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© Review of last lecture
© Linear regression
© Linear regression with nonlinear basis

@ Overfitting and preventing overfitting
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Administrative stuff

Please enroll in Piazza (still missing some of you).

HWI1 to be released today.

Programming project:
@ invitation to enroll is out

@ six tasks available now, four more to come

Outline

@ Review of last lecture
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Review of last lecture

Multi-class classification

Training data (set)

e N samples/instances: D™ = {(x1,y1), (®2,92), -, (TN, YN) }
e Each x,, € RP is called a feature vector.

e Each y, € [C] ={1,2,---,C} is called a label/class/category.
@ They are used to learn f : RP — [C] for future prediction.

Special case: binary classification
@ Number of classes: C =2
e Conventional labels: {0,1} or {—1,+1}

K-NNC: predict the majority label within the K-nearest neighbor set
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S-fold Cross-validation
What if we do not have a development set?

@ Split the training data into S
equal parts.

S = 5: 5-fold cross validation

B [ [ ]
[ T [
@ Choose the hyper-parameter

leading to best average | | | I
performance. [ [ [ | B

@ Use each part in turn as a
development dataset and use
the others as a training dataset.

| run 1

| run 2

I run 4

Special case: S = N, called leave-one-out.
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Datasets

Training data

e N samples/instances: D™ = {(x1,y1), (x2,92), -, (ZN,UN) }
@ They are used to learn f(-)

Test data
@ M samples/instances: D™ = {(x1,y1), (x2,y2), - , (XM, yMm)}

@ They are used to evaluate how well f(-) will do.

Development/Validation data

e L samples/instances: D"*V = {(x1,y1), (x2,¥2), -, (xL,yL)}
@ They are used to optimize hyper-parameter(s).

These three sets should not overlap!

High level picture

Typical steps of developing a machine learning system:
@ Collect data, split into training, development, and test sets.

@ Train a model with a machine learning algorithm. Most often we
apply cross-validation to tune hyper-parameters.

@ Evaluate using the test data and report performance.
@ Use the model to predict future/make decisions.

How to do the red part exactly?

Today: from a simple example to a general recipe
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Outline

© Linear regression
@ Motivation
@ Setup and Algorithm
@ Discussions

Linear regression Motivation

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)
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Linear regression Motivation

Regression

Predicting a continuous outcome variable using past observations

@ Predicting future temperature (last lecture)
@ Predicting the amount of rainfall

@ Predicting the demand of a product

@ Predicting the sale price of a house

Key difference from classification
@ continuous vs discrete
@ measure prediction errors differently.

@ lead to quite different learning algorithms.

Linear Regression: regression with linear models

Linear regression Motivation

Features used to predict
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Linear regression Motivation

Correlation between square footage and sale price
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Linear regression Motivation

How to learn the unknown parameters?

How to measure error for one prediction?
@ The classification error (0-1 loss, i.e. right or wrong) is inappropriate
for continuous outcomes.
@ We can look at

o squared error: (prediction - sale price)> (most common)

e or absolute error: | prediction - sale price |  (robust to outliers)

Goal: pick the model (unknown parameters) that minimizes the
average/total prediction error, but on what set?

o test set, ideal but we cannot use test set while training

@ training set v
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Linear regression Motivation

Possibly linear relationship

Sale price ~ price_per_sqft x square_footage + fixed_expense
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Linear regression Motivation

Example
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Predicted price = price_per_sqft x square_footage + fixed_expense

one model: price_per_sqft = 0.3K, fixed_expense = 210K

sqft | sale price (K) | prediction (K) | squared error

2000 | 810 810 0

2100 | 907 840 672

1100 | 312 540 2282

5500 | 2,600 1,860 7407

Total 0+ 677 + 228% + 740% + - - -

Adjust price_per_sqft and fixed_expense such that the total squared error is
minimized.
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Formal setup for linear regression

Input: = € RP (features, covariates, context, etc)
Output: y € R (responses, targets, outcomes, etc)

