CSCI567 Machine Learning (Spring 2025)

Haipeng Luo
University of Southern California

Jan 31, 2025

1/55

Administration

@ HW 1 is due on Thursday, Feb 6th.

@ recall the late day policy: 3 in total, at most 1 for each homework

2/ 55

Outline

@ Review of Last Lecture

@ Linear Classifiers and Surrogate Losses

© A Detour of Numerical Optimization Methods
@ Perceptron

© Logistic Regression

3/55

Outline

@ Review of Last Lecture

4 /55

Regression

Predicting a continuous outcome variable using past observations

@ temperature, amount of rainfall, house price, etc.

Key difference from classification
@ continuous vs discrete
@ measure prediction errors differently.

@ lead to quite different learning algorithms.

Linear Regression: regression with linear models: f(x) = w'a

5/ 55

Review of Last Lecture

Least square solution

w” = argmin RSS(w) x] Y1
v x5 Y2

= argmin | Xw — y||3 X = : Y= :

w . .

= (XTX) ' Xy zy UN

Two approaches to find the minimum:

o find stationary points by setting gradient = 0

o “complete the square”

6/ 55

Review of Last Lecture

Regression with nonlinear basis

o
§9° o
(o] o 06%3 o
0.5 R° o
&o
(% B o) o
00
0 oO e #
3 ;
o
) So
05 &, 0 ®Dgp
? e @ o
-1
-1 -05 0 05 1

Model: f(x) = w'¢(x) where w € RM

Similar least square solution: w* = ((I'T‘I>)_1 Ty

Underfitting and Overfitting

. > —o6— Traini
M < 2is underfitting the data _e_TLi'tnmg

@ large training error

o2}
o large test error 205

M > 9 is overfitting the data

@ small training error

©o(

0 3 6
o large test error M
How to prevent overfitting? more data + regularization

w* = argmin (RSS(w) + A\|w|3) = (27® + AI)*l 3Ty
w

8 /55

Review of Last Lecture

General idea to derive ML algorithms

Step 1. Pick a set of models F
o eg F={f(x)=wTz|wecRP}
o eg F={f(z)=w"®()|weR"}

Step 2. Define error/loss L(y',y)

Step 3. Find (regularized) empirical risk minimizer (ERM):

f* = argmin Z L(f(zn),yn) + AR(f)

fer

n=1

ML becomes optimization

Today: another exercise of this recipe + a closer look at Step 3

9 /55

Linear Classifiers and Surrogate Losses
Outline

© Linear Classifiers and Surrogate Losses

10 / 55

Linear Classifiers and Surrogate Losses

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

This lecture: binary classification
@ Number of classes: C =2

@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:
@ require carrying the training set

@ intuitive but more like a heuristic

11/ 55

Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTx?

Sign of wTx predicts the label:

. T +1 ifwTz >0
SEN(WT) =9 if 4T < 0

(Sometimes use sgn for sign too.)

12 /55

Linear Classifiers and Surrogate Losses

The models

The set of (separating) hyperplanes:

F={f(x) = sgn('wTw) |w e RD}

Good choice for linearly separable data, i.e., Jw s.t.

sgn(men) =y, Of Ypw xp>0

for all n € [N].

13/ 55

Linear Classifiers and Surrogate Losses

The models

Still makes sense for “almost” linearly separable data

14 / 55

Linear Classifiers and Surrogate Losses

The models

For clearly not linearly separable data,

R S ey LA 20
1 e ey
wp e e e W
B et RV g 1>
ot b BB Y
T s
+ Fel
B S RN I,)
NN .
. Ty o 4, oy . .
sy " + ' LA
ey daretd W & o0 ! s
+ +
o ORI A o N -
IO A0 D A _—
N N
Flapdted VLR 10|
08 FES AN Ly L g
15,
" E
05 o 05 1 15 20 15 10 05 00 05 10 15 20

Again can apply a nonlinear mapping ®:
F={f(x) = sgn(w" ®(x)) | w € RM}

More discussions in the next two lectures.

