CSCI567 Machine Learning (Spring 2025)

Haipeng Luo
University of Southern California

Apr 25, 2025

1/48

I
Quiz 2 Coverage

Coverage: mostly Lec 8-12, some multiple-choice questions from Lec 13;
some basic concepts before Quiz 1 (e.g. kernel) might appear.

Six problems in total
@ one problem of 15 multiple-choice multiple-answer questions
e 0.5 point for selecting (not selecting) each correct (incorrect) answer
o “which of the following is correct?” does not imply one correct answer
@ five other homework-like problems, each has a couple sub-problems

o clustering, density estimation/naive Bayes, HMM, EM, RNN,
transformer, bandits

Tips: expect to see variants of sample Quiz 2; ask yourself:

e if given the same question, can you solve it (without looking up
formulas)?

@ if a similar question is asked differently, can you solve it?

3/48

I
Quiz 2 Logistics

Date: Friday, May 2nd
Time: 1:00-3:20pm
Location: THH 101 (double seating) for ALL students (including DEN)

Individual effort, close-book (no cheat sheet), no calculators or any other

electronics, but need your phone to upload your solutions to Gradescope
from 3:20-3:40pm

2/ 48

Course Evaluation

Will end the lecture about 10 minutes earlier to do course evaluation.

Please stay around!

4 /48

I
Outline

Outline

o Review of last lecture o Review of last lecture
© Basics of Reinforcement learning

e Deep Q-Networks and Atari Games

e Policy Gradient, Actor-Critic, and AlphaGo

5/ 48 6/ 48
UCB for multi-armed bandits Self-play for dueling bandits (preference feedback)
Adaptive exploration-exploitation trade-off via optimism
Upper Confidence Bound (UCB) algorithm Exp3 for dueling bandits (selecting b;)
Fort=1,...,T, pick a; = argmax, UCB;, where Input: a learning rate parameter n > 0
| Fort=1,...,T,
A A nt
UCBLa = fli-1,0 +2 Nt—1q @ compute arm distribution g; = softmax <—77 Zt;:ll ET)
@ sample b; from q;
@ observe loss feedback I[a; = b (at selected by opponent)
@ construct estimator £; € Rff where for each b: £, = W
7/ 48

8 /48

Review of last lecture

Losses versus rewards

Exp3 for dueling bandits (CORRECT way to select a;)
Fort=1,...,T,

t—1

@ sample a; from arm distribution p; = softmax (—77 >y

@ observe reward feedback I[a; >~ b]

@ construct estimator £; € Rf where for each a: £;, =

ET)

(bt selected by opponent)

I[a;=a]l[a<b;]

Pt,a

from softmax (77 St r7> to softmax <—'r] St £T>

_ Ia;=all[a>b¢] to by — I[a;=all[a<b;]
DPt,a t’a Pt,a

from r¢,

Basics of Reinforcement learning
Outline

© Basics of Reinforcement learning
@ Markov decision process
@ Learning MDPs

9/ 48

11 / 48

Review of last lecture

How to find Nash Equilibra of a zero-sum game?

Even for games as large as poker, can approximately find one via
self-play and regret minimization!

Self-play for zero-sum games

Input: multi-armed bandit algorithms A and B
Fort=1,...,T,

@ get arm distributions p; and g; from A and B respectively
@ sample a; from p; and b; from q;

@ observe M, 1, (plus noise), feed it as reward to A and as loss to B

v

Low regret = convergence to NE

Basics of Reinforcement learning

Recent Successes of Deep Reinforcement Learning (RL)

ChatGPT

StarCraft (2019) Rubik's Cube (2019) ChatGPT (2022)

Deep RL = RL + deep neural net models, so what really is RL?

10 / 48

12 / 48

Motivation

Multi-armed bandit is among the simplest decision making problems with
limited feedback.

Environment

Environment

It's often too simple to capture many real-life problems. One thing it fails
to capture is the “state” of the learning agent, which has impacts on the
reward of each action.

