CSCI567 Machine Learning (Spring 2025)

Haipeng Luo
University of Southern California

Jan 24, 2025

1/ 54



Administrative stuff

Please enroll in Piazza (still missing some of you).

HW1 to be released today.

Programming project:
@ invitation to enroll is out

@ six tasks available now, four more to come
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Outline

@ Review of last lecture
© Linear regression
© Linear regression with nonlinear basis

@ Overfitting and preventing overfitting
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Outline

© Review of last lecture
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Review of last lecture

Multi-class classification

Training data (set)
e N samples/instances: D™AN = {(x1,y1), (x2,y2), - , (N, UN) }
@ Each x,, € RP is called a feature vector.
e Each y, € [C] ={1,2,---,C} is called a label/class/category.
@ They are used to learn f : RP — [C] for future prediction.

Special case: binary classification
@ Number of classes: C = 2
e Conventional labels: {0,1} or {—1,+1}

K-NNC: predict the majority label within the K-nearest neighbor set
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Datasets

Training data

e N samples/instances: D™ = {(x1,y1), (x2,y2), - , (N, UN) }
@ They are used to learn f(-)

Test data
e M samples/instances: D™ = {(x1,y1), (z2,42), - , (M, ym) }

@ They are used to evaluate how well f(-) will do.

Development/Validation data

e L samples/instances: D"V = {(x1,91), (®2,92), -, (xL,yL)}
@ They are used to optimize hyper-parameter(s).

These three sets should not overlap!
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S-fold Cross-validation

What if we do not have a development set?

@ Split the training data into S S = 5: 5-fold cross validation
equal parts.
@ Use each part in turn as a I |

development dataset and use
the others as a training dataset.

@ Choose the hyper-parameter
leading to best average
performance.

Special case: S = N, called leave-one-out.
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High level picture

Typical steps of developing a machine learning system:
o Collect data, split into training, development, and test sets.

@ Train a model with a machine learning algorithm. Most often we
apply cross-validation to tune hyper-parameters.

@ Evaluate using the test data and report performance.
@ Use the model to predict future/make decisions.

How to do the red part exactly?

Today: from a simple example to a general recipe
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Outline

© Linear regression
@ Motivation
@ Setup and Algorithm
@ Discussions
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Linear regression Motivation

Regression

Predicting a continuous outcome variable using past observations
@ Predicting future temperature (last lecture)
@ Predicting the amount of rainfall
@ Predicting the demand of a product
@ Predicting the sale price of a house

Key difference from classification
@ continuous vs discrete
@ measure prediction errors differently.

@ lead to quite different learning algorithms.

Linear Regression: regression with linear models
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Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)
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Linear regression Motivation

Features used to predict
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Linear regression Motivation

Correlation between square footage and sale price
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Linear regression Motivation

Possibly linear relationship

Sale price =~ price_per_sqft x square_footage + fixed_expense

slope intercept
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Linear regression Motivation

How to learn the unknown parameters?

How to measure error for one prediction?

@ The classification error (0-1 loss, i.e. right or wrong) is inappropriate
for continuous outcomes.

@ We can look at

o squared error: (prediction - sale price)> (most common)

o or absolute error: | prediction - sale price | (robust to outliers)

Goal: pick the model (unknown parameters) that minimizes the
average/total prediction error, but on what set?

o test set, ideal but we cannot use test set while training

@ training set v’
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Linear regression Motivation

Example

Predicted price = price_per_sqft x square_footage + fixed_expense

one model: price_per_sqft = 0.3K, fixed_expense = 210K

sqft | sale price (K) | prediction (K) | squared error

2000 | 810 810 0

2100 | 907 840 67

1100 | 312 540 228°

5500 | 2,600 1,860 7402

Total 04677 4 2287 4+ 740° + - - -

Adjust price_per_sqft and fixed_expense such that the total squared error is
minimized.
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Formal setup for linear regression

Input: € RP (features, covariates, context, etc)
Output: y € R (responses, targets, outcomes, etc)

