, deterministically output argmax; 4 ; (“hard” max)

23 / 51



Recurrent Neural Network

Generation after training

A few remarkable examples from Min-Char RNN:

e corpus: IATEX source code of an algebraic geometry book (16MB)



ecurrent Neural Network RNN: training and testing

Generation after training

A few remarkable examples from Min-Char RNN:
e corpus: IATEX source code of an algebraic geometry book (16MB)

@ generate source code that almost complies

For @,

space.

where £,,, = 0, hence we can find a closed subset A in # and
] s a closed immersion of S, then U — T is a separated algebraic

m

Proof. Proof of (1). It also start we get
S =Spec(R) =U xx U xx U

and the comparicoly in the fibre product covering we have to prove the lemma

generated by [[Z xy U — V. Consider the maps M along the set of points

Sehypps and U — U s the fibre category of S in U in Section, ?2 and the fact that

any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any

open subset W C U in Sh(G) such that Spec(R') — S is smooth or an

U =JUixs, Ui
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox , is a scheme where 2 s” € 8" such that Ox o+ — O, . is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg: (2'/S")
and we win.

To prove study we see that |y is a covering of A”, and T; is an object of Fys for
i >0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

N* = I* Ospectry Os.0 — ix' F)

24 / 51



ecurrent Neural Network RNN: training and testing

Generation after training

A few remarkable examples from Min-Char RNN:
e corpus: IATEX source code of an algebraic geometry book (16MB)
@ generate source code that almost complies

@ the model understands complex syntactic structures

For @,
any sets F on
space.

Proof. Proof of (1). It also
S =Spec(R) =U xx U xx U

where £,,, = 0, hence we can find a closed subset H in # and
7 is a closed immersion of S, then U — T is a separated algebraic

m

art we get

and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xiy U — V. Consider the maps M along the set of points
Sehypps and U — U s the fibre category of S in U in Section, ?2 and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R') — S is smooth or an

U =JUixs, U;
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Oy is a scheme where &, 2/, s” € §' such that Oy — Ok, . is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg: (2'/S")
and we win.

To prove study we see that |y is a covering of A”, and T; is an object of Fys for
i >0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M* = I* @speciry Os,0 — ix' F)

24 / 51



Recurrent Neural Network

Generation after training

A few remarkable examples from Min-Char RNN:

@ corpus: Linux source code (474MB of C code); 10M parameters



Recurrent Neural Network RNN: training and testing

Generation after training

A few remarkable examples from Min-Char RNN:

@ corpus: Linux source code (474MB of C code); 10M parameters

@ generate codes with very few syntactic errors

static int indicate_policy(void)
{

int error;

if (fd == MARN_EPT) {

if (ss->segment < mem_total)
unblock_graph_and_set_blocked();

else

ret = 1;

goto bailj
¥

segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = 0; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;
if (fd) {
current = blocked;
}
}
rw->name = "Getjbbregs”;
bprm_self_clearl(&iv->version);
regs->new = blocks[ (BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
return segtable;

25 / 51



Recurrent Neural Network RNN: training and testing

Generation after training

A few remarkable examples from Min-Char RNN:

@ corpus: Linux source code (474MB of C code); 10M parameters

@ generate codes with very few syntactic errors
static int indicate_policy(void)

@ uses strings/pointers properly, ‘..o
if (fd == MARN_EPT) {
open/close brackets correctly,
good indentation, £ eoseecrem oLy
unblock_graph_and_set_blocked();
even add comments

ret = 1;
goto bail;
}
segaddr = in_SB(in.addr);
selector = seg / 16;
setup_works = true;
for (i = 0; i < blocks; i++) {
seq = buf[i++];
bpf = bd->bd.next + i * search;
if (fd) {
current = blocked;
}
¥
rw->name = "Getjbbregs”;
bprm_self_clearl(&iv->version);
regs->new = blocks[ (BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
return segtable;

25 / 51



Recurrent Neural Network

A closer look at some neurons

Some neurons (entries of the hidden state h) are quite interpretable
(even though most are not)



Recurrent Neural Network RNN: training and testing

A closer look at some neurons

Some neurons (entries of the hidden state h) are quite interpretable
(even though most are not)