Training data: D = {(x,,yn),n =1,2,...,N}

Linear model: f:RP — R, with f(x) = wo + ZdD:1 WeLg= wy + wre
(superscript T stands for transpose), i.e. a hyper-plane parametrized by
e w = [wy wy --- wp]T (weights, weight vector, parameter vector, etc)
@ bias wy

NOTE: for notation convenience, very often we
@ append 1 to each z as the first feature: & =[1 21 x2 ... zp]
o let W = [wp wy wo --- wp]T, a concise representation of all D + 1
parameters

T

o the model becomes simply f(x) = w'x
@ sometimes just use w,x, D for w,x,D + 1!
17 / 54
Warm-up: D =0
Only one parameter wy: constant prediction f(z) = wp
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f is a horizontal line, where should it be?
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Setup and Algorithm
Goal

Minimize total squared error

e Residual Sum of Squares (RSS), a function of w

RSS(®) = Y (f(@n) —yn)’ = Y _(@n b — yn)®

n n

e find w* = argmin RSS(w), i.e. least squares solution (more
weRDP+!
generally called empirical risk minimizer)

@ reduce machine learning to optimization

@ in principle can apply any optimization algorithm, but linear
regression admits a closed-form solution
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ek e
Warm-up: D =0

Optimization objective becomes

RSS(uwn) = 3 (wp — ya)?

n

= Nwg — 2 <Zyn> wo + cnt.
) 2
=N (wo - Nzn:yn> + cnt.

(it's a quadratic aw? + bwg + c)

It is clear that w; = % > nYn, i.e. the average

Exercise: what if we use absolute error instead of squared error?
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Warm-up: D =1 Least square solution for D =1

Optimization objective becomes
RSS(w) = Z(wo + wi1Tn — yn)2 -1

General approach: find stationary points, i.e., points with zero gradient
(assuming the matrix is invertible)

8RSS(w) _
{ orstle) _ = 200+ WiTn = 1) =0
w — — . . . . .
ol = 2n(wo + Wiy = yn)rn =0 Are stationary points minimizers?
N _ ] @ yes for convex objectives (RSS is convex in w)
wi+ le:" xi 5 %" In (a linear system)
Wo 2 Tn TWL 20Ty = 2 YnTn @ not true in general

(<, ZZ%)(Z?):(%’%?ZZ”)
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General least square solution General least square solution

Objective:  RSS(w) = ) _(#, —yn)” X'R)5-XTy-0 = @ = (X'K) K"y

Calculate the gradient (multivariate calculus):
VRSS(w :2an (Zrd — _2(anx )w—zzaﬁnyn
n

A compact form:

assuming X T X (covariance matrix) is invertible for now.

Again by convexity w* is the minimizer of RSS.

Verify the solution when D = 1:

RSS(w) = | X — y[|2 and VRSS(w) = 2(X"X)iw — 2X Ty Do
- X’TX:<; Lo 1) Lo :< N an3>
Ty (1 1 T2 TN YonTn DonTh
- zs Yo o
where X = _ e RNX(D+D) gy = . c RN
E’E y.N when D = 0: (XTX)—I — % XTy = S
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S il AT
Another approach

RSS is a quadratic, so let's complete the square:
RSS(w) = || X @ — y|3
- T /-
- (x5 )" (x5
="' XTXw—y" X — 0" Xy + cnt.
o~ - T /e = e -
- (ﬁ: - (XTX)_lXTy) (XTX) (w - (XTX)—1XTy> +ent.

~ o~ ~ T - ~
Note: uT (XTX> w = <Xu) Xu=|Xul2>0andis 0 if u = 0.
So w* = (XTX)~' X Ty is the minimizer.
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Discussions
What if XTX is not invertible

What does that imply?

