
CSCI 567, Spring 2025
Haipeng Luo

Written Assignment #2
Due: Feb 27, 2025, 11:59 pm, PT

Instructions

Total points: 50

Submission: Solutions must be typewritten or neatly handwritten and submitted through gradescope.
You can submit multiple times, but only the last submission counts. It is your responsibility to make sure
that you submit the right things, and we will not consider any regrading requests regarding mistakes in
making submissions.

Recall that you have a total of three “late days” for the entire semester, and you can use at most one late
day for each written assignment.

Notes on notation:

• Unless stated otherwise, scalars are denoted by small letter in normal font, vectors are denoted by
small letters in bold font, and matrices are denoted by capital letters in bold font.

• ∥.∥means L2-norm unless specified otherwise, i.e., ∥.∥ = ∥.∥2.

Academic integrity: Our goal is to maintain an optimal learning environment. You can discuss the written
assignments at a high level with others, but you should not look at any other’s solutions. Trying to find
solutions online or from any other sources (including ChatGPT and other similar tools) is prohibited, will
result in zero grade and will be reported. To prevent any future plagiarism, uploading any materials from
this course to the Internet is also prohibited, and any violations will be reported. Please be considerate and
help us help everyone get the best out of this course.

This content is protected and may not be shared, uploaded, or distributed. 1



Problem 1 Multiclass Perceptron (17 points)

Recall that a linear model for a multiclass classification problem with C classes is parameterized by C weight
vectors w1, . . . , wC ∈ RD. In the lecture, we derived the multiclass logistic regression by minimizing the
multiclass logistic loss. In this problem, you need to derive the multiclass perceptron algorithm in a similar
way. Specifically, the multiclass perceptron loss on a training set (x1, y1), . . . , (xN , yN) ∈ RD× [C] is defined
as

F(w1, . . . , wC) =
1
N

N

∑
n=1

Fn(w1, . . . , wC), where Fn(w1, . . . , wC) = max
{

0, max
y ̸=yn

wT
y xn −wT

yn xn

}
.

1.1 To optimize this loss function, we need to first derive its gradient. Specifically, for each n ∈ [N] and
c ∈ [C], write down the partial derivative ∂Fn

∂wc
∈ RD (and your derivation). For simplicity, you can assume

that for any n, wT
1 xn, . . . , wT

Cxn are always C distinct values (so that there is no tie when taking max over
them, and consequently no non-differentiable points needed to be considered). (8 points)

For each n, let ŷn = arg maxy∈[C] wT
y xn. Then by definition, Fn can be written as{

0, if ŷn = yn,
wT

ŷn
xn −wT

yn xn, else.

Its partial derivative with respect to wc is then
0, if ŷn = yn,
xn, else if c = ŷn,
−xn, else if c = yn,
0, else.

Rubrics: 2 points for each of the 4 cases. There are many other ways to write this, such as using indicator
functions. It is of course also possible to combine some of these cases (such as the first and the fourth ones).

1.2 Similarly to the binary case, multiclass perceptron is simply applying SGD with learning rate 1 to
minimize the multiclass perceptron loss. Based on this information, fill in the missing details in the repeat-
loop of the algorithm below (your solution cannot contain implicit quantities such as ∇Fn(w); instead,
write down the exact formula based on your solution from the last question). (4 points)

Algorithm 1: Multiclass Perceptron

1 Input: A training set (x1, y1), . . . , (xN , yN)
2 Initialization: w1 = · · · = wC = 0
3 Repeat:
4 randomly pick an example (xn, yn) and compute ŷn = arg maxy∈[C] wT

y xn

5 if ŷn ̸= yn then
6 wŷn ← wŷn − xn
7 wyn ← wyn + xn

Rubrics: 1 point for randomly picking an example, 1 point for computing the prediction ŷn (which one
has to compute either explicitly or implicitly), and 2 points for correctly implementing the rest of SGD.
Again, there are many equivalent ways to implement this. Do not deduct points if the gradient is wrong
solely due to mistakes from the last question.

This content is protected and may not be shared, uploaded, or distributed. 2



1.3 At this point, you should find that the parameters w1, . . . , wC computed by Multiclass Perceptron are
always linear combinations of the training points x1, . . . , xN , that is, wc = ∑N

n=1 αc,nxn for some coefficient
αc,n. Just like kernelized linear regression, this means that one can kernelize multiclass Perceptron as well
for any given kernel function k(·, ·) (with a corresponding feature mapping ϕ).