@ can visualize this by coloring the input character based on the value
of this neuron (red = large value, blue = small value)

26 / 51



Recurrent Neural Network RNN: training and testing

A closer look at some neurons

Some neurons (entries of the hidden state h) are quite interpretable
(even though most are not)

@ can visualize this by coloring the input character based on the value
of this neuron (red = large value, blue = small value)

The sole importance of the crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
line of action--the one Kutuzov and the general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled
at a continually increasing speed and all its energy was directed to
reaching its goal It fled like a wounded animal and it was impossible
to block its path. This was shown not so much by the arrangements it
made for crossing as by what took place at the bridges. Wwhen the bridges
broke down, unarmed soldiers, people from Moscow and women ith children
who were with the French transport, all--carried on by vis inertiae--
pressed forward into boats and into the ice-covered water and did notj)

surrender .

A neuron sensitive to the position in line

26 / 51



Recurrent Neural Network

A closer look at some neurons

Some neurons (entries of the hidden state h) are quite interpretable
(even though most are not)

@ can visualize this by coloring the input character based on the value
of this neuron (red = large value, blue = small value)

A neuron that is turned on inside quotes



Recurrent Neural Network

A closer look at some neurons

Some neurons (entries of the hidden state h) are quite interpretable
(even though most are not)

@ can visualize this by coloring the input character based on the value
of this neuron (red = large value, blue = small value)

F

ending, mask);

A neuron that is turned on inside if statements



Recurrent Neural Network RNN: training and testing

A closer look at some neurons

Some neurons (entries of the hidden state h) are quite interpretable
(even though most are not)

@ can visualize this by coloring the input character based on the value
of this neuron (red = large value, blue = small value)

ifdef CONFIG_AUDITSYSCALL
tatic inline int audit_match_class_bits(int class, u32 *mask)

s[class]) (
i < AUDIT_BITMASK
1 ]

SHVZERIATEE))
& classes[class )

=S|I
[i]

return 1;

A neuron sensitive to the depth of an expression

26 / 51



Recurrent Neural Network

Final notes

Instead of using a character or a word as each x, often use a token (word
or sub-word)



Recurrent Neural Network

Final notes

Instead of using a character or a word as each x, often use a token (word
or sub-word)

o “apple” is a token



Recurrent Neural Network RNN: training and testing

Final notes

Instead of using a character or a word as each x, often use a token (word
or sub-word)

@ “apple” is a token

@ “unbelievable” is 3 tokens (“un”, “believ’, “able")

27 / 51



Recurrent Neural Network RNN: training and testing

Final notes

Instead of using a character or a word as each x, often use a token (word
or sub-word)

@ “apple” is a token
@ “unbelievable” is 3 tokens (“un”, “believ’, “able")

@ can reduce the size of vocabulary

27 / 51



RNN: training and testing
Final notes

Instead of using a character or a word as each x, often use a token (word
or sub-word)

@ “apple” is a token

@ “unbelievable” is 3 tokens (“un”, “believ’, “able")

@ can reduce the size of vocabulary

Directly applying backpropagation to RNN leads to vanishing/exploding
gradient issues when T is large

27 / 51



RNN: training and testing
Final notes

Instead of using a character or a word as each x, often use a token (word
or sub-word)

@ “apple” is a token

@ “unbelievable” is 3 tokens (“un”, “believ’, “able")

@ can reduce the size of vocabulary
Directly applying backpropagation to RNN leads to vanishing/exploding
gradient issues when T is large

o W is applied T times at the end of the sequence (so roughly W)

27 / 51



RNN: training and testing
Final notes

Instead of using a character or a word as each x, often use a token (word
or sub-word)

@ “apple” is a token

@ “unbelievable” is 3 tokens (“un”, “believ’, “able")

@ can reduce the size of vocabulary
Directly applying backpropagation to RNN leads to vanishing/exploding
gradient issues when T is large

o W is applied T times at the end of the sequence (so roughly W)

@ some fixes: Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU)

27 / 51



Outline

© Transformers
@ Self-attention
@ Other components
@ Training and testing



Transformers

Transformers

Issues of RNN: must compress all
previous info into a single state h



Transformers

Transformers

QOutput
Probabilities

Add & Norm

Feed
Forward

Issues of RNN: must compress all
previous info into a single state h

Add & Norm

Multi-Head
Attention

Add & Norm

Nx
N Add & Norm
H H Masked
A solution that dominates all other Vil read asked
models currently: transformers s o —
| J

