CSCI567 Machine Learning (Spring 2025)

Haipeng Luo

University of Southern California

Jan 24, 2025

1 / 54

2 / 54

Outline

- Review of last lecture
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- Overfitting and preventing overfitting

Administrative stuff

Please enroll in Piazza (still missing some of you).

HW1 to be released today.

Programming project:

- invitation to enroll is out
- six tasks available now, four more to come

Review of last lecture

Outline

- Review of last lecture
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- 4 Overfitting and preventing overfitting

Multi-class classification

Training data (set)

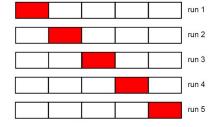
- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{N}}, y_{\mathsf{N}})\}$
- ullet Each $x_n \in \mathbb{R}^{\mathsf{D}}$ is called a feature vector.
- Each $y_n \in [C] = \{1, 2, \cdots, C\}$ is called a label/class/category.
- They are used to learn $f: \mathbb{R}^{D} \to [C]$ for future prediction.

Special case: binary classification

- ullet Number of classes: ${\sf C}=2$
- Conventional labels: $\{0,1\}$ or $\{-1,+1\}$

K-NNC: predict the majority label within the K-nearest neighbor set

5 / 54


Review of last lecture

S-fold Cross-validation

What if we do not have a development set?

- Split the training data into S equal parts.
- Use each part in turn as a development dataset and use the others as a training dataset.
- Choose the hyper-parameter leading to best average performance.

 $\mathsf{S}=5$: 5-fold cross validation

Special case: S = N, called leave-one-out.

Datasets

Training data

- N samples/instances: $\mathcal{D}^{ ext{TRAIN}} = \{(m{x}_1, y_1), (m{x}_2, y_2), \cdots, (m{x}_{\mathsf{N}}, y_{\mathsf{N}})\}$
- They are used to learn $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used to evaluate how well $f(\cdot)$ will do.

Development/Validation data

- ullet L samples/instances: $\mathcal{D}^{ ext{DEV}} = \{(oldsymbol{x}_1, y_1), (oldsymbol{x}_2, y_2), \cdots, (oldsymbol{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyper-parameter(s).

These three sets should *not* overlap!

Review of last lecture

High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

Today: from a simple example to a general recipe

Outline

- Review of last lecture
- 2 Linear regression
 - Motivation
 - Setup and Algorithm
 - Discussions
- 3 Linear regression with nonlinear basis
- 4 Overfitting and preventing overfitting

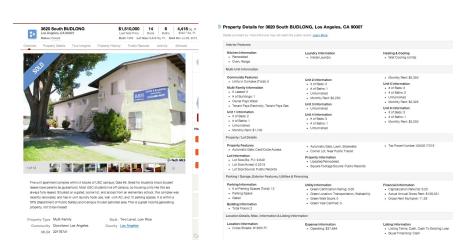
Key difference from classification

- continuous vs discrete
- measure *prediction errors* differently.
- lead to quite different learning algorithms.

Linear Regression: regression with linear models

Linear regression

9 / 54

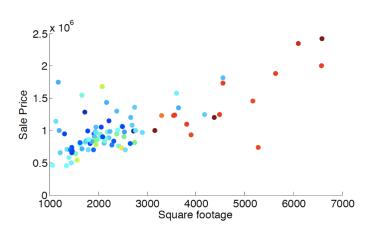

Motivation

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)

Features used to predict

Motivation


Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house

• ...

Correlation between square footage and sale price

14 / 54

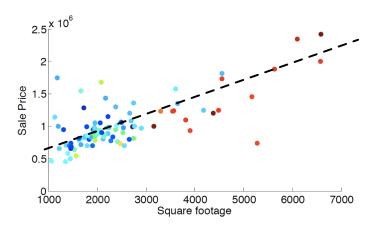
Motivation

How to learn the unknown parameters?

How to measure error for one prediction?

• The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.

Motivation


- We can look at
 - squared error: (prediction sale price)² (most common)
 - or *absolute* error: | prediction sale price | (robust to outliers)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but on what set?

- test set, ideal but we cannot use test set while training
- training set √

Possibly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense (slope) (intercept)

Example

13 / 54

Predicted price = price_per_sqft × square_footage + fixed_expense one model: $price_per_sqft = 0.3K$, $fixed_expense = 210K$

sqft	sale price (K)	prediction (K)	squared error
2000	810	810	0
2100	907	840	67^2
1100	312	540	228^2
5500	2,600	1,860	740^2
	•••	•••	
Total			$0 + 67^2 + 228^2 + 740^2 + \cdots$

Adjust price_per_sqft and fixed_expense such that the total squared error is minimized.

