Week 3 Practice

CSCI 567 Machine Learning
Spring 2025

Instructor: Haipeng Luo
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1. MULTIPLE-CHOICE QUESTIONS: One or more correct choice(s) for each ques-

tion.

1.1. Which of the following surrogate losses is not an upper bound of the 0-1 loss?

(a) exponential loss: exp(—z) w
’Qo—i (z) =1L [Z(D_]

(b) hinge loss: max{0,1 — z}

(c) perceptron loss: max{0, —z}

(d) logistic loss: In(1 + exp(—z))

Ans: ¢, d.  Note that here the logistic loss is using e as the base, instead of 2.
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1.2. The perceptron algorithm makes an update w’ < w + ny,x, with n = 1 when w

misclassifies x,,. Using which of the following different values for 1 will make sure w’
classifies a,, correctly?

w' Ty —y(wTa,
(a) n > y(nm ||2) (b) n < Hi(nuéﬂ)
() < yn(w 7 (d) n > _yn(an?")
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1.3. Which of the following is true?
(a) Normalizing the output w of the perceptron algorithm so that ||w||, = 1 changes its

test error.
(b) Normalizing the output w of the perceptron algorithm so that ||w||; = 1 changes its

test error.
(c) When the data is linearly separable, logistic loss (without regularization) does not

admit a minimizer.
(d) Minimizing 0-1 loss is generally NP-hard.
Ans: ¢, d. For ¢, note that when the data is separable, one can find w such that

ypw'x, > 0 for all n. Scaling this w up will always lead to smaller logistic loss
D ey In(1 4 exp( —y,l,wTaz,L)) and thus the function does not admit a minimizer.
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(c) ;C,—Zut,lm L(z) = 17[1+ex/>(—z))
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1.4. Which of the following statement is correct for function f(w)
(a) (0,0) is the only stationary point. —>» Vf(w) o
(b) (0,0) is a local minimizer.
(c) (0,0) is a local maximizer.
(d) (0,0)

is a saddle point.

= wiwsy?

Ans: a, d. The gradient is V f(w (wa,w1), so the only stationary point is (0,0).
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2. Perceptron
Consider the following training dataset:

~ . T
bd y =MNn (W %)
(0,0) | -1 4 T“
(0,1) | -1
(1,0) | -1
1,1 ] 1
and a perceptron with weights (wg, w1, ws) = {-0.9,2.1,3.7} -0 q
W = 2|
2.7
I

=
W
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2.1. What is the accuracy of the perceptron on the training data?

SOLUTION:

x |y g I(y
-1 sgn(—0.9) = —1
sgn(—0.9+3.7) =1

-1 sgn(—0.94+2.1) =1

1| sgn(=09+21+37) =1
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Out of four predictions, two are correct. The accuracy is hence 50%.


https://goodnotes.com/

gvd data [)o-vrd:
2.2. Select x = (1,0) and y = —1. Use the perceptron training rule with n = 1 to train the
perceptron for one iteration. What are the weights after this iteration?

For the given x = (1,0) the classifier makes a mistake (§ = 1). We need to update the
weights following the perceptron rule.

, -4 -19
— 2.7

2.3. What is the accuracy of the perceptron on the training data after this iteration? Does
the accuracy improve?

SOLUTION:
x |y g I(y = 9)
(0,0) | -1 sgn(—1.9) = — Y R
(0,1) | -1 sgn(—1.9+3.7) =1 N
(1,0) [-1] sgn(-1.9+1.1) = -1 Y & CovY
(L) | 1 |sgn(-19+11+37)=1 Y

With the new weights, three out of four are correct, hence accuracy increased to 75%.
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3. Maximum Likelihood Estimation

A random sample set X1, Xo,..., X, of size n is taken from a Poisson distribution with a
mean of A > 0. As a reminder, a Poisson distribution is a discrete probability distribution
over the natural numbers, with the following probability mass function

AT e A
P(X =)= " — Vo {0,1,2,....}

3.1. Find the log likelihood of the data; call it [(\). You may use any log base you want.
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3.2. Find the maximum likelihood estimator for \.
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