Positional A @ Positional
Encoding Encoding

Input Output
Embedding Embedding

Inputs Outputs

29 / 51



Transformers

Acknowledgements

Very useful resources:

e original paper: “Attention Is All You Need” (200K+ citation by now)

e https://arxiv.org/pdf/1706.03762

@ The lllustrated Transformer (most pictures are from here)
e https://jalammar.github.io/illustrated-transformer/

@ a super cool Nano-GPT visualization
e https://bbycroft.net/1lm

@ A Multiscale Visualization of Attention
e https://arxiv.org/pdf/1906.05714

30 / 51


https://arxiv.org/pdf/1706.03762
https://jalammar.github.io/illustrated-transformer/
https://bbycroft.net/llm
https://arxiv.org/pdf/1906.05714

Transformers

Key idea: self-attention

Example: “The animal didn’t cross the street because it was too tired"



Transformers

Key idea: self-attention

Example: “The animal didn’t cross the street because it was too tired"

@ Does “it” refer to “animal” or “street”?



Key idea: self-attention

Example: “The animal didn't cross the street because it was too tired"
@ Does “it" refer to “animal” or “street”?

@ trivial for human, but how to design a model that understands this?

31 /51



Key idea: self-attention

Example: “The animal didn't cross the street because it was too tired"
@ Does “it" refer to “animal” or “street”?
@ trivial for human, but how to design a model that understands this?

@ intuitively, when looking at the word “it", the model should pay
attention to the word “animal”

31 /51



S
Key idea: self-attention

Example: “The animal didn't cross the street because it was too tired"
@ Does “it" refer to “animal” or “street”?
@ trivial for human, but how to design a model that understands this?

@ intuitively, when looking at the word “it", the model should pay
attention to the word “animal”

o An attention head does exactly this

31 /51



Attention head

An attention head

o takes a sequence of inputs &1, ..., z7 € R? and outputs another
sequence 21, ..., zr € R% (similar to hidden states of RNN)



Self-attention
Attention head

An attention head

o takes a sequence of inputs x1, ...,z € R? and outputs another
sequence z1, ...,z € R?% (similar to hidden states of RNN)

@ parametrized by three matrices (and corresponding biases, omitted for
simplicity): Wy € Rk W, e R&Xe Wy, € Réxdv

32 /51



Self-attention
Attention head

An attention head

o takes a sequence of inputs x1, ...,z € R? and outputs another
sequence z1, ...,z € R?% (similar to hidden states of RNN)

@ parametrized by three matrices (and corresponding biases, omitted for
simplicity): Wy € Rk W, e R&Xe Wy, € Réxdv

o computes a query vector for each input a; as ¢ = W x; € R%

32 /51



Self-attention
Attention head

An attention head

o takes a sequence of inputs x1, ...,z € R? and outputs another
sequence z1, ...,z € R?% (similar to hidden states of RNN)

@ parametrized by three matrices (and corresponding biases, omitted for
simplicity): Wy € Rk W, e R&Xe Wy, € Réxdv

o computes a query vector for each input a; as ¢ = W x; € R%

e computes a key vector for each input x; as k; = W;mt € R%

32 /51



Self-attention
Attention head

An attention head

o takes a sequence of inputs x1, ...,z € R? and outputs another
sequence z1, ...,z € R?% (similar to hidden states of RNN)

@ parametrized by three matrices (and corresponding biases, omitted for
simplicity): Wy € RAx € R Wy, € Réxdv

o computes a query vector for each input a; as ¢ = W x; € R%

e computes a vector for each input x; as k; = W;mt € R

e computes a value vector for each input x; as v; = W‘Ixt € R

32 /51



Self-attention
Attention head

An attention head

o takes a sequence of inputs x1, ...,z € R? and outputs another
sequence z1, ...,z € R?% (similar to hidden states of RNN)

@ parametrized by three matrices (and corresponding biases, omitted for
simplicity): Wy € RAx € R Wy, € Réxdv

o computes a query vector for each input a; as ¢ = W x; € R%

e computes a vector for each input x; as k; = W;mt € R

e computes a value vector for each input x; as v; = W‘Ixt € R

@ the output z; is the “answer” to the query of g;

32 /51



Attention head (cont.)

