Week 5 Practice

CSCI 567 Machine Learning

Spring 2025

Instructor: Haipeng Luo

1. MULTIPLE-CHOICE QUESTIONS: One or more correct choice(s) for each question.

1.1. Which of the following is/are **true** about neural nets?

(A) A neural net with one hidden layer and a fixed number of neurons can represent any continuous function.

(B) A fully connected feedforward neural net without nonlinear activation functions is the same as a linear model.

(C) Dropping random neurons in each iteration of Backpropagation helps prevent over-fitting.

- (D) A max-pooling layer with a 2×2 filter has 4 parameters to be learned.
- **1.2.** Which of the following can help prevent overfitting in neural nets?
 - (A) Retraining on the same data many times.
 - (B) Using a validation set for early stopping.
 - (C) Data augmentation.
 - (D) Training until you get the smallest training error.
- **1.3.** Suppose a convolution layer takes a 8×8 image with 3 channels as input and outputs a $4 \times 4 \times 8$ volume. Which of the following is a possible configuration of this layer?
 - (A) One 4×4 filter with depth 8, stride 2, 1 pixel of zero-padding.
 - (B) Three 4×4 filters with depth 8, stride 2, no zero-padding.
 - (C) Eight 4×4 filters with depth 3, stride 2, 1 pixel of zero-padding.
 - (D) Eight 4×4 filters with depth 3, stride 1, 1 pixel of zero-padding.

- 1.4. How many parameters do we need to learn for the following network structure? An $32 \times 32 \times 3$ image input, followed by a convolution layer with 3 filters of size 3×3 (stride 1, 1 pixel of zero-padding), then another convolution layer with 4 filters of size 2×2 (stride 2, no zero-padding), and finally a max-pooling layer with a 2×2 filter (stride 1, no zero-padding). (Note: the depth of all filters are not explicitly spelled out, and we assume no bias/intercept terms are used.)
 - (A) 43
 - (B) 97
 - (C) 129
 - (D) 145

Ans: C. $3 \times (3 \times 3 \times 3) + 4 \times (2 \times 2 \times 3) = 129$.

- **1.5.** What is the final output dimension of the last question?
 - (A) $15 \times 15 \times 1$ (B) $16 \times 16 \times 4$ (C) $32 \times 32 \times 1$ (D) $15 \times 15 \times 4$
- **1.6.** Which of the following is/are **true** about kernel functions?
 - (A) If k_1 and k_2 are valid kernels, then so is $c_1k_1 + c_2k_2$ for any $c_1, c_2 \ge 0$.
 - (B) Kernel functions must be symmetric, i.e., $k(\boldsymbol{x}, \boldsymbol{x}') = k(\boldsymbol{x}', \boldsymbol{x})$.
 - (C) If k is a kernel, then -k is a kernel too.
 - (D) If k is a kernel, then $\ln(k)$ is a kernel too.
- **1.7.** Which of the following are not kernel functions?
 - (A) $k(x, x') = (\mathbf{x}^T \mathbf{x}')^2$ (B) $k(x, x') = -\|\mathbf{x} - \mathbf{x}'\|_2^2$ (C) $k(x, x') = (\mathbf{x}^T \mathbf{x}' + 1)^2$ (D) $k(x, x') = \|\mathbf{x} - \mathbf{x}'\|_2^2$
- **1.8.** Vovk's real polynomial kernel $k : \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$ is defined as: $k(\boldsymbol{x}, \boldsymbol{x}') = \frac{1 (\boldsymbol{x}^T \boldsymbol{x}')^p}{1 (\boldsymbol{x}^T \boldsymbol{x}')}$, where p is a non-negative integer. Which of the following is the corresponding feature mapping for this kernel when D = 2 and p = 2?

(A)
$$\phi(\boldsymbol{x}) = [x_1, x_2, x_1 x_2]^T$$

(B) $\phi(\boldsymbol{x}) = [x_1, x_2, x_1^2, x_2^2]^T$
(C) $\phi(\boldsymbol{x}) = [x_1, x_2, 1]^T$
(D) $\phi(\boldsymbol{x}) = [x_1, x_2, x_1^2, x_2^2, x_1 x_2]^T$