Week 3 Practice

CSCI 567 Machine Learning

Spring 2025

Instructor: Haipeng Luo

1. MULTIPLE-CHOICE QUESTIONS: One or more correct choice(s) for each question.

- 1.1. Which of the following surrogate losses is not an upper bound of the 0-1 loss?
 - (a) exponential loss: $\exp(-z)$
 - (b) hinge loss: $\max\{0, 1-z\}$
 - (c) perceptron loss: $\max\{0, -z\}$
 - (d) logistic loss: $\ln(1 + \exp(-z))$

Ans: c, d. Note that here the logistic loss is using e as the base, instead of 2.

 $\mathcal{L}_{0-1}(z) = \mathbb{I}[z < 0]$

1.2. The perceptron algorithm makes an update $w' \leftarrow w + \eta y_n x_n$ with $\eta = 1$ when w misclassifies x_n . Using which of the following different values for η will make sure w' classifies x_n correctly?

(a)
$$\eta > \frac{y(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{n})}{\|\boldsymbol{x}_{n}\|_{2}^{2}}$$
 (b) $\eta < \frac{-y(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{n})}{\|\boldsymbol{x}_{n}\|_{2}^{2}+1}$
(c) $\eta < \frac{-y(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{n})}{\|\boldsymbol{x}_{n}\|_{2}^{2}}$ (d) $\eta > \frac{-y(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{n})}{\|\boldsymbol{x}_{n}\|_{2}^{2}}$

Ans: d.

$$y_n = \pm 1$$

$$\Rightarrow y_n^2 = 1$$

$$y_{n} = iqn (w'^{T} x_{n})$$

$$\Rightarrow y_{n} w'^{T} x_{n} > D$$

$$\Rightarrow y_{n} (w + \eta y_{n} x_{n})^{T} x_{n} > D$$

$$\Rightarrow y_{n} (w + \eta y_{n} x_{n})^{T} x_{n} > D$$

$$\Rightarrow y_{n} w^{T} x_{n} + \eta y_{n}^{2} || x_{n} ||_{2}^{2} > D$$

$$\Rightarrow \eta > - \frac{y_{n} w^{T} x_{n}}{|| x_{n} ||^{2}},$$

Made with Goodnotes

1.3. Which of the following is true?

(a) Normalizing the output \boldsymbol{w} of the perceptron algorithm so that $\|\boldsymbol{w}\|_2 = 1$ changes its test error.

(b) Normalizing the output \boldsymbol{w} of the perceptron algorithm so that $\|\boldsymbol{w}\|_1=1$ changes its test error.

(c) When the data is linearly separable, logistic loss (without regularization) does not admit a minimizer.

(d) Minimizing 0-1 loss is generally NP-hard.

Ans: c, d. For c, note that when the data is separable, one can find \boldsymbol{w} such that $y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n \geq 0$ for all n. Scaling this \boldsymbol{w} up will always lead to smaller logistic loss $\sum_{n=1} \ln(1 + \exp(-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n))$ and thus the function does not admit a minimizer.

(a)
$$w' = \frac{w}{\|w\|_2}$$

 $\hat{y'} = \operatorname{rign}(w' \tau \chi) = \operatorname{rign}(\frac{w \tau \chi}{\|w\|_2}) = \operatorname{rign}(w \tau \chi)$
Prediction remains same.
(b) Same as (a)

(c) Logistic los: l(z) = log(1 + exp(-z)), where $z = y_n w^T x_n$. ↓ ℓ(z) 1 Monotonically Data is linearly decreasing separable in z \Rightarrow F w such that \overline{z} $y_n w^T x_n \ge 0 \forall n$ $\forall n, l(y_n(cw)'\chi_n) \leq l(y_nw'\chi_n)$ when $c \gg 1$ As we scale up W, loss keeps decreasing $i.e.arc \rightarrow \infty$, $l \rightarrow 0$. Thur, legistic loss doer not admit minimizer. If the data is not linearly separable, minimizer
 E.g. ∧
 $E.g. (0,1) = (1,1) \quad \text{This example is not linearly} \\ (0,1) = (1,1) \quad \text{This example is not linearly} \\ example . Logistic len is \\ (0,0) \quad (1,0) \quad \text{minimized at } W = (0,0). \\ \text{Verify !}$ (d) Minimizing 0-1 lass is a non-convex, discrete aptimization problem. l(z) 1 NP-Hard even for linear classifiers

- **1.4.** Which of the following statement is correct for function $f(w) = w_1 w_2$?
 - (a) (0,0) is the only stationary point. $\rightarrow \nabla f(w) = 0$ (b) (0,0) is a local minimizer.