Input Thinking Machines
Embedding I e[ T[]
Queries o« [T [T wae
Keys o [ e [ WK
Values vi ] v ] wv




Attention head (cont.)

The output z; is the “answer” to the query of g;. How?



Attention head (cont.)

The output z; is the “answer” to the query of g;. How?

@ imagine: you make a Google query (gq;),



Attention head (cont.)

The output z; is the “answer” to the query of g;. How?

@ imagine: you make a Google query (g;), and it returns a list of
website titles (k1.7);



Selfattention
Attention head (cont.)

The output z; is the “answer” to the query of g;. How?

@ imagine: you make a Google query (g;), and it returns a list of
website titles (ki.7); clicking a title (k;) leads you to a website (v;).

34 /51



Selfattention
Attention head (cont.)

The output z; is the “answer” to the query of g;. How?

@ imagine: you make a Google query (g;), and it returns a list of
website titles (ki.7); clicking a title (k;) leads you to a website (v;).

@ You then summarize the answer using all websites (vy1.7),

34 /51



Selfattention
Attention head (cont.)

The output z; is the “answer” to the query of g;. How?

@ imagine: you make a Google query (g;), and it returns a list of
website titles (ki.7); clicking a title (k;) leads you to a website (v;).

@ You then summarize the answer using all websites (v1.7), each with a
different weight based on how relevant/close its title is to your query

34 /51



Attention head (cont.)

The output z; is the “answer” to the query of g;. How?

@ imagine: you make a Google query (g;), and it returns a list of
(k1.7); clicking a title (k;) leads you to a website (v ).

@ You then summarize the answer using all websites (v1.7), each with a
different weight based on how relevant/close its is to your query

o formally, the final answer z; is the weighted sum of vy, ..., v,

34 /51



Selfattention
Attention head (cont.)

The output z; is the “answer” to the query of g;. How?

@ imagine: you make a Google query (g;), and it returns a list of
(k1.7); clicking a title (k;) leads you to a website (v ).

@ You then summarize the answer using all websites (v1.7), each with a

different weight based on how relevant/close its is to your query
o formally, the final answer z; is the weighted sum of vy, ..., v, with
weights computed via
T T
softmax (qt e a >
Vg Vg

34 /51



Selfattention
Attention head (cont.)

The output z; is the “answer” to the query of g;. How?

@ imagine: you make a Google query (g;), and it returns a list of
(k1.7); clicking a title (k;) leads you to a website (v ).

@ You then summarize the answer using all websites (v1.7), each with a
different weight based on how relevant/close its is to your query

o formally, the final answer z; is the weighted sum of vy, ..., v, with
weights computed via

T T
softmax (qt & >

Vi TV

where q,' k. is the attention score from input x; to input x,

34 /51



Input

Embedding
Queries

Keys

Values

Score

Divide by 8 (vd )
Softmax

Softmax
X
Value

Sum

Thinking
x: [
o [EEE
k[
vi OO
qie k=112

14

0.88
v [
z [N

Attention head (cont.)

Machines

x. [
o [N

qi e ko =96

12

0.12




Transformers

Attention head (cont.)

Matrix notation:

e input matrix X € RT*¢ obtained by stacking :131'—, . ,:c],:
x we Q
mE - [ -
x WK K
mE - [ -
x wy v
mEE - [ - o




Attention head (cont.)

Matrix notation:

e input matrix X € RT*¢ obtained by stacking :131'—, . ,a:],:
O — Txdy x we @
@ query matrix Q = XWg € R S un
x WK K
mE - [ -
x wy v
mE - [ -



Attention head (cont.)

Matrix notation:

e input matrix X € RT*? obtained by stacking x{ ,...,z;
@ query matrix Q = XWg € RT xdx X we aQ
o key matrix K = XWj € RTxdk B - - BFH
X WK K
B - -1
X wy v
-



Attention head (cont.)

Matrix notation:

input matrix X € RT*? obtained by stacking x{ ,...,z;
query matrix Q@ = XWg € RT*dg % we Q
key matrix K = XWj € RTxdr B - @ - HH
value matrix V. = XWy, € RT*dv X WT K
mES - [ e
X wv Vv
EEE- | - BB



Selfattention
Attention head (cont.)