@ e.g. for Atari games, after making one move, the agent moves to a

different state, with possible different rewards for each action

13 / 48

ity desblon s
Markov Decision Processes (MDPs)

An MDP is parameterized by five elements
@ S: a set of possible states
e A: a set of possible actions

e P: transition probability, P(s’|s,a) is the probability of transiting
from state s to state s’ after taking action a (Markov property)

e r: reward function, 7(s,a) is (expected) reward of action a at state s

e 7 € (0,1]: discount factor, informally, 1 dollar tomorrow is only worth
~ when viewed from today (inflation)

Different from simple Markov chains, the state transition is influenced by
the taken action.
Different from Multi-armed bandit, the reward depends on the state.

15 / 48

Basics of Reinforcement learning

Reinforcement learning

Reinforcement learning (RL) is one way to deal with this issue.

The foundation of RL is Markov Decision Process (MDP),
a combination of Markov model (Lec 10) and multi-armed bandit (Lec 12)

14/ 48

Basics of Reinforcement learning Markov decision process

Example

Canonical example: a grid world

transition model P

@ each grid is a state

@ 4 actions: up, down, left, right

@ reward is 1 for diamond, -1 for fire, and 0 everywhere else

16 / 48

Basics of Reinforcement learning Markov decision process

Policy

A policy 7 specifies the probability of taking action a at state s as m(als).

If we start from state s; € S and act according to a policy 7, the
discounted rewards for time 1,2, ... are respectively

T(Sl, al)) ’77"(527 G,Q), /727“(537 CL3),

where a; ~ 7(+|s¢) and spp1 ~ P(+|s¢, ar)

If we follow the policy forever, the total (discounted) reward is

D A (s, at)]

t=1

E

17/ 48
Value Iteration
Value lteration
Initialize V(s) =0 forall s € S
For k =1,2,... (until convergence), perform Bellman update:
Vir1(s) < max (r(s, a) + Z P(s|s, a)Vk(s')> , Vse S8
acA s'eS
v
Value iteration converges exponentially fast!
Knowing V, the optimal policy 7* is simply
7*(s) = argmax (r(s, a) +y Z P(s'|s, a)V(s'))
acA ’
s'eS
19 /48

Basics of Reinforcement learning Markov decision process

Optimal Policy and Bellman Equation

First goal: knowing all parameters, how to find the optimal policy

Z’ytflr(st, at)] ?

argmax E
4 t=1

We first answer a related question: what is the maximum reward one can
achieve starting from an arbitrary state s?

[oe)
V(s) = maxE Z’yt_lr(st,at) ’ 51 =5
t=1
— P / V /
o (0042 3 PO)

V is called the optimal value function. It satisfies the above Bellman
equation: |S| nonlinear equations with |S| unknowns, how to solve it?

18 / 48

Learning MDPs
Learning MDPs

Now suppose we do not know the parameters of the MDP
@ transition probability P

@ reward function r

How do we find the optimal policy?
@ model-based approaches

@ model-free approaches

20/ 48

=il e =it e
Model-Based Approaches Model-Based Approaches

How do we collect data s1,a1,11,S9,a2,79,...,ST, a1, rT?
Key idea: learn the model P and r explicitly from samples

Let's adopt the e-Greedy idea again to ensure exploration.

Suppose we have a sequence of interactions: s1,a1,71,...,S7,ar, T, A sketch for model-based approaches
then the MLE for P and r are simply Initialize V
P(5'|s,a) o #transitions from s to s” after taking action a Fort=1,2,...,

r(s,a) = average observed reward at state s after taking action a e with probability ¢, explore: pick an action uniformly at random

e with probability 1 — ¢, exploit: pick the optimal action based on V
Havmg est@ates of.the parameters we can then apply value iteration to o update the model parameters P, r
find the optimal policy.

