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Administration

Will discuss HW3 solutions in today’s discussion session.

HW4 (last homework) will be released soon.
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Review of last lecture

Hidden Markov Models

Model parameters:

initial distribution
P (Z1 = s) = πs

transition distribution
P (Zt+1 = s′ | Zt = s) = as,s′

emission distribution
P (Xt = o | Zt = s) = bs,o
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Review of last lecture

Baum–Welch algorithm

Step 0 Initialize the parameters (π,A,B)

Step 1 (E-Step) Fixing the parameters, compute forward and backward

messages for all sample sequences, then use these to compute γ
(n)
s (t) and

ξ
(n)
s,s′(t) for each n, t, s, s′.

Step 2 (M-Step) Update parameters:

πs ∝
∑
n

γ(n)s (1), as,s′ ∝
∑
n

T−1∑
t=1

ξ
(n)
s,s′(t), bs,o ∝

∑
n

∑
t:xt=o

γ(n)s (t)

Step 3 Return to Step 1 if not converged
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Review of last lecture

Viterbi Algorithm

Viterbi Algorithm

For each s ∈ [S], compute δs(1) = πsbs,x1 .

For each t = 2, . . . , T ,

for each s ∈ [S], compute

δs(t) = bs,xt max
s′

as′,sδs′(t− 1)

∆s(t) = argmax
s′

as′,sδs′(t− 1)

Backtracking: let z∗T = argmaxs δs(T ).
For each t = T, . . . , 2: set z∗t−1 = ∆z∗t

(t).

Output the most likely path z∗1 , . . . , z
∗
T .
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Review of last lecture

Example

Arrows represent ∆s(t), backtracking = follow the arrows.

δsunny(1) = 0.25 δsunny(2) = 0.1 δsunny(3) = 0.04 δsunny(4) = 0.016

δrainy(1) = 0.4 δrainy(2) = 0.19 δrainy(3) = 0.042 δrainy(4) = 0.01

The most likely path is “rainy, rainy, sunny, sunny”.
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Recurrent Neural Network

Outline

1 Review of last lecture

2 Recurrent Neural Network
RNN: model
RNN: training and testing

3 Transformers
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Recurrent Neural Network

Recall: language models via HMM

today the

today the price

today the price of

today the price of gold

final result: today the price of gold per ton, while
production of shoe lasts and shoe industry, the bank
intervened just after it considered and rejected an
IMF demand to rebuild depleted European stocks.

Surprisingly grammatical! but incoherent...
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Recurrent Neural Network

How to improve this?

Key ideas for improvement:

represent words as vectors, enabling differentiable operations

flexible sequence to sequence architecture (not just vector to
vector)

shared components (just like filters in CNN)

Recurrent Neural Network (RNN) is one solution (popular before
transformers).
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Recurrent Neural Network

Acknowledgements

Very useful resources:

RNN cheatsheet from Stanford CS 230

https://stanford.edu/~shervine/teaching/cs-230/

cheatsheet-recurrent-neural-networks

Visualizing a tiny RNN

https://joshvarty.github.io/VisualizingRNNs/

Character-level RNN

https://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Recurrent Neural Network

Words as vectors

Simplest approach: one-hot sparse encoding

suppose there are d words in the vocabulary

represent the i-th of them by the d-dimensional basis vector

ei = (0, . . . , 0, 1
↑

i-th entry

, 0, . . . , 0) ∈ Rd

Issues: does not convey any semantic meanings
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Recurrent Neural Network

Words as vectors: embedding

Word embedding: similar words are closer in their vector representation

popular approaches: word2vec, GloVe (see project)

can even perform meaningful algebraic operations

example: man is to woman as king is to?

can be answered by finding the word with the closest embedding to
vec(woman)− vec(man) + vec(king), which happens to be “queen”

14 / 51



Recurrent Neural Network

Words as vectors: embedding

Word embedding: similar words are closer in their vector representation

popular approaches: word2vec, GloVe (see project)

can even perform meaningful algebraic operations

example: man is to woman as king is to?

can be answered by finding the word with the closest embedding to
vec(woman)− vec(man) + vec(king), which happens to be “queen”

14 / 51



Recurrent Neural Network

Words as vectors: embedding

Word embedding: similar words are closer in their vector representation

popular approaches: word2vec, GloVe (see project)

can even perform meaningful algebraic operations

example: man is to woman as king is to?