Matrix notation:

e input matrix X € RT*? obtained by stacking x{ ,...,z;
@ query matrix Q@ = XWg € RT *dk X we Q
o key matrix K = XWy € RT*d A - - B
e value matrix V.= XWy € RTxd X
@ attention score matrix QK ' € RT*T B - - FH
X
EE- [ =
a v

softmax( HH - EQ_ ) [T

@

- B

36 / 51



Selfattention
Attention head (cont.)

Matrix notation:

e input matrix X € RT*? obtained by stacking x{ ,...,z;
@ query matrix Q@ = XWg € RTxdk | wo Q
o key matrix K = XWy € RT*% S - = HH
e value matrix V = X Wy € RT*dv
e attention score matrix QK ' € RT*T EEEE - - H-
e output matrix Z € RT*% js

softmax (QKT) 1% HHH - - HH

\/a Q T

where softmax is applied row-wise

softmax( t:H ) l:_ ) j:t

@

- B

36 / 51



Selfattention
Attention head (cont.)

Matrix notation:

e input matrix X € RT*¢ obtained by stacking :L'ir, . ,:1:;
@ query matrix @ = XWg € RT>dk _ e “
o key matrix K = XWg € RT*dk - - B
e value matrix V. = X Wy, € RTxdv
e attention score matrix QK ' € RT*T HH - - B
o output matrix Z € RT*% s
softmax (QI{T) \% B - - HE
Vi, Q T
where softmax is applied row-wise e ( @_7_E_ ) e
O(T?) complexity (ignoring d, di, d,) - HH

36 / 51



Visualization of an attention head link

@ the darker the color, the larger the attention score

@ “it" attends to “animal” in one head,

[CLS] [CLS]
the the
animal animal
didn didn
t t
cross cross
the the
street street
because because
it it
was was
too too
tired tired
[SEP] [SEP]

37 / 51


https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing#scrollTo=twSVFOM9SopW

Visualization of an attention head

@ the darker the color, the larger the attention score

@ “it" attends to “animal” in one head, and “tired” in another head

[CLS]
the
animal
didn

t

cross
the
street
because
it

was
too
tired
[SEP]

[CLS]
the
animal
didn

t

cross
the
street
because
it

was
too
tired
[SEP]

[CLS]
the
animal
didn

t

cross
the
street
because
it

was
too
tired
[SEP]

[CLS]
the
animal
didn

t
cross
the
street
because
it

was
too
tired
[SEP]

link

37 / 51


https://colab.research.google.com/drive/1hXIQ77A4TYS4y3UthWF-Ci7V7vVUoxmQ?usp=sharing#scrollTo=twSVFOM9SopW

ansformers

Visualization of an attention head link

More examples

Gender-specific term Name Occupation
Layer:( 5 & - Layer:(5 %) Layer: 5 %] -
Tr?e The Later Later The The
girl girl s s doctor doctor
) and and Alice Alice asked asked
-VC‘) the the came came the the
boy boy up up nurse
walked walked to to a 2
home home Bob Bob question question
she She She - She Sho She
Layer: 5 & Layer: 5 %/ Layer: (5 |
| | |
The The Later Later The The
girl girl 5 B doctor doctor
(3] and and Alice Alice asked asked
I the the came came the the
boy boy up up nurse nurse
walked walked to to a a
home home Bob Bob question question
He - He HER He He ~ He



https://arxiv.org/pdf/1906.05714

Visualization of an attention head

More examples

She

He

link

@ all from unsupervised learning; no one tells the model to learn these!

Gender-specific term Name Occupation
Layer: 5 ¥ - Layer: (5 % Layer: 5 &
The The Later Later The The
girl girl : s doctor doctor
and and Alice Alice asked asked
the the came e the the
boy boy up up nurse
walked walked to to a a
home home Bob Bob question question
She - She She - She She She
Layer:| 5 ¥ Layer:| 5 Layer: 5 &
The The Later Later The The
girl girl . ’ doctor doctor
and and Alice Alice asked asked
the the came came the the
boy boy up up nurse nurse
walked walked to to a a
home home Bob Bob question question
He He He He He He

38 / 51


https://arxiv.org/pdf/1906.05714

Multi-head attention

Pass X to multiple attention-heads, each with different parameters

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
v
ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7




Multi-head attention (cont.)