Formal setup for linear regression

Input: $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

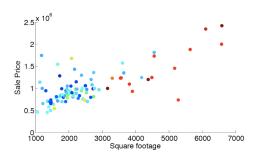
Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \boldsymbol{w^T} \boldsymbol{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $w = [w_1 \ w_2 \ \cdots \ w_D]^T$ (weights, weight vector, parameter vector, etc)
- bias w_0

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{x} = [1 \ x_1 \ x_2 \ \dots \ x_D]^T$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$, a concise representation of all D+1 parameters
- the model becomes simply $f(x) = \tilde{w}^T \tilde{x}$
- sometimes just use w, x, D for $\tilde{w}, \tilde{x}, D + 1!$


17 / 54

Linear regression

Setup and Algorithm

Warm-up: D = 0

Only one parameter w_0 : constant prediction $f(x) = w_0$

f is a horizontal line, where should it be?

Goal

Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of $ilde{w}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

- find $\tilde{w}^* = \operatorname*{argmin}_{\tilde{w} \in \mathbb{R}^{D+1}} \mathrm{RSS}(\tilde{w})$, i.e. least squares solution (more generally called empirical risk minimizer)
- reduce machine learning to optimization
- in principle can apply any optimization algorithm, but linear regression admits a *closed-form solution*

18 / 54

Linear regression

Setup and Algorithm

Warm-up: D = 0

Optimization objective becomes

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a } \textit{quadratic } aw_0^2 + bw_0 + c \text{)} \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt.} \\ &= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \mathrm{cnt.} \end{split}$$

It is clear that $w_0^* = \frac{1}{N} \sum_n y_n$, i.e. the average

Exercise: what if we use absolute error instead of squared error?

Warm-up: D = 1

Optimization objective becomes

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \begin{cases} \sum_n (w_0 + w_1 x_n - y_n) = 0 \\ \sum_n (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

$$\Rightarrow \begin{array}{ll} Nw_0 + w_1 \sum_n x_n &= \sum_n y_n \\ w_0 \sum_n x_n + w_1 \sum_n x_n^2 &= \sum_n y_n x_n \end{array} \quad \text{(a linear system)}$$

$$\Rightarrow \left(\begin{array}{cc} N & \sum_{n} x_{n} \\ \sum_{n} x_{n} & \sum_{n} x_{n}^{2} \end{array}\right) \left(\begin{array}{c} w_{0} \\ w_{1} \end{array}\right) = \left(\begin{array}{c} \sum_{n} y_{n} \\ \sum_{n} x_{n} y_{n} \end{array}\right)$$

21 / 54

23 / 54

Linear regression

Setup and Algorithr

General least square solution

Objective:
$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_n^T \tilde{\boldsymbol{w}} - y_n)^2$$

Calculate the gradient (multivariate calculus):

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) = 2\left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}}\right) \tilde{\boldsymbol{w}} - 2\sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$

A compact form:

$$\mathrm{RSS}(\tilde{m{w}}) = \|\tilde{m{X}}\tilde{m{w}} - m{y}\|_2^2 \quad \text{and} \quad \nabla \mathrm{RSS}(\tilde{m{w}}) = 2(\tilde{m{X}}^\mathrm{T}\tilde{m{X}})\tilde{m{w}} - 2\tilde{m{X}}^\mathrm{T}m{y}$$

where
$$ilde{m{X}} = \left(egin{array}{c} ilde{m{x}}_1^{
m T} \ ilde{m{x}}_2^{
m T} \ dots \ ilde{m{x}}_{
m N}^{
m T} \end{array}
ight) \in \mathbb{R}^{{\sf N} imes (D+1)}, \quad m{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ y_{
m N} \end{array}
ight) \in \mathbb{R}^{{\sf N}}$$

Least square solution for D = 1

$$\Rightarrow \left(\begin{array}{c} w_0^* \\ w_1^* \end{array}\right) = \left(\begin{array}{cc} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array}\right)^{-1} \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array}\right)$$

(assuming the matrix is invertible)

Are stationary points minimizers?

- yes for **convex** objectives (RSS is convex in \tilde{w})
- not true in general

Linear regression

Setup and Algorithm

General least square solution

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^* = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{w}^*$ is the minimizer of RSS.

Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

when D = 0:
$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1} = \frac{1}{N}$$
, $\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \sum_{n} y_{n}$

Another approach

RSS is a quadratic, so let's complete the square:

$$\begin{split} & \operatorname{RSS}(\tilde{\boldsymbol{w}}) = \|\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\|_2^2 \\ &= \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} + \operatorname{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right) + \operatorname{cnt.} \end{split}$$

Note: $\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)\boldsymbol{u} = \left(\tilde{\boldsymbol{X}}\boldsymbol{u}\right)^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{u} = \|\tilde{\boldsymbol{X}}\boldsymbol{u}\|_{2}^{2} \geq 0$ and is 0 if $\boldsymbol{u} = 0$. So $\tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$ is the minimizer.