can be answered by finding the word with the closest embedding to
vec(woman)− vec(man) + vec(king), which happens to be “queen”

14 / 51



Recurrent Neural Network

Words as vectors: embedding

Word embedding: similar words are closer in their vector representation

popular approaches: word2vec, GloVe (see project)

can even perform meaningful algebraic operations

example: man is to woman as king is to?

can be answered by finding the word with the closest embedding to
vec(woman)− vec(man) + vec(king), which happens to be “queen”

14 / 51



Recurrent Neural Network

Words as vectors: embedding

Word embedding: similar words are closer in their vector representation

popular approaches: word2vec, GloVe (see project)

can even perform meaningful algebraic operations

example: man is to woman as king is to?

can be answered by finding the word with the closest embedding to
vec(woman)− vec(man) + vec(king), which happens to be “queen”

14 / 51



Recurrent Neural Network

Words as vectors: embedding

Word embedding: similar words are closer in their vector representation

popular approaches: word2vec, GloVe (see project)

can even perform meaningful algebraic operations

example: man is to woman as king is to?

can be answered by finding the word with the closest embedding to
vec(woman)− vec(man) + vec(king), which happens to be “queen”

14 / 51



Recurrent Neural Network

Unifying two approaches

Let x ∈ Rd be the one-hot encoding of a word, and matrix E ∈ Rde×d be
some embedding matrix, then Ex is the embedding for this word

E can be fixed (i.e., from word2vec or GloVe), where the i-th column
is the embedding for the i-th word

or E can be learned (e.g., via backpropagation in DL pipeline),
making it application specific (common especially if data are huge)

In the remaining, we simply use one-hot representation, but keep in mind
it could be passed through some E implicitly
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Recurrent Neural Network RNN: model

A recurrent layer

from ŷ = f(x) to

(ŷ,h′) = f(x,h)

h is “hidden state” (like HMM), updated via

h′ = σ(Wh+Ux+ bh)

where σ is an activation function

ŷ = V h′ + by is the output

x, ŷ ∈ Rd,h,h′ ∈ Rdh

weight matrices W ∈ Rdh×dh ,U ∈ Rdh×d,V ∈ Rd×dh

bias terms bh ∈ Rdh , by ∈ Rd
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ŷ = V h′ + by is the output
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h is “hidden state” (like HMM), updated via

h′ = σ(Wh+Ux+ bh)

where σ is an activation function
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Recurrent Neural Network RNN: model

Recurrent layer applied recursively

Given a sequence x1,x2, . . ., can apply f recursively:

h0 = 0

(ŷ1,h1) = f(x1,h0)

(ŷ2,h2) = f(x2,h1)

· · ·

This is one recurrent layer unfolded (over steps), not many different layers.

The same f (i.e, W ,U ,V , bh, by) is shared in all steps (similar to CNN’s
filters shared across different spatial locations).

Hidden state ht summarizes information up to step t.
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Recurrent Neural Network RNN: model

Making it “deep”

Stack multiple recurrent layers:

hidden states become the inputs of
the next layer

different layers learn different
W ,U , bh

last layer learns V , by and output ŷ
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Recurrent Neural Network RNN: model

A flexible sequence-to-sequence model

Many possible structures and applications:

one-to-many: image captioning

many-to-one: sentiment classification

many-to-many: machine translation, question answering

(aligned) many-to-many: POS tagging, name entity recognition
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Recurrent Neural Network RNN: training and testing

How to train an RNN

Take text generation (unsupervised learning) as an example:

given a corpus, train an RNN that learns P (xt | x1:t−1)

For each sequence x1, . . . ,xT ∈ Rd (one-hot representation) in the corpus

feed x1, . . . ,xT−1 into the current RNN to get ŷ1, . . . , ŷT−1 ∈ Rd

each ŷt defines a distribution over the next word via softmax:
P (next word = i) ∝ exp(ŷt,i)

based on the true label xt+1, each ŷt incurs cross-entropy loss

− ln

(
exp(ŷ⊤

t xt+1)∑d
i=1 exp(ŷt,i)

)

update the RNN parameters using backpropagation over the total loss
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− ln

(
exp(ŷ⊤
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Recurrent Neural Network RNN: training and testing