Recall (XTX) w* = XTy. If XTX not invertible, this equation has
@ no solution (= RSS has no minimizer? X)

e or infinitely many solutions (= infinitely many minimizers v')
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Discissions
Computational complexity

Bottleneck of computing

RN S
W = (XTX> XTy
is to invert the matrix XTX ¢ R(O+1)x(D+1)

e naively need O(D?) time

@ there are many faster approaches (such as conjugate gradient)
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Discussions
What if XTX is not invertible

Why would that happen?

One situation: N < D+ 1, i.e. not enough data to estimate all parameters.

Example: D=N=1

sqft | sale price
1000 | 500K

Any line passing this single point is a minimizer of RSS.
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Linear regression Discussions

How about the following?

D=1,N=2
sqft | sale price
1000 500K
1000 600K

Any line passing the average is a minimizer of RSS.

D=2,N=37
sqft | #bedroom | sale price
1000 2 500K
1500 3 700K
2000 4 800K

Again infinitely many minimizers.

Linear regression Discussions

How to solve this problem?

Non-invertible = some eigenvalues are 0.

One natural fix: add something positive

XTX + a1 =U"T

(XTX+AD)'=U"T

[ A+ 0

0 Ao+ A

0
0

AD + A 0

0 AD+1 + A i
where A > 0 and I is the identity matrix. Now it is invertible:

0
0
1
AD+A (1)
0 o7 |
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Discussions
How to resolve this issue?

Intuition: what does inverting XTX do?

[ A1 0
0 Ao
eigendecomposition: XTX =UT | :
0
| 0

where \; > Ag > --- Apy1 > 0 are eigenvalues.

1
wo
0 5
inverse: (XTX)'=U"| : :
1
0 Ao
0 0

i.e. just invert the eigenvalues

Linear regression Discussions

Fix the problem

The solution becomes
- -1 -
W = (XTX n AI) XTy

@ not a minimizer of the original RSS

@ more than an arbitrary hack (as we will see soon)

A is a hyper-parameter, can be tuned by cross-validation.

AD41

30 / 54

32 /54



Discissions
Comparison to NNC

Non-parametric versus Parametric

@ Non-parametric methods: the size of the model grows with the size
of the training set.

o e.g. NNC, the training set itself needs to be kept in order to predict.
Thus, the size of the model is the size of the training set.

e Parametric methods: the size of the model does not grow with the

size of the training set N.

o e.g. linear regression, D + 1 parameters, independent of N.
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What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data

1

05 Q° © 0o

-0.5

-1
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Linear regression with nonlinear basis
Outline

© Linear regression with nonlinear basis
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Solution: nonlinearly transformed features
1. Use a nonlinear mapping
o)z eRP - zeRM

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for
the new feature space).

1

Q ¢}
&% Od@ o 0.6
05 00 ° 0o
Jols) &
[¢]
C% % Ox) 04
00 o
0 (o) #
° 3 0.2
[e]
Y So
-05 o o D 0
® . Lo 05
=~
i) 05 0 05 1
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Linear regression with nonlinear basis Linear regression with nonlinear basis

Regression with nonlinear basis Example

Model: =w’ h RM
odel: f(z) =w d(x) where w € Polynomial basis functions for D = 1

Objective: SR
_ T 2
RSS(w) = 3 (wp(wn) — 1n) ! .
n 2 m
pla)=| = = fl@)=wo+ > wmx
Similar least square solution: : m=1
M
T L
¢(CL‘1)T
-1 @(x2)
w* = (®T®) @'y where &= _ e RV*M
Learning a linear model in the new space
d(xzn)t = learning an M -degree polynomial model in the original space
37/ 54 38 / 54
Example Why nonlinear?
Fitting a noisy sine function with a polynomial (M = 0,1, or 3): .
& y poly ( T ) Can | use a fancy linear feature map?
I — X2
1 o M=0 3x4 _ x3
f o/w \ 0 o(x) = 221 + 4 + T = Az for some A € RM*P
e
-1
0 . 1 0 . 1
No, it basically does nothing since
min (wTA:cn — yn)2 = min Z (wlTwn - yn)2
weRM = w’elm(AT)CRD -
We will see more nonlinear mappings soon.
0 . 1
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Overfitting and preventing overfitting Overfitting and preventing overfitting