25 / 54

Linear regression

Discussions

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

What does that imply?

Recall $\left(ilde{m{X}}^{\mathrm{T}} ilde{m{X}}
ight)m{w}^* = ilde{m{X}}^{\mathrm{T}}m{y}$. If $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ not invertible, this equation has

- no solution (⇒ RSS has no minimizer? X)
- or infinitely many solutions (⇒ infinitely many minimizers √)

Computational complexity

Bottleneck of computing

$$ilde{oldsymbol{w}}^* = \left(ilde{oldsymbol{X}}^{ ext{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}^{ ext{T}}oldsymbol{y}$$

is to invert the matrix $\tilde{\pmb{X}}^T\tilde{\pmb{X}} \in \mathbb{R}^{(\mathsf{D}+1)\times(\mathsf{D}+1)}$

- ullet naively need $O({\rm D}^3)$ time
- there are many faster approaches (such as conjugate gradient)

What if $ilde{m{X}}^{ ext{T}} ilde{m{X}}$ is not invertible

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Example: D = N = 1

sqft	sale price
1000	500K

Any line passing this single point is a minimizer of RSS.

How about the following?

$$D = 1, N = 2$$

sqft	sale price
1000	500K
1000	600K

Any line passing the average is a minimizer of RSS.

$$D = 2, N = 3$$
?

sqft	#bedroom	sale price
1000	2	500K
1500	3	700K
2000	4	800K

Again infinitely many minimizers.

29 / 54

Linear regression

Discussions

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix. Now it is invertible:

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I})^{-1} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \frac{1}{\lambda_{1} + \lambda} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_{2} + \lambda} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \frac{1}{\lambda_{\mathsf{D}} + \lambda} & 0 \\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathsf{D}+1} + \lambda} \end{bmatrix} \boldsymbol{U}$$

How to resolve this issue?

Intuition: what does inverting $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ do?

eigendecomposition:
$$\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}} = m{U}^{\mathrm{T}} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} \end{bmatrix} m{U}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are **eigenvalues**.

i.e. just invert the eigenvalues

30 / 54

Linear regression

Discussions

Fix the problem

The solution becomes

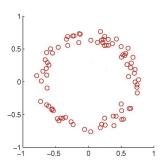
$$ilde{m{w}}^* = \left(ilde{m{X}}^{ ext{T}} ilde{m{X}} + \lambda m{I}
ight)^{-1} ilde{m{X}}^{ ext{T}} m{y}$$

- not a minimizer of the original RSS
- more than an arbitrary hack (as we will see soon)

 λ is a *hyper-parameter*, can be tuned by cross-validation.

Comparison to NNC

Non-parametric versus Parametric


- Non-parametric methods: the size of the model *grows* with the size of the training set.
 - e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.
- Parametric methods: the size of the model does *not grow* with the size of the training set N.
 - ullet e.g. linear regression, D + 1 parameters, independent of N.

33 / 54

Linear regression with nonlinear basis

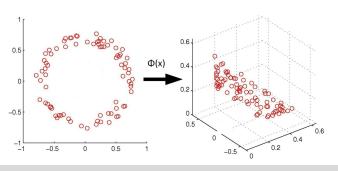
What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data

Outline

- Review of last lecture
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- 4 Overfitting and preventing overfitting

Linear regression with nonlinear basis


Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^D
ightarrowoldsymbol{z}\in\mathbb{R}^M$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

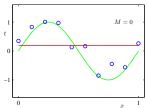
Regression with nonlinear basis

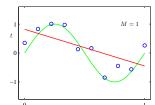
Model: $f(x) = w^{\mathrm{T}} \phi(x)$ where $w \in \mathbb{R}^M$

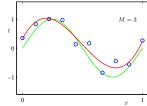
Objective:

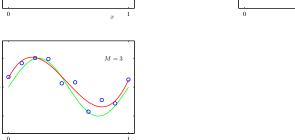
$$RSS(\boldsymbol{w}) = \sum_{n} (\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n})^{2}$$

Similar least square solution:


$$m{w}^* = \left(m{\Phi}^{ ext{T}}m{\Phi}
ight)^{-1}m{\Phi}^{ ext{T}}m{y} \quad ext{where} \quad m{\Phi} = \left(egin{array}{c} m{\phi}(m{x}_1)^{ ext{T}} \ m{\phi}(m{x}_2)^{ ext{T}} \ dots \ m{\phi}(m{x}_N)^{ ext{T}} \end{array}
ight) \in \mathbb{R}^{N imes M}$$


37 / 54


Linear regression with nonlinear basis


Example

Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):

Example

Polynomial basis functions for D=1

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \quad \Rightarrow \quad f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Learning a linear model in the new space

= learning an M-degree polynomial model in the original space

Linear regression with nonlinear basis

Why nonlinear?