 - (c) (0,0) is a local maximizer.
 - (d) (0,0) is a saddle point.

Ans: a, d. The gradient is $\nabla f(\boldsymbol{w}) = (w_2, w_1)$, so the only stationary point is (0, 0).

$$\nabla f(w) = \begin{pmatrix} w_2 \\ w_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies w_1 = w_2 = 0,$$

$$W_1^2 \implies Gnnider W_2 = -W_1 :$$

$$f(w) = -W_1^2 < 0 = f((0,0))$$

$$(0,0) \text{ is not a local}$$

$$minimizer.$$

Consider
$$W_2 = W_1$$
:
 $f(W) = W_1^2 > 0 = f((0,0))$
 $(0,0)$ is not a local maximizer.

2. Perceptron

Consider the following training dataset:

x	У	$\dot{y} = ngn(WX)$
(0, 0)	-1	
(0, 1)	-1	
(1, 0)	-1	
(1, 1)	1	

2.1. What is the accuracy of the perceptron on the training data?

SOLUTION:

x	У	\hat{y}	$\mathbb{I}(y=\hat{y})$
(0, 0)	-1	sgn(-0.9) = -1	Y
(0, 1)	-1	sgn(-0.9+3.7) = 1	Ν
(1, 0)	-1	sgn(-0.9+2.1) = 1	Ν
(1, 1)	1	sgn(-0.9 + 2.1 + 3.7) = 1	Y

Out of four predictions, two are correct. The accuracy is hence 50%.

2.2. Select $\mathbf{x} = (1,0)$ and y = -1. Use the perceptron training rule with $\eta = 1$ to train the perceptron for one iteration. What are the weights after this iteration?

For the given $\mathbf{x} = (1,0)$ the classifier makes a mistake $(\hat{y} = 1)$. We need to update the weights following the perceptron rule.

$$w' \leftarrow w + \eta y \varkappa = \begin{pmatrix} -0 \cdot q \\ 2 \cdot l \\ 3 \cdot 7 \end{pmatrix} - \begin{pmatrix} l \\ l \\ 0 \end{pmatrix} = \begin{pmatrix} -l \cdot q \\ l \cdot l \\ 3 \cdot 7 \end{pmatrix}$$

2.3. What is the accuracy of the perceptron on the training data after this iteration? Does the accuracy improve?

x	У	\hat{y}	$\mathbb{I}(y=\hat{y})$	
(0, 0)	-1	sgn(-1.9) = -1	Y	• • • • • •
(0, 1)	-1	sgn(-1.9+3.7) = 1	Ν	clampia
(1, 0)	-1	sgn(-1.9+1.1) = -1	Y 🗲	- correctly
(1, 1)	1	sgn(-1.9+1.1+3.7) = 1	Y	

SOLUTION:

With the new weights, three out of four are correct, hence accuracy increased to 75%.

Made with Goodnotes

3. Maximum Likelihood Estimation

A random sample set X_1, X_2, \ldots, X_n of size *n* is taken from a Poisson distribution with a mean of $\lambda > 0$. As a reminder, a Poisson distribution is a discrete probability distribution over the natural numbers, with the following probability mass function

$$P(X=x) = \frac{\lambda^x \cdot e^{-\lambda}}{x!}, \ \forall x \in \{0, 1, 2, \dots, \}$$

3.1. Find the log likelihood of the data; call it $l(\lambda)$. You may use any log base you want.

likelihood of the data =
$$\prod_{i=1}^{n} P(X = X_i)$$

 $\log - \text{likelihood} = l(\lambda) = \log \prod_{i=1}^{n} P(X = X_i)$
 $= \sum_{i=1}^{n} \log \left(\frac{\lambda^{\times i} e^{-\lambda}}{X_i!}\right)$
 $= \sum_{i=1}^{n} X_i \log \lambda - \lambda - \log(X_i!)$
 $= \log \lambda \sum_{i=1}^{n} X_i - n \lambda - \sum_{i=1}^{n} \log(X_i!)$

3.2. Find the maximum likelihood estimator for λ .

Maximize
$$l(\lambda)$$

 $l'(\lambda) = 0 \Rightarrow \frac{1}{\lambda} \sum_{i=1}^{n} X_i - n = 0$
 $\Rightarrow \hat{\lambda} = \underbrace{\sum_{i=1}^{n} X_i}_{n}$
 $l''(\hat{\lambda}) = -\frac{1}{\hat{\lambda}^2} \sum_{i=1}^{n} X_i < 0 \Rightarrow \hat{\lambda}$ is a maximizer