
Week 3 Practice

CSCI 567 Machine Learning

Spring 2025

Instructor: Haipeng Luo
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1. MULTIPLE-CHOICE QUESTIONS: One or more correct choice(s) for each ques-
tion.

1.1. Which of the following surrogate losses is not an upper bound of the 0-1 loss?

(a) exponential loss: exp(→z)

(b) hinge loss: max{0, 1→ z}

(c) perceptron loss: max{0,→z}

(d) logistic loss: ln(1 + exp(→z))

Ans: c, d. Note that here the logistic loss is using e as the base, instead of 2.
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1.2. The perceptron algorithm makes an update w→ ↑ w + ωynxn with ω = 1 when w
misclassifies xn. Using which of the following di!erent values for ω will make sure w→

classifies xn correctly?

(a) ω > y(wTxn)

↑xn↑22
(b) ω < ↓y(wTxn)

↑xn↑22+1

(c) ω < ↓y(wTxn)

↑xn↑22
(d) ω > ↓y(wTxn)

↑xn↑22

Ans: d.
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1.3. Which of the following is true?

(a) Normalizing the output w of the perceptron algorithm so that ↓w↓2 = 1 changes its

test error.

(b) Normalizing the output w of the perceptron algorithm so that ↓w↓1 = 1 changes its

test error.

(c) When the data is linearly separable, logistic loss (without regularization) does not

admit a minimizer.

(d) Minimizing 0-1 loss is generally NP-hard.

Ans: c, d. For c, note that when the data is separable, one can find w such that

ynwTxn ↔ 0 for all n. Scaling this w up will always lead to smaller logistic loss∑
n=1 ln(1 + exp(→ynwTxn)) and thus the function does not admit a minimizer.
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1.4. Which of the following statement is correct for function f(w) = w1w2?

(a) (0, 0) is the only stationary point.

(b) (0, 0) is a local minimizer.

(c) (0, 0) is a local maximizer.

(d) (0, 0) is a saddle point.

Ans: a, d. The gradient is ↗f(w) = (w2, w1), so the only stationary point is (0, 0).
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2. Perceptron
Consider the following training dataset:

x y

(0, 0) -1

(0, 1) -1

(1, 0) -1

(1, 1) 1

and a perceptron with weights (w0, w1, w2) = {→0.9, 2.1, 3.7}

”x1
2.1

+1
→0.9

x2
3.7

2.1. What is the accuracy of the perceptron on the training data?

SOLUTION:

x y ŷ I(y = ŷ)
(0, 0) -1 sgn(→0.9) = →1 Y

(0, 1) -1 sgn(→0.9 + 3.7) = 1 N

(1, 0) -1 sgn(→0.9 + 2.1) = 1 N

(1, 1) 1 sgn(→0.9 + 2.1 + 3.7) = 1 Y

Out of four predictions, two are correct. The accuracy is hence 50%.
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2.2. Select x = (1, 0) and y = →1. Use the perceptron training rule with ω = 1 to train the

perceptron for one iteration. What are the weights after this iteration?

For the given x = (1, 0) the classifier makes a mistake (ŷ = 1). We need to update the

weights following the perceptron rule.

2.3. What is the accuracy of the perceptron on the training data after this iteration? Does

the accuracy improve?

SOLUTION:

x y ŷ I(y = ŷ)
(0, 0) -1 sgn(→1.9) = →1 Y

(0, 1) -1 sgn(→1.9 + 3.7) = 1 N

(1, 0) -1 sgn(→1.9 + 1.1) = →1 Y

(1, 1) 1 sgn(→1.9 + 1.1 + 3.7) = 1 Y

With the new weights, three out of four are correct, hence accuracy increased to 75%.
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3. Maximum Likelihood Estimation

A random sample set X1, X2, . . . , Xn of size n is taken from a Poisson distribution with a

mean of ε > 0. As a reminder, a Poisson distribution is a discrete probability distribution

over the natural numbers, with the following probability mass function

P (X = x) =
εx · e↓ω

x!
, ↘x ≃ {0, 1, 2, . . . , }

3.1. Find the log likelihood of the data; call it l(ε). You may use any log base you want.

3.2. Find the maximum likelihood estimator for ε.
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