Outline Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

@ Overfitting and preventing overfitting

0 . 1
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Underfitting and Overfitting Method 1: use more training data
1
M < 2is underfitting the data —e—;r::tnmg The more, the merrier

@ large training error

2]
o Iarge test error l§ 0.5

M > 9 is overfitting the data

@ small training error

o large test error

More complicated models = larger gap between training and test error More data = smaller gap between training and test error

How to prevent overfitting?
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Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

@ use cross-validation to pick hyper-parameter M

When M or in general ® is fixed, are there still other ways to control
complexity?
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How to make w small?
Regularized linear regression: new objective
F(w) = RSS(w) + AR(w)
Goal: find w* = argmin,, £(w)
o R:RP — RY is the regularizer
e measure how complex the model w is, penalize complex models
e common choices: ||w||3, ||w]1, etc.
@ A\ > 0 is the regularization coefficient
e A =0, no regularization
e A — 400, w — argmin,, R(w)
e i.e. control trade-off between training error and complexity
47 / 54

Magnitude of weights

Least square solution for the polynomial example:

M=0 M=1 M=3 M =9
wo 0.19 0.82 0.31 0.35
w1 -1.27 7.99 232.37
wa -25.43 -5321.83
w3 17.37 48568.31
Wy -231639.30
ws 640042.26
we -1061800.52
wy 1042400.18
wg -557682.99
Wy 125201.43

Intuitively, large weights = more complex model

Overfitting and preventing overfitting

The effect of A

when we increase regularization coefficient )

In\=-00 InA=-18 InA=0
wo 0.35 0.35 0.13
w1 232.37 4.74 -0.05
wWo -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.06
wy | -231639.30 -3.89 -0.03
ws 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
wy | 1042400.18 -45.95 -0.00
wg | -557682.99 -91.53 0.00
Wy 125201.43 72.68 0.01
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The trade-off

when we increase regularization coefficient \

1 1 VQ\@ mA=0
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[

-35 -30 mA -25 -20

Overfitting and preventing overfitting

Equivalent form

Regularization is also sometimes formulated as

argmin RSS(w)  subject to R(w) < /8
w
where 3 is some hyper-parameter.
Finding the solution becomes a constrained optimization problem.

Choosing either A or 3 can be done by cross-validation.
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Overfitting and preventing overfitting

How to solve the new objective?

Simple for R(w) = ||w||3:
F(w) = RSS(w) + AMwl3 = |®w — y|3 + w3

VF(w) =2(®T®w — ®Ty) + 20w =0
= (T + ) w=2>"y
= w' = (8T® + )" 3Ty

Note the same form as in the fix when X T X is not invertible!

For other regularizers, can apply general optimization algorithms (Lec 3).
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Overfitting and preventing overfitting

Summary

w* = (®T® + A1) 2Ty

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

Preventing Overfitting: more data + regularization
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Overfitting and preventing overfitting Overfitting and preventing overfitting

Recall the question General idea to derive ML algorithms

1. Pick a set of models F
o eg F={f(z) =wlz|wecRP}

Typical steps of developing a machine learning system: o g F—{f(x)=wTd@)|we ]RM}

@ Collect data, split into training, development, and test sets. 2. Define error/loss L(y/,y)
@ Train a model with a machine learning algorithm. Most often we 3. Find empirical risk minimizer (ERM):

apply cross-validation to tune hyper-parameters. N
ff= argminz L(f(xn),yn)

@ Evaluate using the test data and report performance. feF f
n=

@ Use the model to predict future/make decisions. or regularized empirical risk minimizer:

N
How to do the red part exactly? ff= ar}gn]l:inz L(f(zn):yn) + AR(S)
€

n=1

ML becomes optimization
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