@ update the value function V' (via value iteration)

21/ 48 22/ 48
Model-Free Approaches Temporal Difference (TD error)

How to learn the Q function?
Key idea: do not learn the model explicitly. What do we learn then? , ,

Qs,0) = r(s,0) +7 Y P(s's,0) max Q(s',)

Define the @ : S x A — R function as s'€S “e

Given experience (8¢, at, 14, S¢+1), With the current guess on @,

/ / /
Q(s,a) =r(s,a) + ’YSI;SP(S |s,a) s Qs a) yr = 1t + ymaxy Q(se41,d’) is like a sample of the RHS of the equation.

So it's natural to do the following update (with learning rate «):
In words, (s, a) is the expected reward one can achieve starting from & up (&)
state s with action a, then acting optimally. Qsty ar) = (1= @)Q(s1, ar) + oy

= Q(st,ar) + a (yr — Q(s¢,ar))
— N———
Clearly’ V(S) = MaXq Q(S’ a)' temporal difference
Knowing Q(s, a), the optimal policy at state s is simply argmax, Q(s,a). 0 (% (Q(st,ar) — yt)2>
= Q(Stv at) -« P

Model-free approaches learn the () function directly from samples. Q(st, ar)

which is gradient descent w.r.t. squared loss 5 (Q(s¢, a;) — ye)?.

23 /48

24/ 48

Q-learning
The simplest model-free algorithm:

Q-learning
Initialize Q

Fort=1,2,...,
e with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax, Q(s¢, a)
@ execute action a;, receive reward r, arrive at state ;11

@ update the @) function

Q(s¢,a1) + Q(s¢,a¢) — (Q(Sm ag) —ry — 7y max Q(st11, a))

for some learning rate «.

Outline

© Deep Q-Networks and Atari Games

25 / 48

27 / 48

Basics of Reinforcement learning Learning MDPs

Comparisons

Model-based Model-free
What it learns model parameters P,r,... | (@ function
Space O(|S|?|A) O(IS[]-Al)

Sample efficiency

usually better

Deep Q-Networks and Atari Games

Function approximation

usually worse

26/ 48

Algorithms discussed so far (called tabular algorithms) run in time/space
poly(|S||A|), which is impractical. (Go has about 2 x 107" states!)

To overcome this issue, we approximate () by a function parametrized by 6:

Q@(S,a) ~ Q(Sva)v v (Sva)

@ (simplest) linear function approximation: Qy(s,a) = (0, ¢(s,a)) for

some “feature” ¢(s,a)

o deep Q-network (DQN): Qy is a neural net with weight 6

28 / 48

Deep Q-Networks and Atari Games

(Q-learning with function approximation
How to learn 67

Recall in the tabular case, with y; = ry + vy max, Q(s141,4d):

Q(st,at) <+ Q(s¢,a1) + a (yr — Q(st, ar))
—_—

temporal difference
0 <% (Q(St, at) - yt)2>
Q) (st, ar)

= Q(Stv at) -

A natural generalization: perform gradient descent on 6 with squared loss
2
% (Qo(st,at) —ye)™:

0+ 60— aVy (; (Qo(st,ar) — yt)2>
=0—-« (Qg(St, at) - yt) VeQe(St, at)

29 / 48

Deep Q-Networks and Atari Games

Case study: superhuman Al for Atari games

Model each Atari game as an MDP (S, A, P, r,~):
@ states: raw images (84 x 84 after preprocessing)

[Deepmind, 2013]

e no feature engineering, end-to-end (from pixel to

action) reinforcement learning, just like humans WADERD

o stack 4 most recent frames as one state (to make
things Markovian)

@ 18 possible actions:

AIMNIRjE ey N]
+1+1+0+0+0+0+0+ N & N7 > 15

@ transition: determined by each game

indui oy

@ reward: change in score

e v =0.99 (but note that the game will end at some point)

31 /48

Deep Q-Networks and Atari Games

(Q-learning with function approximation

Q-learning

Initialize € randomly

Fort=1,2,...,
e with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax, Qgy(s¢, a)
@ execute action a;, receive reward 1, arrive at state sy

@ update the parameter of the () function

0 < 60— a(Qo(se,ar) — yr) VoQo(se, ar)

for some learning rate «.