Training data: D = {(x,,yn),n =1,2,...,N}

Linear model: f:RP — R, with f(x) = wg + 25:1 wyrg= wo + wrx
(superscript 7' stands for transpose), i.e. a hyper-plane parametrized by

o w=[w; wy --- wp]’ (weights, weight vector, parameter vector, etc)
@ bias wy

NOTE: for notation convenience, very often we

@ append 1 to each z as the first feature: & = [1 21 29 ... xp]T
o let w = [wg wi wy --- wp]T, a concise representation of all D + 1
parameters

@ the model becomes simply f(x) = w
@ sometimes just use w, x, D for w, x,

Tz
D+1
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Setup and Algorithm
Goal

Minimize total squared error

o Residual Sum of Squares (RSS), a function of w

RSS(w) = Y (f(mn) —yn)> =D _(Zh1b — yn)?

n n

o find w* = argmin RSS(w), i.e. least squares solution (more
weRP+!
generally called empirical risk minimizer)

e reduce machine learning to optimization

@ in principle can apply any optimization algorithm, but linear
regression admits a closed-form solution
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Setup and Algorithm
Warm-up: D=0

Only one parameter wy: constant prediction f(z) = wq
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f is a horizontal line, where should it be?
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Setup and Algorithm
Warm-up: D=0

Optimization objective becomes

RSS(wp) = Z(QU(] —yn)? (it's a quadratic aw} + bwg + c)

n

= Nwi —2 <Zyn> wo + cnt.
n
) 2
=N (wo — Nzn:yn> + cnt.

It is clear that wg = % > n Yn, i.e. the average

Exercise: what if we use absolute error instead of squared error?
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Setup and Algorithm
Warm-up: D =1

Optimization objective becomes

RSS(t0) = 3 (wo + wizy - y)?
n
General approach: find stationary points, i.e., points with zero gradient

ORSS(w
7611)( ) — 0 N Zn(wo + wizy,y — yn) =0
) 0 Zn(wﬂ + wixy — yn)xn =0

Nwo+wi ), Tn => . Un
Wo Zn Tn + w1 Zn x%z = Zn YnTn

(o Ea ) ()= (&)

(a linear system)

)
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Least square solution for D =1

()= (g &3 ><zzxyy>

(assuming the matrix is invertible)

Are stationary points minimizers?
@ yes for convex objectives (RSS is convex in w)

@ not true in general
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General least square solution

Objective: RSS(w) = Y (F110 — yn)?

n

Calculate the gradient (multivariate calculus):
VRSS (b —ZZmn W — yp) =2 (Z@@E) W—2 Enyn
n n

A compact form:

RSS(w) = | X — y||? and VRSS(w) = 2(XTX)w —2XTy

E| Y1
S Ty Nx (D+1 Y2 N
where X = e RNX(D+D) gy — _ €R
Ty YN
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General least square solution

(X™X)w-XTy=0 = & =(X"X)'X"Ty
assuming X T X (covariance matrix) is invertible for now.

Again by convexity w* is the minimizer of RSS.

Verify the solution when D = 1:

1 X1
XTX*:(l 1 .- 1) 1 :< N ang>
‘/'I"l :L‘Z e ‘/BN e an‘n ann

1 TN

when D =0: (XTX)! = . XTy =3 un
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SR A
Another approach

RSS is a quadratic, so let's complete the square:
RSS(w) = || X@ — y|3
~ T /, -
- (xo-) (v )
= ' X" X —y" X — ' X y + cnt.
-~ ~ T /< ~ -~ o~ ~
- (u*; - (XTX)—ley) (XTX) (ﬁ) . (XTX)—IXTy) + cnt.

o~ - \T - -
Note: u” (XTX> u= (Xu) Xu=|Xul2>0andis 0if u = 0.
So w* = (XT X)X Ty is the minimizer.