Specifically, fill in the missing details in the repeat-loop of the algorithm below which maintains and
updates weights αc,n, ∀c ∈ [C], n ∈ [N] such that wc = ∑N

n=1 αc,nϕ(xn) is always the same as what one
would get by running Algorithm 1 with xn replaced by ϕ(xn) for all n. No reasoning is required. Keep in
mind that in your solution ϕ(xn) should never appear. (5 points)

Algorithm 2: Multiclass Perceptron with kernel function k(·, ·)
1 Input: A training set (x1, y1), . . . , (xN , yN)
2 Initialize: αc,n = 0 for all c ∈ [C] and n ∈ [N]
3 Repeat:
4 randomly pick an example (xn, yn) and compute ŷn = arg maxy∈[C]

(
∑N

m=1 αy,mk(xm, xn)
)

5 if ŷn ̸= yn then
6 αŷn ,n ← αŷn ,n − 1
7 αyn ,n ← αyn ,n + 1

Rubrics: 1 point for randomly picking an example, 2 points for computing the prediction ŷn using the
kernel function, and 2 points for correctly implementing the rest. Again, there are many equivalent ways
to implement this. Storing the kernel matrix to avoid repeated calculations is of course acceptable. Do not
deduct points if the mistake is solely inherited from the first question.

This content is protected and may not be shared, uploaded, or distributed. 3



Problem 2 Backpropagation for CNN (18 points)

Consider the following mini convolutional neural net, where (x1, x2, x3) is the input, followed by a convo-
lution layer with a filter (w1, w2), a ReLU layer, and a fully connected layer with weight (v1, v2).

x1

x2

x3

a1

a2

o1

o2

ŷ

w1

w2

w1

w2

v1

v2

More concretely, the computation is specified by

a1 = x1w1 + x2w2

a2 = x2w1 + x3w2

o1 = max{0, a1}
o2 = max{0, a2}
ŷ = o1v1 + o2v2

For an example (x, y) ∈ R3 × {−1,+1}, the logistic loss of the CNN is

ℓ = ln(1 + exp(−yŷ)),

which is a function of the parameters of the network: w1, w2, v1, v2.

2.1 Write down ∂ℓ
∂v1

and ∂ℓ
∂v2

(show the intermediate steps that use chain rule). You can use the sigmoid

function σ(z) = 1
1+e−z to simplify your notation. (4 points)

∂ℓ

∂v1
=

∂ℓ

∂ŷ
∂ŷ
∂v1

(1 point)

=
−ye−yŷ

1 + e−yŷ o1 = −σ(−yŷ)yo1 = (σ(yŷ)− 1)yo1 (1 point)

∂ℓ

∂v2
=

∂ℓ

∂ŷ
∂ŷ
∂v2

(1 point)

=
−ye−yŷ

1 + e−yŷ o2 = −σ(−yŷ)yo2 = (σ(yŷ)− 1)yo2 (1 point)

Rubrics: Any one of the last three expressions is acceptable.

This content is protected and may not be shared, uploaded, or distributed. 4



2.2 Write down ∂ℓ
∂w1

and ∂ℓ
∂w2

(show the intermediate steps that use chain rule). The derivative of the ReLU
function is H(a) = I[a > 0], which you can use directly in your answer. (6 points)

∂ℓ

∂w1
=

∂ℓ

∂a1

∂a1

∂w1
+

∂ℓ

∂a2

∂a2

∂w1
(1 point)

=
∂ℓ

∂ŷ
∂ŷ
∂o1

∂o1

∂a1

∂a1

∂w1
+

∂ℓ

∂ŷ
∂ŷ
∂o2

∂o2

∂a2

∂a2

∂w1
(1 point)

= (σ(yŷ)− 1)y(v1H(a1)x1 + v2H(a2)x2) (1 point)

Similarly

∂ℓ

∂w2
=

∂ℓ

∂a1

∂a1

∂w2
+

∂ℓ

∂a2

∂a2

∂w2
(1 point)

=
∂ℓ

∂ŷ
∂ŷ
∂o1

∂o1

∂a1

∂a1

∂w2
+

∂ℓ

∂ŷ
∂ŷ
∂o2

∂o2

∂a2

∂a2

∂w2
(1 point)

= (σ(yŷ)− 1)y(v1H(a1)x2 + v2H(a2)x3). (1 point)

Rubrics: Again, other equivalent expressions are acceptable.

This content is protected and may not be shared, uploaded, or distributed. 5



2.3 Using the derivations above, fill in the missing details of the repeat-loop of the Backpropagation algo-
rithm below that is used to train this mini CNN. (8
points)

Algorithm 3: Backpropagation for the above mini CNN

1 Input: A training set (x1, y1), . . . , (xN , yN), learning rate η
2 Initialize: set w1, w2, v1, v2 randomly
3 Repeat:
4 randomly pick an example (xn, yn) (the three features of xn are denoted by xn1, xn2, and xn3.)
5 Forward propagation: compute (4 points)

a1 = xn1w1 + xn2w2, a2 = xn2w1 + xn3w2

o1 = max{0, a1}, o2 = max{0, a2}, ŷ = o1v1 + o2v2

6 Backward propagation: update (4 points)

w1 ← w1 − η(σ(ynŷ)− 1)yn(v1H(a1)xn1 + v2H(a2)xn2)

w2 ← w2 − η(σ(ynŷ)− 1)yn(v1H(a1)xn2 + v2H(a2)xn3)

v1 ← v1 − η(σ(ynŷ)− 1)yno1

v2 ← v2 − η(σ(ynŷ)− 1)yno2

Rubrics:

• Deduct 1 point for writing x1, x2, x3 instead of xn1, xn2, xn3 in the forward propgagation.