Deep Q-Network

@ input: 84 x 84 x 4 images
@ 3 convolutional layers + 2 fully-connected layers, 3M parameters

@ each of the 18 outputs specifies the ()-value of the corresponding
action given a certain state input

Convolution

Convolution

Fully cgnnected Fully cgnnected

s
==

[
o-

ArIReJe vy
NN K
© (€ [© (¢ (¢ () (¢ [¢]

30/ 48

32/ 48

Deep Q-Networks and Atari Games Deep Q-Networks and Atari Games

Training More on experience replay

For each game, run Q-learning for T'= 50M (around 38 days of game Use a minibatch of samples from previous experience

experience), with two more tricks: o target: from (Qg(st,at) _ yt)z to Zkeminibatch (Qo(b’k,ak) _ yk)Q

e use a target network 6 to stabilize training o update: from
Yt =T¢+ ’YH};J}X Qo(st+1, a') = Yt =T+ ’YHLE}XQg(StH, G/) 0 < 0 — a(Qo(st; ar) — yt) VoQo(st, ar)
) to
o 0 is a snapshot of #, updated every 10K rounds 0 60— a Z (Qo(sks ar) — yi) VoQo sk, ar)
k€minibatch
@ use experience replay to reduce correlation / increase data efficiency
_ _ _ — @ in the tabular case, it means from (see programming project)
o instead of using one sample in each update, use a minibatch of 32
samples randomly selected from the most recent 1M frames Q(st,at) + Q(st,ar) — a(Q(se, ar) — ye)
(Qo(st.ar) —y)® = Y (Qolsk,ar) —yx)” to
k€minibatch L
Q(sk, ak) < Q(sk, ar) — (Q(sk, ar) — yr), Vk € minibatch
33/ 48 34 / 48

Deep Q-Networks and Atari Games Deep Q-Networks and Atari Games

Results Results
i:
i
. . . — :E%
o tested on 49 Atari Games, 5 mins each game for 30 times [[
@ same model architecture, same algorithm, same hyperparameters ‘ ‘ ’
@ compared against best linear learner and a professional human tester ‘ ’ I ‘ | 5
|| \
DQN score — random play score g
@ report human score — random play score x 100% Hr) N i \
I L5
‘ NHTJW,” . o
C8SS8SERZS 553050883 2888 NS ESTCRETE S 59808
s o 8 8% z = g é” 23 £ g
E

35/ 48 36 /48

Policy Gradient, Actor-Critic, and AlphaGo
Outline

e Policy Gradient, Actor-Critic, and AlphaGo

37 /48

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem

For simplicity, suppose v = 1 and a trajectory ends after H steps.

Expected reward of 7, can be written as
R(m,) = Z P,(T)R(T)

e 7= (s1,a1,...,SH,ap) ranges over all possible H-step trajectories
@ P,(7) is the probability of encountering trajectory 7 under policy 7,

e R(1) = Zthl 7(sp,ap) is the cumulative reward for trajectory 7

So we have

V,R(m,) =Y V,Py(T)R(7)

How do we efficiently compute/approximate it?

39 /48

Policy Gradient, Actor-Critic, and AlphaGo

Learning policies directly

Another popular class of RL algorithms learns the policy directly:

max “expected reward of policy 7"
™
To handle large scale problems, consider a parameterized policy class
II={n,:peQ} (eg., aset of neural nets) and solve

max “expected reward of policy m,"
pe

via stochastic gradient descent

38 /48

Policy Gradient, Actor-Critic, and AlphaGo

Policy gradient theorem (cont.)