Concatenate outputs of different heads and then project again

1) Concatenate all the attention heads 2) Multiply with a weight
matrix \W° that was trained
jointly with the model

A x

3) The result would be the ” matrix that captures information
from all the attention heads. We can send this forward to the FFNN

st




Transformers

Multi-head attention (cont.)

Concatenate outputs of different heads and then project again

e final output dimension is R7*¢ same as inputs X

1) Concatenate all the attention heads 2) Multiply with a weight
matrix W" that was trained
jointly with the model

N T T v I "

3) The result would be the ” matrix that captures information
from all the attention heads. We can send this forward to the FFNN

st




Transformers

Zooming out: a complete encoder

>
>

é( Add & Normalize )

3
Fi dF d F dF d
E . ( eed Forwar ) ( eed Forwari )
o
g -»( Add & Normalize )
- 4 L)
( Self-Attention )
"encooine @ ®
x: [T x2 [
Thinking Machines



Transformers

Zooming out: a complete encoder

>
>

é( Add & Normalize )
: LY [y

*
Feed Fi d Feed F d
E . ( eed Forwar ) ( eed Forwar )
[e]
g 0( Add & Normalize )
N 4 L)
( Self-Attention )
" € C
x: (I x2 [
Thinking Machines

Positional encoding

o fix the issue that attention-head does not have positional info



Transformers

Zooming out: a complete encoder

>
>

é( Add & Normalize )
: LY [y

*
Feed Fi d Feed F d
E’ . ( eed Forwar ) ( eed Forwar )
[e]
g 0( Add & Normalize )
N 4 L)
( Self-Attention )
" € 3
x: (I x2 [
Thinking Machines

Positional encoding
o fix the issue that attention-head does not have positional info

@ via a positional embedding matrix Ep € R4 fixed or learned,



Zooming out: a complete encoder

s
s

0( Add & Normalize )
: LY [y

*

Feed Forward Feed Forward
£iC ) )
o
S 0( Add & Normalize )
- 4 L)

H ( Self-Attention )
"B @ S
x: (I x2 [
Thinking Machines

Positional encoding
o fix the issue that attention-head does not have positional info
@ via a positional embedding matrix Ep € R4 fixed or learned,

o x; — x; + Epey, ie., add the t-th column of Ep to x;
T A



Transformers

Zooming out: a complete encoder (cont.)

Two more components to stabilize and
speed up training:

1. Residual pathway

ENCODER #1

4 4
(,( Add & Normalize )
H 4 4
'
: ( Feed Forward ) ( Feed F:nlvard )
S
z z I
4 Add & Normalize 4
X
K LayerNorm( BEEH + BHEE)
v
Self-Attention
POSITIONAL <> <>
ENCODING () ©
1 [N pAR S|
Thinking Machines



Transformers

Zooming out: a complete encoder (cont.)

g 7'y 4
Two more components to stabilize and e e )
ni . H 4 4
Speed Up tralnlng' E ( Feed Forward ) ( Feed Forward )
| P 4
1. ReSiduaI pathway - 4 __Add & Normalize - 4
X
@ add input to output, Z < Z + X g :’[ Lavernorn EEFH + B J
(=}
Self-Attention
oA 4; 4;
x IR . I
Thinking Machines



Transformers

Zooming out: a complete encoder (cont.)

e 4 4
Two more components to stabilize and (C e )
ni . H 4 4
Speed up tralnlng' E ( Feed Forward ) ( Feed Forward )
M 4
1. Residual pathway - 4 Add & Normalize - 4
X
@ add input to output, Z < Z + X g :’[ Lavernorn EEFH + B J
T T
- - z
@ an idea from Residual Networks to “h SelfAttention
deal with vanishing gradients oo D
q; é;
x1 [N PR S S|
Thinking Machines



Zooming out: a complete encoder (cont.)