15 / 55

0-1 Loss

Step 2. Define error/loss L(y',y).
Most natural one for classification: 0-1 loss L(y/,y) = Iy’ # y]

For classification, more convenient to look at the loss as a function of
ywTx. That is, with

Eo_l(z) =]I[Z S 0]

L L L L
2 1 0 1 2

the loss for hyperplane w on example (x,y) is £o.1 (yw ')

16 / 55

Linear Classifiers and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

=]
i
-
=)

Even worse, minimizing 0-1 loss is NP-hard in general.

17 / 55

Surrogate Losses

Solution: find a convex surrogate loss

2.0 2.0
L5 1.5
0.5 0.5
L L L L
2 1 a 1 2 2 1 Q 1
2.0 2.0
L5 1.5
1
0.5 0.5
L L L L
2 1 a 1 2 2 1 1] 1

@ perceptron 10ss Lperceptron(2) = max{0, —z} (used in Perceptron)

18 / 55

Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:
N N
w* = argmmZE YnW a:n) = argmln— ZE YnW ar;n)
weRP weRP
where £(-) can be perceptron/hinge/logistic loss
@ no closed-form in general (unlike linear regression)
@ can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.

19 /55

A Detour of Numerical Optimization Methods
Outline

© A Detour of Numerical Optimization Methods
@ First-order methods
@ Second-order methods

20 / 55

A Detour of Numerical Optimization Methods

Numerical optimization

Problem setup
e Given: a function F(w)

e Goal: minimize F(w) (approximately)

21/ 55

A Detour of Numerical Optimization Methods First-order methods

First-order optimization methods

Two simple yet extremely popular methods
e Gradient Descent (GD): simple and fundamental

e Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems

Gradient is sometimes referred to as first-order information of a function.
Therefore, these methods are called first-order methods.

22 / 55

First-order methods
Gradient Descent (GD)

GD: keep moving in the negative gradient direction

Start from some (random) w(®. For t =0,1,2,...
w) — w® — yVF(w®)

where n > 0 is called step size or learning rate

@ in theory n should be set in terms of some parameters of F'

@ in practice we often try different small values

Stop when F(w(®)) does not change much or ¢ reaches a fixed number

23 / 55

A Detour of Numerical Optimization Methods First-order methods

Intuition: by first-order Taylor approximation

F(w) =~ F(w(t)) + VF(w(t))T(w — w(t))

GD ensures

FwV) = F(w") = gl|VF(w)|3 < F(w")

reasonable 7 decreases function value but large n is unstable
24 / 55

A Detour of Numerical Optimization Methods First-order methods

More on learning rate

Learning rate n might need to be changing over iterations

e often decreasing, according to some schedule (e.g., n ~ % or %)

e think F(w) = |w|

Adaptive and automatic step size tuning is an active research area
@ notable examples: AdaGrad, Adam, etc.

@ ideas: tune 7 based on past gradient information

25 / 55

First-order methods
Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction
SGD: keep moving in some noisy negative gradient direction
wtY — w® — pVEF(w®)

where VF(w®) is a random variable (called stochastic gradient) s.t.

E [VF(w(t))} = VEF(w®) (unbiasedness)

Key point: it could be much faster to obtain a stochastic gradient!
(examples coming soon)

26 / 55

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — convex objectives

Many for both GD and SGD on convex objectives.
They tell you how many iterations ¢ (in terms of €) needed to achieve

Fw®) - F(w*) < ¢

@ usually SGD needs more iterations

@ but again each iteration takes less time

27 / 55

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

Even for nonconvex objectives, some guarantees exist: e.g. how many
iterations ¢ (in terms of €) needed to achieve

IVE(w)] < e

e that is, how close w(® is as an approximate stationary point
o for convex objectives, stationary point = global minimizer

@ for nonconvex objectives, what does it mean?

28 / 55

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can be a local minimizer or even a local/global
maximizer (but the latter is not an issue for GD/SGD).

29 / 55

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer! This is called a saddle point.

e so w = (0,0) is stationary
@ local max for blue direction (w; = 0)
@ local min for green direction (wg = 0)

@ but GD gets stuck at (0,0) only if
initialized along the green direction

@ so not a real issue especially when
initialized randomly

30 / 55

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

But not all saddle points look like a “saddle”...
o f(w)=w}+ws
o Vi(w) = (2un,3u})
e so w = (0,0) is stationary

@ not local min/max for blue direction
(w1 =0)

e GD gets stuck at (0,0) for any initial
point with we > 0 and small n

Even worse, distinguishing local min and saddle point is generally NP-hard.