&
Il
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Linear regression Discussions

Computational complexity

Bottleneck of computing
e
W = (X X) XTy
is to invert the matrix XTX € R(D+1)x(D+1)

e naively need O(D3) time

@ there are many faster approaches (such as conjugate gradient)
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Discussions
What if XTX is not invertible

What does that imply?

Recall (X'Tj{) w* = XTy. If XTX not invertible, this equation has
@ no solution (= RSS has no minimizer? X)

@ or infinitely many solutions (= infinitely many minimizers v')
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Discussions
What if XTX is not invertible

Why would that happen?

One situation: N < D+ 1, i.e. not enough data to estimate all parameters.

Example: D=N=1

sqft | sale price
1000 | 500K

Any line passing this single point is a minimizer of RSS.
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Linear regression Discussions

How about the following?

D=1,N=2

sgft | sale price
1000 500K
1000 600K

Any line passing the average is a minimizer of RSS

D=2N=3?

sqft | #bedroom | sale price
1000 2 500K
1500 3 700K
2000 4 800K

Again infinitely many minimizers.
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Discussions
How to resolve this issue?

Intuition: what does inverting XTX do?

A O .- 0
0 Xy - 0
eigendecomposition: XTX =U" : : : : U
0 AD 0
| 0 0 Ap+1
where A\ > Ao > - Ap41 > 0 are eigenvalues.
- -
+ 0 - 0
0 )%2 ... 0
inverse: (XTX)'=UT| : : : U
0 x 0
1
i 0 --- 0 el

i.e. just invert the eigenvalues
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Linear regression Discussions

How to solve this problem?

Non-invertible = some eigenvalues are 0.

One natural fix: add something positive

[ AL+ A 0 0 i
0 Ao+ A 0
XTX 4+ [ =U" : : : : U
0 AD + A 0
L 0 0 AD+1 + A i
where A > 0 and I is the identity matrix. Now it is invertible:
- -
A1+ ? 0
0 = 0
(XTX + )t =U" ; ' : U
1
0 )\D+/\ (1)
I 0 0 Xor A
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B
Fix the problem

The solution becomes

- - -1 -
B = (XTX + /\I> XTy

@ not a minimizer of the original RSS

@ more than an arbitrary hack (as we will see soon)

A is a hyper-parameter, can be tuned by cross-validation.
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B
Comparison to NNC

Non-parametric versus Parametric

@ Non-parametric methods: the size of the model grows with the size
of the training set.
e e.g. NNC, the training set itself needs to be kept in order to predict.
Thus, the size of the model is the size of the training set.

o Parametric methods: the size of the model does not grow with the

size of the training set N.
e e.g. linear regression, D + 1 parameters, independent of N.
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Linear regression with nonlinear basis
Outline

© Linear regression with nonlinear basis
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Linear regression with nonlinear basis

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data

1

o
22 o
o
05 O%O o
& ;
3 -
of % &
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o
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Linear regression with nonlinear basis

Solution: nonlinearly transformed features
1. Use a nonlinear mapping

dx):xcRP = 2 e RY

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for
the new feature space).

1
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Linear regression with nonlinear basis

Regression with nonlinear basis

Model: f(x) = w'¢(x) where w € RM

Objective:

RSS(w) = Z (qub(mn) — yn)2

n

Similar least square solution:

w* = (<I>T<I>)_l ®Ty where &= e RVM
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Linear regression with nonlinear basis

Example

Polynomial basis functions for D = 1

1
T M
pa)=| 7 | = f@)=w+ Y wna™
. m=1
Y

Learning a linear model in the new space
= learning an M -degree polynomial model in the original space
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Linear regression with nonlinear basis

Example

Fitting a noisy sine function with a polynomial (M = 0,1, or 3):

1 M=0
[
t
° o
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Why nonlinear?

Can | use a fancy linear feature map?