VoR(m) = SV, RAnR() = X P T A R

= Py(T)V,log P,(1)R(r) (log derivative trick)

=E,;[V,log P,(7)R()] (written as an expectation)
=E; [vp log (H}[L{:lﬂ-p(ah|5/1)P(5h+1‘Sha ah)) R(T)]

H
(Z V,log Wp(ah|8h)> R(7)

h=1

=E; (transition doesn't matter!)

which can be approximated by sampling n trajectories using 7, and
taking the empirical average:

1 n H)) .
n 2 (Z Vlog m<a§f’|s§§>>> R(r)
h=1

=1

40 / 48

Policy Gradient, Actor-Critic, and AlphaGo Policy Gradient, Actor-Critic, and AlphaGo

Reducing variance of gradient estimators via baselines Which baselines?
The key to make policy gradient work is to reduce variance of gradient
estimators. Subtracting a “baseline” is a standard way to achieve so: V,R(n,) = Z Vlogmy(an|sn) (R(T) = b(s1:1, al:hl))]
h=1
CH
Want b(sy.p,a1.,—1) to be close to R(7), leading to an idealized choice:
V,R(r,) = E. |3V, logm,(an]sn) B() (s1:0, 01:8-1) (7) g
Lh=1 “observed reward before h" + “expected reward starting from h”

. h—1
=, Z V,logmy(an|sn) (R(T) — b(S1:, al:hl))] = (Z (8w, Gh')) +E

H
Z r(sh/,ah/) ’ Sp! = Sh]

Lh=1 h'=1 h'=h
This holds for any b that only depends on s1.j,a1.;,1, because Vﬁ;@h)
V., called a critic, is usually approximated by another network 6:
w,(ap|sh Tpo :
B, [V, log mp(anlsn)t] = b 3 mplanlsn) L2l 21) “ e . ..
aneA mp(anlsn) observed reward before h" + “estimated reward starting from h
h—1
= bV m,(aylsy) =bV,1 =0
paz;A planlsn) P = (Z T(Sh/,ah')> + Vo(sn)
h h'=1
41 / 48 42 / 48
Actor-Critic methods Case study: AlphaGo [Deepmind, 2015]
Repeat:
e Critic evaluates the current policy 7, by fitting Vj from samples using Model Go as an MDP (S, A, P,r,7):
square loss:

@ states: each 19 x 19 position of the
game is pre-processed into an

H 2
mmzz <V9 () Z <3h ,ah)) 19 x 19 x 48 image stack consisting of

feature planes

@ actions: all legal next moves
@ Actor improves the current policy 7, via stochastic gradient descent:

@ transition: determined by the opponent

H
pip—— ZZV logwp(ah \s) (Z r (SS/)7 ag,)) _ Ve(sg))) e reward: only the ending state has

i=1 h=1 h—h reward (1 if win, —1 if lose)

J/

=R(r)=b(s{) a{?)) o v=1

43 / 48 44 | 48

Policy Gradient, Actor-Critic, and AlphaGo Policy Gradient, Actor-Critic, and AlphaGo

Policy /value networks Training
Both 7, and Vp are large convolutional neural nets: Step 1: first train a policy 7, using pure supervised learning from 30M
i expert moves (a_multiclass classification task)

Step 2: use actor-critic to train policy network 7, and value network Vj

@ initialize p as ¢

o self-play: every 500 iterations, add current p to an opponent pool; in
each iteration, randomly sampled one from this pool as the opponent

@ trained for 10K iterations, each with 128 games

During actual plays (testing): additionally apply Monte-Carlo Tree
Search (a UCB-based search algorithm)

45 /48 46/ 48
Results Summary
@ 99.8% win rate against other Go programs
@ 5-0 Fan Hui (2013/2014/2015 European Go champion)
e first superhuman Al for Go, previously believed to be a decade away A brief introduction to (deep) RL:
3,500 7 e foundation: MDP, value iteration, model-based /free learning
3,000+ %.
2500 s o large-scale and practical deep RL methods:
2 200 z o (-learning with function approximation, DQN, and their success in
: & ‘ Atari games
‘-TO-' 1,500+ > 2 a1 [LEE SEDOL
o0 s ‘ e policy gradient, actor-critic methods, and their success in Go
3 A .‘ & |
500+
0
EEBE L, -~ 98
go o - §
48 / 48

47 / 48

	Review of last lecture
	Basics of Reinforcement learning
	Deep Q-Networks and Atari Games
	Policy Gradient, Actor-Critic, and AlphaGo

