
Week 3 Practice

CSCI 567 Machine Learning

Spring 2025

Instructor: Haipeng Luo

1. MULTIPLE-CHOICE QUESTIONS: One or more correct choice(s) for each ques-
tion.

1.1. Which of the following surrogate losses is not an upper bound of the 0-1 loss?

(a) exponential loss: exp(−z)

(b) hinge loss: max{0, 1− z}

(c) perceptron loss: max{0,−z}

(d) logistic loss: ln(1 + exp(−z))
Ans: c, d. Note that here the logistic loss is using e as the base, instead of 2.

1.2. The perceptron algorithm makes an update w′ ← w + ηynxn with η = 1 when w
misclassifies xn. Using which of the following different values for η will make sure w′

classifies xn correctly?

(a) η > y(wTxn)

∥xn∥22
(b) η < −y(wTxn)

∥xn∥22+1

(c) η < −y(wTxn)

∥xn∥22
(d) η > −y(wTxn)

∥xn∥22

Ans: d. Solve ynw
′Txn = yn(w + ηynxn)

Txn > 0 for η.

1.3. Which of the following is true?

(a) Normalizing the output w of the perceptron algorithm so that ∥w∥2 = 1 changes its
test error.
(b) Normalizing the output w of the perceptron algorithm so that ∥w∥1 = 1 changes its
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test error.
(c) When the data is linearly separable, logistic loss (without regularization) does not
admit a minimizer.
(d) Minimizing 0-1 loss is generally NP-hard.

Ans: c, d. For c, note that when the data is separable, one can find w such that
ynw

Txn ≥ 0 for all n. Scaling this w up will always lead to smaller logistic loss∑
n=1 ln(1 + exp(−ynwTxn)) and thus the function does not admit a minimizer.

1.4. Which of the following statement is correct for function f(w) = w1w2?

(a) (0, 0) is the only stationary point.
(b) (0, 0) is a local minimizer.
(c) (0, 0) is a local maximizer.
(d) (0, 0) is a saddle point.

Ans: a, d. The gradient is ∇f(w) = (w2, w1), so the only stationary point is (0, 0).
To see why it is neither a local minimizer nor a local maximizer, simply consider the
direction w1 = −w2 and w1 = w2 respectively.
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2. Perceptron
Consider the following training dataset:

x y

(0, 0) -1

(0, 1) -1

(1, 0) -1

(1, 1) 1

and a perceptron with weights (w0, w1, w2) = {−0.9, 2.1, 3.7}

Σx1
2.1

+1
−0.9

x2
3.7

2.1. What is the accuracy of the perceptron on the training data?

SOLUTION:

x y ŷ I(y = ŷ)

(0, 0) -1 sgn(−0.9) = −1 Y

(0, 1) -1 sgn(−0.9 + 3.7) = 1 N

(1, 0) -1 sgn(−0.9 + 2.1) = 1 N

(1, 1) 1 sgn(−0.9 + 2.1 + 3.7) = 1 Y

Out of four predictions, two are correct. The accuracy is hence 50%.
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2.2. Select x = (1, 0) and y = −1. Use the perceptron training rule with η = 1 to train the
perceptron for one iteration. What are the weights after this iteration?

For the given x = (1, 0) the classifier makes a mistake (ŷ = 1). We need to update the
weights following the perceptron rule the new weights are given by

wk+1 ← wk + ηyx

← (−0.9, 2.1, 3.7) + (1)(−1)(1, 1, 0)
← (−1.9, 1.1, 3.7)

2.3. What is the accuracy of the perceptron on the training data after this iteration? Does
the accuracy improve?

SOLUTION:

x y ŷ I(y = ŷ)

(0, 0) -1 sgn(−1.9) = −1 Y

(0, 1) -1 sgn(−1.9 + 3.7) = 1 N

(1, 0) -1 sgn(−1.9 + 1.1) = −1 Y

(1, 1) 1 sgn(−1.9 + 1.1 + 3.7) = 1 Y

With the new weights, three out of four are correct, hence accuracy increased to 75%.
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3. Maximum Likelihood Estimation

A random sample set X1, X2, . . . , Xn of size n is taken from a Poisson distribution with a
mean of λ > 0. As a reminder, a Poisson distribution is a discrete probability distribution
over the natural numbers, with the following probability mass function

P (X = x) =
λx · e−λ

x!
, ∀x ∈ {0, 1, 2, . . . , }

3.1. Find the log likelihood of the data; call it l(λ). You may use any log base you want.

l(λ) = log
∏
i

P (X = Xi)

= log
∏
i

λXie−λ

Xi!

=
n∑

i=1

[Xi log λ− λ− log(Xi!)]

= log λ ·
n∑

i=1

Xi − nλ−
n∑

i=1

log(Xi!)

3.2. Find the maximum likelihood estimator for λ.

l′(λ) =
1

λ

n∑
i=1

Xi − n = 0

λ =
1

n

n∑
i=1

Xi

So our maximum likelihood estimator λ̂ is the average value.
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