31/ 55

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees

Summary:
@ GD/SGD converges to a stationary point
@ for convex objectives, this is all we need

@ for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

@ recent research shows that many problems have no “bad” saddle
points or even “bad” local minimizers

justify the practical effectiveness of GD/SGD (default method to try)

32/ 55

A Detour of Numerical Optimization Methods SISl TReIE QIS

Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

F(w) ~ F(w®) + VF(w®)T (w — w®)

What if we look at second-order Taylor approximation?
1
F(w) ~ F(w®) + VF(w")T(w — w®) + 5w = wNTHy(w — w®)

where H; = V2F(w®) € RP*P is the Hessian of F at w, i.e.,

0?F (w)

tij =
" awiawj w=w?)

(think “second derivative” when D = 1)

33 /55

A Detour of Numerical Optimization Methods SISl TReIE QIS

Newton method

If we minimize the second-order approximation (via “complete the square”)

F(w)

~ Fw®) + VF(w®)T (w — w?) + %(w — w)T H (w — w®)
_1

2

T
('w —w® + H;IVF(w(t))) H; <'w —w® + H[1VF(w(t))) + cnt

for strictly convex F' (so H; is positive
definite), we obtain Newton method:

w) — w® — H'VF(w®)

wAt WA{t+1}

34 /55

e
Comparing GD and Newton

w — w® — v F(w®) (GD)
w w® — H 'Y F(w®) (Newton)

Both are iterative optimization procedures, but Newton method

@ has no learning rate 7 (so no tuning needed!)
@ converges super fast in terms of #iterations (for convex objectives)

e e.g. how many iterations needed when applied to a quadratic?

computing Hessian in each iteration is very slow though

@ does not really make sense for nonconvex objectives

35/ 55

Outline

@ Perceptron

36 / 55

Recall the perceptron loss

Z\H

max{0, —y,w mn}

Z\H

N

T
Z perceptron ynw mn)
N

Let’s approximately minimize it with GD/SGD.

37 /55

Applying GD to perceptron loss

Objective

N
1
F(w) = ¥ Z max{0, —y,w xz,}

Gradient (or really sub-gradient) is

| X
Z =1 ynw z, < 0lypxn,

n:l
(only misclassified examples contribute to the gradient)
GD update

N
w < w+ Z yn'w x, < O]yna:n

L
N

Slow: each update makes one pass of the entire training set!
38 /55

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —]I[yana:n < Olynxy

clearly unbiased (convince yourself).

SGD update:
w < w + nl[yanmn < O]yn$n

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!

39 / 55

The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

Repeat:

@ Pick a data point x,, uniformly at random

o If sgn(w"x,) # yn
W <— W+ YTy

Note:
@ w is always a linear combination of the training examples

@ why n =17 Does not really matter in terms of prediction of w

40 / 55

Why does it make sense?

If the current weight w makes a mistake
yana:n <0
then after the update w’ = w + y,x, we have
T
ynw' T, = yan:cn + yixzxn > yanasn

Thus it is more likely to get it right after the update.

41/ 55

Example: Iris Dataset

Iris Dataset Scatter Plot (Setosa vs Non-Setosa)

4.5
o e Setosa
. e Non-Setosa
.
4.0 1 L
°
L] L] L] []
e oo
‘E L o0]
O 3.5 ee e °
~ e o o0 o e oo
s oo . °
R e oo . . e eee o
= e oo . e o
= 301 ee oo e o9 oo LXK N] oo L]
o . oo eeevee o
I eee (E NN N] L]] L]
. e o o oo
e oo . °
2.5 1 e o oo e [] .
° [
[] L] [] []
e o
2.0 1 L]
45 5.0 5.5 6.0 6.5 7.0 7.5 8.0

sepal length (cm)

42 / 55

Perceptron

Perceptron for Iris Dataset

Example

Iteration 50

Iteration 1

Iteration 25

2
8
]
s
©
3
°
2
]
<
§
jd
1}
n o 0 o =
7 % 7 R 7
o
%o
%oy
® 2 oo
o, o 8
o % o]
. © 0B =
fe ., el <
eg’s o e
. o 2
g oo, :
.
sede ~
O

43 / 55

Any theory?