1 — X2

31‘4 — I3
d(x) = | 20, 4 2y + a5 | =Ax forsome A€ RM*D

No, it basically does nothing since

. 2 . T 2
min (wTA:I:n - yn) = min Z (w’ T, — yn>
weRM - w’€lm(AT)CRD

We will see more nonlinear mappings soon.
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Overfitting and preventing overfitting
Outline

@ Overfitting and preventing overfitting
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Overfitting and preventing overfitting

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:
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Overfitting and preventing overfitting

Underfitting and Overfitting

1
: o —6— Traini
M < 2 is underfitting the data I
@ large training error
o large test error [55 05
M > 9 is overfitting the data
@ small training error ol— - - o
o large test error M

More complicated models = larger gap between training and test error

How to prevent overfitting?
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Overfitting and preventing overfitting

Method 1: use more training data

The more, the merrier

N =100

More data = smaller gap between training and test error
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Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

@ use cross-validation to pick hyper-parameter M

When M or in general @ is fixed, are there still other ways to control
complexity?
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Magnitude of weights

Least square solution for the polynomial example:

M=0 M=1 M=3 M=9
wo 0.19 0.82 0.31 0.35
w1 -1.27 7.99 232.37
wa -25.43 -5321.83
w3 17.37 48568.31
Wy -231639.30
ws 640042.26
We -1061800.52
wy 1042400.18
wg -557682.99
Wy 125201.43

Intuitively, large weights = more complex model

46 / 54



Overfitting and preventing overfitting

How to make w small?

Regularized linear regression: new objective
F(w) = RSS(w) + AR(w)
Goal: find w* = argmin,, £(w)

e R:RP — Rt is the regularizer
e measure how complex the model w is, penalize complex models
e common choices: ||w||3, ||w]|:, etc.

@ A > 0 is the regularization coefficient

e A =0, no regularization
o A — 400, w — argmin,, R(w)

e i.e. control trade-off between training error and complexity
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The effect of A\

when we increase regularization coefficient \

InA\=—-00 InA=-18 InA=0
wo 0.35 0.35 0.13
w1 232.37 4.74 -0.05
Wo -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.06
wy | -231639.30 -3.89 -0.03
ws 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
wy | 1042400.18 -45.95 -0.00
wg | -557682.99 -91.53 0.00
Wy 125201.43 72.68 0.01
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The trade-off

when we increase regularization coefficient A

1 9 A =-18

Training
Test

[

-35 -30 " -25 -20
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Overfitting and preventing overfitting

How to solve the new objective?

Simple for R(w) = ||w||3:
F(w) =RSS(w) + Mw|3 = [[®w — yl|3 + Allwll3

VF(w) =2(®"®w — ®Ty) + 22w =0
= (2T® + M) w =2y
=w" = (2'® + )\1)71 oty

Note the same form as in the fix when X TX is not invertible!

For other regularizers, can apply general optimization algorithms (Lec 3).

50 / 54



Overfitting and preventing overfitting

Equivalent form

Regularization is also sometimes formulated as
argmin RSS(w)  subject to R(w) <
w
where (8 is some hyper-parameter.
Finding the solution becomes a constrained optimization problem.

Choosing either A or 3 can be done by cross-validation.
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Overfitting and preventing overfitting

Summary

w* = (BT® + A1) dTy

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

Preventing Overfitting: more data + regularization
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Recall the question

Typical steps of developing a machine learning system:
@ Collect data, split into training, development, and test sets.

@ Train a model with a machine learning algorithm. Most often we
apply cross-validation to tune hyper-parameters.

o Evaluate using the test data and report performance.
@ Use the model to predict future/make decisions.

How to do the red part exactly?
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Overfitting and preventing overfitting

General idea to derive ML algorithms

1. Pick a set of models F
oeg F={f(x)=w"z|wecRP}
o eg F={f(z)=w'®(x)|weRM}

2. Define error/loss L(y',y)
3. Find empirical risk minimizer (ERM):
ff=argmin » L(f Yn)
smin - 10
or regularized empirical risk minimizer:

f* = argmin Z L(f(xn),yn) + AR(f)

VIS ——

ML becomes optimization
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