Can I use a fancy linear feature map?

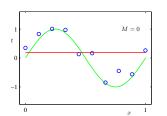
$$oldsymbol{\phi}(oldsymbol{x}) = \left[egin{array}{c} x_1 - x_2 \ 3x_4 - x_3 \ 2x_1 + x_4 + x_5 \ dots \end{array}
ight] = oldsymbol{A} oldsymbol{x} \quad ext{ for some } oldsymbol{A} \in \mathbb{R}^{\mathsf{M} imes \mathsf{D}}$$

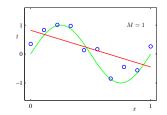
No, it basically does nothing since

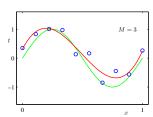
$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w'} \in \mathsf{Im}(\boldsymbol{A}^{\mathsf{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left(\boldsymbol{w'}^{\mathsf{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

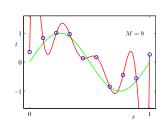
We will see more nonlinear mappings soon.

O۷


Overfitting and preventing overfitting


Outline


- Review of last lecture
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- 4 Overfitting and preventing overfitting

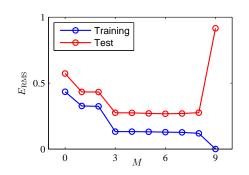

Ex: fitting a noisy sine function with a polynomial:

Should we use a very complicated mapping?

41 / 54

42 / 54

Overfitting and preventing overfitting

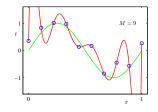

Underfitting and Overfitting

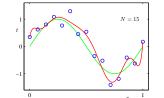
 $M \leq 2$ is *underfitting* the data

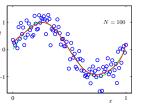
- large training error
- large test error

 $M \ge 9$ is *overfitting* the data

- small training error
- large test error


More complicated models \Rightarrow larger gap between training and test error


How to prevent overfitting?


Overfitting and preventing overfitting

Method 1: use more training data

The more, the merrier

More data ⇒ smaller gap between training and test error

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

ullet use cross-validation to pick hyper-parameter M

When M or in general Φ is fixed, are there still other ways to control complexity?

45 / 54

Overfitting and preventing overfitting

How to make w small?

Regularized linear regression: new objective

$$F(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

Goal: find $w^* = \operatorname{argmin}_w \mathcal{E}(w)$

- $R: \mathbb{R}^{\mathsf{D}} \to \mathbb{R}^+$ is the *regularizer*
 - ullet measure how complex the model w is, penalize complex models
 - ullet common choices: $\|oldsymbol{w}\|_2^2$, $\|oldsymbol{w}\|_1$, etc.
- $\lambda > 0$ is the regularization coefficient
 - $\lambda = 0$, no regularization
 - $\lambda \to +\infty$, $\boldsymbol{w} \to \operatorname{argmin}_{\boldsymbol{w}} R(\boldsymbol{w})$
 - i.e. control trade-off between training error and complexity

Overfitting and preventing overfitting

Magnitude of weights

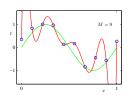
Least square solution for the polynomial example:

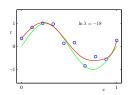
	M=0	M = 1	M = 3	M = 9
$\overline{w_0}$	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

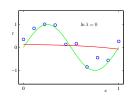
Intuitively, large weights \Rightarrow more complex model

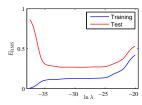
46 / 54

Overfitting and preventing overfitting


The effect of λ


when we increase regularization coefficient λ


	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0}$	0.35	0.35	0.13
w_1	232.37	4.74	-0.05
w_2	-5321.83	-0.77	-0.06
w_3	48568.31	-31.97	-0.06
w_4	-231639.30	-3.89	-0.03
w_5	640042.26	55.28	-0.02
w_6	-1061800.52	41.32	-0.01
w_7	1042400.18	-45.95	-0.00
w_8	-557682.99	-91.53	0.00
w_9	125201.43	72.68	0.01


The trade-off

when we increase regularization coefficient λ

49 / 54

Overfitting and preventing overfitting

Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where β is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Choosing either λ or β can be done by cross-validation.

How to solve the new objective?

Simple for $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$:

$$F(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
$$\nabla F(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

Note the same form as in the fix when X^TX is not invertible!

For other regularizers, can apply general optimization algorithms (Lec 3).

Overfitting and preventing overfitting

Summary

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

Overfitting and preventing overfitting

General idea to derive ML algorithms

- 1. Pick a set of models \mathcal{F}
 - e.g. $\mathcal{F} = \{ f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

ML becomes optimization