If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0

There are also guarantees when the data are not linearly separable.

44 / 55

Outline

© Logistic Regression
@ A probabilistic view
o Algorithms

45 / 55

Logistic Regression

A simple view

In one sentence: find the minimizer of

1
F(w) == N Zelogistic(yanmn)

n=1

1 _
NZ n(l 4 e vt

Before optimizing it: why logistic loss? and why “regression”?

46 / 55

A probabilsic view
Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities

One way: sigmoid function 4 linear model
Ply =41 | z;w) = o(w"x)

where o is the sigmoid function:

09|
0.8

0.7]

1 0.6|
3, . 0.5
0.4
03]
02|
0.1

47 / 55

R T
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)

o o(wTz) > 0.5 < wlx >0, consistent
with predicting the label with sgn(wTx)

o larger whx = larger o(w?’

confidence in label 1

x) = higher

@ 0(z)+o(—2z)=1forall z
The probability of label —1 is naturally
1-Ply=+1|z;w)=1-o(w'e) =o(—w'x)
and thus

1
. — Tr) = ___
Ply | @iw) = ofyw’e) = —— o

48 / 55

Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view
@ assume data is independently generated in this way by some w

e perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1,- -+ , v, given
T1,-++ ,Zp, as a function of some w?

N
P(w) = H P(yn | n; w)

MLE: find w* that maximizes the probability P(w)

49 / 55

A probabilistic view
The MLE solution

N
w”* = argmax P(w) = argmax H P(yn | n;w)
w

w n=1

N N
= argmaxz InP(yy, | n;w) = argminz —InP(y, | n; w)
w n=1 w n=1

N N
= argmin Z In(1+ e_y”me") = argmin Z €|ogistic(yn'men)
w n=1 w n=1

= argmin F'(w)
w

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

50 / 55

e
Let's apply SGD again

w +— w —nVF(w)
=w — ﬁvwglogistic(yanxn)

—w-n <3€|ogais;ic(z)

=w — xr
n<1+e Zlz= yanﬂcn> Ynin

Ynw Ty) yn s,

(—
= w + NP(—yn | Tn; W)Yy

This is a soft version of Perceptron!

P(—yn|®n; w) versus]I[yn%sgn(chcn)]

T >yn93n
z=ynwTa,

(n € [N] is drawn u.a.r.)

51 /55

e
Applying Newton to logistic loss

vwflogistic(yn'men) = *U(*yanmn)ynmn
T

= Ty
(1 + e Z Z=’yanwn> e
T

= o(ynw xn) (1 - U(yanmn)) Lndy

V2 Eloglstlc(ynw mn >y721mnmg

z—fyanzn

Exercises:
@ why is the Hessian of logistic loss positive semidefinite?

@ can we apply Newton method to perceptron/hinge loss?

52 / 55

Logistic Regression Algorithms

Summary

Linear models for classification:
Step 1. Model is the set of separating hyperplanes

F={f(@) = sgn(w"z) | w € R}

53 / 55

Logistic Regression Algorithms

Step 2. Pick the surrogate loss

)
-
-
)

@ perceptron 10ss Lperceptron(2) = max{0, —z} (used in Perceptron)
@ hinge l0ss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss ogistic(2) = log(1 +exp(—z)) (used in logistic regression)

54 / 55

Logistic Regression Algorithms

Step 3. Find empirical risk minimizer (ERM):

w* = argmin — Zf ypw ' x,)

weRDP
using
e GD: w < w — nVEF(w)
e SGD: w + w — nVF(w) (E[VF(w)] = VF(w))

e Newton: w + w — (VgF(w))_1 VF(w)

55 / 55

	Review of Last Lecture
	Linear Classifiers and Surrogate Losses
	A Detour of Numerical Optimization Methods
	Perceptron
	Logistic Regression