Two more components to stabilize and ,/’( v —— R
Speed Up training: ( FeedForward ) ( Feed Forward )
1. Residual pathway s Iy
@ add input to output, Z < Z + X o Coverornt EEFH - D
. é l[ 1 Iil
@ an idea from Residual Networks to N Self-Attention )
deal with vanishing gradients \eo.. T o T 1 Y,
2. Layer normalization: R B
hinking Mlachines

42 / 51



Zooming out: a complete encoder (cont.)

Two more components to stabilize and /’( ——— )
Speed Up tralnlng: ( FeedForward ) ( Feed Forward )
1. Residual pathway Dj‘j] EDF
@ add input to output, Z < Z + X o Coverornt EEFH - D
: 4
H [EnEE] L[l
@ an idea from Residual Networks to e Sef Attntion : D
deal with vanishing gradients e T i 1
2. Layer normalization: — —

Thinking Machines

@ for each z; € R, normalize it to zero-mean and unit-variance (across
features)

42 / 51



Transformers Other components

Zooming out: a complete encoder (cont.)

Two more components to stabilize and ’( ——— )
Speed Up training: ( Feed Forward ) ( Feed Forward )
1. Residual pathway ED‘]] :DF
@ add input to output, Z < Z + X o Coverornt EEFH - D
H 4 4
H . [
@ an idea from Residual Networks to e : Self Attention : D
deal with vanishing gradients e T i 1
2. Layer normalization: — :

@ for each z; € R, normalize it to zero-mean and unit-variance (across
features)

@ similar but different from batch normalization (where you normalize
each feature to zero-mean and unit-variance across samples)

42 / 51



Transformers

Zooming out: stacking encoders and decoders

OUTPUT [ | am a student

-

i

y,

\
|

INPUT | Je suis étudiant

Encoder: summarizes the input into a useful representation



Transformers

Zooming out: stacking encoders and decoders

OUTPUT [ | am a student

-

i

y,

\
I

INPUT | Je suis étudiant

Encoder: summarizes the input into a useful representation

Decoder: generates outputs



Transformers

A closer look at decoders

g é ( Feed Forward ) ( Feed Forward )
= . A ... 4
8 ,-»( Add & Normalize )
g | ) )
E ( Self-Attention )
oo ST —— ¥ ~)

1
C( ] Add & Normalize I )

(,,( Add & Normalize )

| 4
z E ( Feed Forward ) ( Feed Forward )
a Meemcmececlecccccee
g ,->( Add & Normalize )
S [} [}
H ( Self-Attention )
Nbrrrerrrerrerereerrereeveer )
"B @ ®
x: [ x2 [N
Thinking Machines

Extra component: encoder-decoder attention

Softmax )
LY
Linear )
4
DECODER #2
+ 4
,’( Add & Normalize )

( Feed Forward ) ( Feed Fun/vard )

DECODER #1

Add & Normalize )

T

Encoder-Decoder Attention




Transformers

Encoder-decoder attention

Same idea as self-attention, except key and value matrices are computed
using output Z.,. of the final encoder:




Transformers Other components

Encoder-decoder attention

Same idea as self-attention, except key and value matrices are computed
using output Z.,. of the final encoder:

o query matrix @ = X W, € Rle<*% (as usual)

45 / 51



Transformers Other components

Encoder-decoder attention

Same idea as self-attention, except key and value matrices are computed
using output Z.,. of the final encoder:

o query matrix @ = X W, € Rle<*% (as usual)

o key matrix Kenc = ZencWk € R7encxdk

45 / 51



Transformers Other components

Encoder-decoder attention

Same idea as self-attention, except key and value matrices are computed
using output Z.,. of the final encoder:

@ query matrix Q = XWg € R dec X dk (as usual)
o key matrix Kenc = ZencWk € R7encxdk

@ value matrix Vene = Zenc Wy € Renexdv

45 / 51



Transformers Other components

Encoder-decoder attention

Same idea as self-attention, except key and value matrices are computed
using output Z.,. of the final encoder:

@ query matrix Q = XWg € R dec X dk (as usual)
o key matrix Kenc = ZencWk € R7encxdk

@ value matrix Vene = Zenc Wy € Renexdv

Intuition: find answer from the encoded representation of original inputs

45 / 51



Generating answers

?