• Deduct 1 point for writing x1, x2, x3, y instead of xn1, xn2, xn3, yn in the backward propgagation.

• Deduct 2 points if updating w1/w2 with the updated value of v1/v2.

• Do not deduct points for using the wrong gradients solely due to mistakes from previous two ques-
tions.

This content is protected and may not be shared, uploaded, or distributed. 6



Problem 3 Support Vector Machines (15 points)

Consider a dataset consisting of points in the form of (x, y), where x is a real value, and y ∈ {−1, 1} is the
class label. There are only three points (x1, y1) = (−1, −1), (x2, y2) = (1,−1), and (x3, y3) = (0, 1), shown
in Figure 1.

Figure 1: Three data points considered in Problem 1

3.1 Can these three points in their current one-dimensional feature space be perfectly separated with a
linear classifier of the form SGN(wx + b) for some w, b ∈ R? Why or why not? (2 points)

No. A one-dimensional linear model SGN(wx + b) is equivalent to a simple threshold function of the
form

f (x) =

{
+1 if x ≥ θ

−1 else
or f (x) =

{
−1 if x ≥ θ

+1 else

for some threshold θ ∈ R. It is thus clear that if we want points x1 and x2 to be correctly classified, then x3
must be incorrectly classified. (Other correct reasoning gets full points as well.)

3.2 Now consider the feature mapping ϕ(x) = [x, x2]T (convince yourself that the data are now linearly
separable in this new feature space). Write down the 3× 3 kernel/Gram matrix K for this dataset. (2 points)

The kernel function is k(x, x′) = ϕ(x)Tϕ(x) = xx′ + (xx′)2, so the Gram matrix is K =

 2 0 0
0 2 0
0 0 0

 .

This content is protected and may not be shared, uploaded, or distributed. 7



3.3 Next, write down the dual formulations of SVM for this dataset in the two-dimensional feature space.
Note that when the data is separable, we set the hyperparameter C to be +∞. (You have to plug in the
actual data instead of just showing the generic dual formulation.) (2 points)

General dual formulation of SVM for separable data is:

max
α

∑
n

αn −
1
2 ∑

m,n
ymynαmαnk(xm, xn)

s.t. αn ≥ 0, ∀n

∑
n

αnyn = 0

Plugging in the specific dataset gives:

max
α1,α2,α3≥0

α1 + α2 + α3 − α2
1 − α2

2

s.t. α1 + α2 = α3

Rubrics:

• okay to write the solution directly without first writing down the general form.

• 1 point for the objective and 1 point for the constraints.

• do not deduct points if the mistake is solely due to the incorrect Gram matrix from the last question.

3.4 Next, solve the dual formulation exactly (note: while this is not generally feasible as discussed in the
lecture, the simple form of this dataset makes it possible). (3 points)

Eliminating the dependence on α3 using the constraint α1 + α2 = α3, we arrive at the objective

max
α1,α2≥0

2α1 − α2
1 + 2α2 − α2

2.

Clearly we can maximize over α1 and α2 separately, which gives α∗1 = α∗2 = 1 and thus α∗3 = 2.

Rubrics: Any derivation reaching the same solution works. Do not deduct points if the dual formulation
is wrong due to the last question as long as it is solved correctly here.

This content is protected and may not be shared, uploaded, or distributed. 8



3.5 Given a test point x = 2, what is the prediction of this SVM? Follow the steps below to derive your
answer: first, compute the primal solution b∗; then, compute k(xn, x) for all n = 1, 2, 3 and the test point
x = 2; finally, calculate the prediction. Note that to get full credits, you have to avoid directly operating in
the feature space that corresponds to the kernel function. (6 points)

Since all of the three examples satisfy 0 < αn < C = +∞, based on Lecture 6, any one of the following
gives us the correct answer:

b∗ = y1 −
3

∑
n=1

α∗nynk(xn, x1) = −1 + 2− 0− 0 = 1,

b∗ = y2 −
3

∑
n=1

α∗nynk(xn, x2) = −1− 0 + 2− 0 = 1,

b∗ = y3 −
3

∑
n=1

α∗nynk(xn, x3) = 1− 0− 0− 0 = 1.

Next, we calculate k(xn, x) for all n = 1, 2, 3 and the test point x = 2:

k(x1, 2) = −2 + (−2)2 = 2, k(x2, 2) = 2 + 22 = 6, k(x3, 2) = 0.

Finally, the prediction can be found by SGN
(

∑3
n=1 α∗nynk(xn, 2) + b∗

)
= SGN (−2− 6 + 0 + 1) = −1.

Rubrics:

• 2 points for finding the correct value of b∗.

• 3 points for computing k(xn, x) correctly for all n = 1, 2, 3.

• 1 point for the correct final prediction.

• Similarly, do not deduct points if the mistake is solely due to the wrong dual solution from the last
question.

This content is protected and may not be shared, uploaded, or distributed. 9


	Multiclass Perceptron (17 points)
	
	
	

	Backpropagation for CNN (18 points)
	
	
	

	Support Vector Machines (15 points)
	
	
	
	
	