Demo

Tiny RNN, predicting the next bit of a binary sequence

https://joshvarty.github.io/VisualizingRNNs/

the entire vocabulary is just {0, 1} (d = 2)

one-layer RNN with dh = 3, so parameters are
W ∈ R3×3,U ∈ R3×2,V ∈ R2×3, bh ∈ R3, by ∈ R2
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Recurrent Neural Network RNN: training and testing

Another demo

Min-Char RNN, predicting the next character of a sequence

https://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Recurrent Neural Network RNN: training and testing

Generation after training

Keep sampling from softmax(ŷt) as the next input xt+1 to RNN

Can control how “random” the generation is via softmax(β · ŷt)

1/β is called temperature

larger temperature (smaller β) leads to more random outputs

β = 0, uniform output (maximum entropy)

β =∞, deterministically output argmaxi ŷt,i (“hard” max)
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Recurrent Neural Network RNN: training and testing

Generation after training

A few remarkable examples from Min-Char RNN:

corpus: LATEX source code of an algebraic geometry book (16MB)

generate source code that almost complies

the model understands complex syntactic structures
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Generation after training

A few remarkable examples from Min-Char RNN:

corpus: Linux source code (474MB of C code); 10M parameters

generate codes with very few syntactic errors

uses strings/pointers properly,
open/close brackets correctly,
good indentation,
even add comments
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Recurrent Neural Network RNN: training and testing

A closer look at some neurons

Some neurons (entries of the hidden state h) are quite interpretable
(even though most are not)

can visualize this by coloring the input character based on the value
of this neuron (red = large value, blue = small value)
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Recurrent Neural Network RNN: training and testing

A closer look at some neurons

Some neurons (entries of the hidden state h) are quite interpretable
(even though most are not)

can visualize this by coloring the input character based on the value
of this neuron (red = large value, blue = small value)

A neuron sensitive to the depth of an expression
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Recurrent Neural Network RNN: training and testing

Final notes

Instead of using a character or a word as each x, often use a token (word
or sub-word)

“apple” is a token

“unbelievable” is 3 tokens (“un”, “believ”, “able”)

can reduce the size of vocabulary

Directly applying backpropagation to RNN leads to vanishing/exploding
gradient issues when T is large

W is applied T times at the end of the sequence (so roughly W T )

some fixes: Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU)
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Transformers

Outline

1 Review of last lecture

2 Recurrent Neural Network

3 Transformers
Self-attention
Other components
Training and testing
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Transformers

Transformers

Issues of RNN: must compress all
previous info into a single state h

A solution that dominates all other
models currently: transformers
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Transformers

Acknowledgements

Very useful resources:

original paper: “Attention Is All You Need” (200K+ citation by now)

https://arxiv.org/pdf/1706.03762

The Illustrated Transformer (most pictures are from here)

https://jalammar.github.io/illustrated-transformer/

a super cool Nano-GPT visualization

https://bbycroft.net/llm

A Multiscale Visualization of Attention

https://arxiv.org/pdf/1906.05714
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Transformers Self-attention

Key idea: self-attention

Example: “The animal didn’t cross the street because it was too tired”

Does “it” refer to “animal” or “street”?

trivial for human, but how to design a model that understands this?

intuitively, when looking at the word “it”, the model should pay
attention to the word “animal”

An attention head does exactly this
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Transformers Self-attention

Attention head

An attention head

takes a sequence of inputs x1, . . . ,xT ∈ Rd and outputs another
sequence z1, . . . ,zT ∈ Rdv (similar to hidden states of RNN)

parametrized by three matrices (and corresponding biases, omitted for
simplicity): WQ ∈ Rd×dk ,WK ∈ Rd×dk ,WV ∈ Rd×dv

computes a query vector for each input xt as qt = W⊤
Q xt ∈ Rdk

computes a key vector for each input xt as kt = W⊤
Kxt ∈ Rdk

computes a value vector for each input xt as vt = W⊤
V xt ∈ Rdv

the output zt is the “answer” to the query of qt
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Transformers Self-attention

Attention head (cont.)
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Transformers Self-attention

Attention head (cont.)

The output zt is the “answer” to the query of qt. How?

imagine: you make a Google query (qt), and it returns a list of
website titles (k1:T ); clicking a title (kτ ) leads you to a website (vτ ).