Kencdec  Vencdec ( Linear + Softmax )

i 55 t

ENCODERS DECODERS
EMBEDDING ’ + * + *
WITH TIME [T 11
SIGNAL
EMBEDDINGS 111 [T 111 I 111
e suis  étudiant PREVIOUS am
INPUT J OUTPUTS

Use previously generated text as inputs of the decoder



Training

t

Kencdec  Vencdec ( Linear + Softmax )

[EelEEs

ENCODERS DECODERS
EMBEDDING t t 4 4 4 [ [}
WTHTIME [T OO OO T [T OO (000

SIGNAL

EMBEDDINGS ori O OTrd 0 N I O

INPUT Je suis  étudiant true answer: | am a student

Use cross-entropy loss again,



Training

?

Kencdec  Vencdec ( Linear + Softmax )

[EelEEs

ENCODERS DECODERS
EMBEDDING * * * * * * *
WITH TIME [T [T T I I A
SIGNAL

EMBEDDINGS ori O OTrd 0 N I O

INPUT Je suis  étudiant true answer: | am a student

Use cross-entropy loss again, and apply

o teacher forcing: use the true answer as inputs of the decoder




Transformers

Teaching forcing and causal mask

In teaching forcing, to avoid generating a word by peeking at future words,
need to use a causal mask in the decoder’s self-attention heads:




Teaching forcing and causal mask

In teaching forcing, to avoid generating a word by peeking at future words,
need to use a causal mask in the decoder’s self-attention heads:

QK" « QK"+ M

48 / 51



Teaching forcing and causal mask

In teaching forcing, to avoid generating a word by peeking at future words,
need to use a causal mask in the decoder’s self-attention heads:

QK" « QK"+ M

where -~ ~
0 —c0 —00 -+ —00
0 0 -—o0 —00
M = 0 0 0 et —o0 c RTdecXTdec
0 0 0 0 |

48 / 51



Teaching forcing and causal mask

In teaching forcing, to avoid generating a word by peeking at future words,
need to use a causal mask in the decoder’s self-attention heads:

QK" « QK"+ M

where -~ ~
0 —c0 —00 -+ —00
0 0 -—o0 —00
M = 0 0 0 et —o0 c RTdecXTdec
0 0 o - 0 ]

so a word at position ¢ never attends to words at positions > ¢

48 / 51



Teaching forcing and causal mask

In teaching forcing, to avoid generating a word by peeking at future words,
need to use a causal mask in the decoder’s self-attention heads:

QK" « QK"+ M

where -~ ~
0 —c0 —00 -+ —00
0 0 -—o0 —00
M = 0 0 0 et —o0 c RTdecXTdec
0 0 o - 0 ]

so a word at position ¢ never attends to words at positions > ¢

Q: should we use causal mask for encoder-decoder attention heads?

48 / 51



That's it!

QOutput
Probabilities

Add & Norm
Feed
Forward
J

((Add & Norm J~

A4 2o Multi-Head
Feed Attention
Forward Nx
Nx Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
A ) A )
. - —
Positional A Positional
Encoding Encoding

Input Output
Embedding Embedding

Inputs Outputs

49 / 51



Large language models

Large language models (LLMs) are all based on transformers

@ estimated #parameters for GPT5: trillions

ChatGPT

% Claude

50 / 51


https://bbycroft.net/llm

Large language models

Large language models (LLMs) are all based on transformers

@ estimated #parameters for GPT5: trillions

ChatGPT

% Claude

A cool 3D visualization of a nano-GPT: https://bbycroft.net/1lm
50 / 51


https://bbycroft.net/llm

Transformers

Training Large language models

Unsupervised pre-training

@ via next word prediction using a huge training set (e.g., the entire
internet)



Training Large language models

Unsupervised pre-training

@ via next word prediction using a huge training set (e.g., the entire
internet)

Fine-tuning

@ using a labeled dataset for a specific task (translation, question
answering, etc.)

51 / 51



Training Large language models

Unsupervised pre-training

@ via next word prediction using a huge training set (e.g., the entire
internet)

Fine-tuning

@ using a labeled dataset for a specific task (translation, question
answering, etc.)

Reinforcement Learning with Human Feedback (RLHF)
@ get preference feedback from human: which answer is better?

@ more on this in the next two weeks

51 / 51



	Review of last lecture
	Recurrent Neural Network
	Transformers