You then summarize the answer using all websites (v1:T ), each with a
different weight based on how relevant/close its title is to your query

formally, the final answer zt is the weighted sum of v1, . . . ,vT , with
weights computed via

softmax

(
qt

⊤k1√
dk

, . . . ,
qt

⊤kT√
dk

)
where q⊤t kτ is the attention score from input xt to input xτ
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Transformers Self-attention

Attention head (cont.)
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Transformers Self-attention

Attention head (cont.)

Matrix notation:

input matrix X ∈ RT×d, obtained by stacking x⊤
1 , . . . ,x

⊤
T

query matrix Q = XWQ ∈ RT×dk

key matrix K = XWK ∈ RT×dk

value matrix V = XWV ∈ RT×dv

attention score matrix QK⊤ ∈ RT×T

output matrix Z ∈ RT×dv is

softmax

(
QK⊤
√
dk

)
V

where softmax is applied row-wise

O(T 2) complexity (ignoring d, dk, dv)
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attention score matrix QK⊤ ∈ RT×T

output matrix Z ∈ RT×dv is

softmax

(
QK⊤
√
dk

)
V

where softmax is applied row-wise

O(T 2) complexity (ignoring d, dk, dv)
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Transformers Self-attention

Visualization of an attention head link

the darker the color, the larger the attention score

“it” attends to “animal” in one head,

and “tired” in another head

37 / 51
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Transformers Self-attention

Visualization of an attention head link

More examples

all from unsupervised learning; no one tells the model to learn these!
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Transformers Self-attention

Multi-head attention

Pass X to multiple attention-heads, each with different parameters

39 / 51



Transformers Self-attention

Multi-head attention (cont.)

Concatenate outputs of different heads and then project again

final output dimension is RT×d, same as inputs X
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Transformers Other components

Zooming out: a complete encoder

Positional encoding

fix the issue that attention-head does not have positional info

via a positional embedding matrix EP ∈ Rd×T , fixed or learned,

xt ← xt +EP et, i.e., add the t-th column of EP to xt
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Transformers Other components

Zooming out: a complete encoder (cont.)

Two more components to stabilize and
speed up training:

1. Residual pathway

add input to output, Z ← Z +X

an idea from Residual Networks to
deal with vanishing gradients

2. Layer normalization:

for each zt ∈ Rd, normalize it to zero-mean and unit-variance (across
features)

similar but different from batch normalization (where you normalize
each feature to zero-mean and unit-variance across samples)
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Transformers Other components

Zooming out: stacking encoders and decoders

Encoder: summarizes the input into a useful representation

Decoder: generates outputs
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Transformers Other components

A closer look at decoders

Extra component: encoder-decoder attention
44 / 51



Transformers Other components

Encoder-decoder attention

Same idea as self-attention, except key and value matrices are computed
using output Zenc of the final encoder:

query matrix Q = XWQ ∈ RTdec×dk (as usual)

key matrix Kenc = ZencWK ∈ RTenc×dk

value matrix Venc = ZencWV ∈ RTenc×dv

Intuition: find answer from the encoded representation of original inputs
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Transformers Training and testing

Generating answers

Use previously generated text as inputs of the decoder
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Transformers Training and testing

Training

Use cross-entropy loss again,

and apply

teacher forcing: use the true answer as inputs of the decoder
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Transformers Training and testing

Teaching forcing and causal mask

In teaching forcing, to avoid generating a word by peeking at future words,
need to use a causal mask in the decoder’s self-attention heads:

QK⊤ ← QK⊤ +M

where

M =


0 −∞ −∞ · · · −∞
0 0 −∞ · · · −∞
0 0 0 · · · −∞
...

...
...

. . .
...

0 0 0 · · · 0

 ∈ RTdec×Tdec

so a word at position t never attends to words at positions > t

Q: should we use causal mask for encoder-decoder attention heads?
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Transformers Training and testing

That’s it!
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Transformers Training and testing

Large language models

Large language models (LLMs) are all based on transformers

estimated #parameters for GPT5: trillions

A cool 3D visualization of a nano-GPT: https://bbycroft.net/llm
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Transformers Training and testing

Training Large language models

Unsupervised pre-training

via next word prediction using a huge training set (e.g., the entire
internet)

Fine-tuning

using a labeled dataset for a specific task (translation, question
answering, etc.)

Reinforcement Learning with Human Feedback (RLHF)

get preference feedback from human: which answer is better?

more on this in the next two weeks
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