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Administration

e HW 1 is due on Thursday, Feb 6th.

@ recall the late day policy: 3 in total, at most 1 for each homework

Outline

© Review of Last Lecture
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Regression

Predicting a continuous outcome variable using past observations

@ temperature, amount of rainfall, house price, etc.

Key difference from classification
@ continuous vs discrete
@ measure prediction errors differently.

o lead to quite different learning algorithms.

Linear Regression: regression with linear models: f(x) = w'a

5 /55
Regression with nonlinear basis
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Model: f(x) = wT¢(z) where w € RM
- i -1
Similar least square solution: w* = (®7®) @'y
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Least square solution

w™ = argmin RSS(w) x]
w a::T
. 2 2
= argmin | Xw — y||5 X = _
w .
= (XTX)_IXTy mrl:\[l‘

Two approaches to find the minimum:
o find stationary points by setting gradient = 0

e “complete the square”

Underfitting and Overfitting

Y1
Y2

YN
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—6— Training

M < 2 is underfitting the data —o— Test

@ large training error

@ large test error é 05

M > 9 is overfitting the data

@ small training error

o large test error

How to prevent overfitting? more data + regularization

w* = argmin (RSS(w) + /\||w||§) = (‘I’Tq) + /\I)_l o'y
w
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Review of Last Lecture

General idea to derive ML algorithms

Step 1. Pick a set of models F
oeg F={f(x)=w'z|wecRP}
°oeg F={f(x)=w'®(x)|wecRM}

Step 2. Define error/loss L(y',y)

Step 3. Find (regularized) empirical risk minimizer (ERM):

N
£ = argmin > " L(f(2n),yn) + AR(f)

fer

n=1

ML becomes optimization

Today: another exercise of this recipe + a closer look at Step 3
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Classification

Recall the setup:
e input (feature vector): « € RP
e output (label): y € [C] ={1,2,---,C}
@ goal: learn a mapping f : RP — [C]

This lecture: binary classification
@ Number of classes: C = 2

@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:
@ require carrying the training set

@ intuitive but more like a heuristic
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Linear Classifiers and Surrogate Losses
Outline

© Linear Classifiers and Surrogate Losses
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Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTa?

Sign of wTa predicts the label:

. T +1 ifwlz >0
SIEN(W2) = 1 i Ty <0

(Sometimes use sgn for sign too.)
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Linear Classifiers and Surrogate Losses Linear Classifiers and Surrogate Losses

The models The models

The set of (separating) hyperplanes:

F = =s T e RP
/(@) = sgn(w'2) [ w ! Still makes sense for “almost” linearly separable data

Good choice for linearly separable data, i.e., Jw s.t.

sgn(wTa:n) =y, or yan:cn >0

for all n € [N].
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The models 0-1 Loss
. /
Step 2. Define error/loss L(y',y).
For clearly not linearly separable data, o , ,
Most natural one for classification: 0-1 loss L(y/,y) = L[y’ # y]
W gt L " For classification, more convenient to look at the loss as a function of
By B IGY s .. o
< f*ﬁ{?f*;‘ i W e . ywTax. That is, with
B R N ol 3 .t _
*3;-‘*3*;‘:& bl T ool e o :_:'. .. EO-I(Z> - H[Z S 0]
oo FEHTIL SR §
7 L5
Again can apply a nonlinear mapping ®: o
F={f(z) =sgn(w' ®(z)) | w € R}
More discussions in the next two lectures. : : ’ ' :
the loss for hyperplane w on example (x,y) is £o.1 (yw T x)
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Minimizing 0-1 loss is hard Surrogate Losses

Solution: find a convex surrogate loss

2.0 2.0

However, 0-1 loss is not convex. e e
1.5 0.5 0.5
2 1 1 2 I2 1 1 2
\ 2.0 \ 2
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Even worse, minimizing 0-1 loss is NP-hard in general. N\ AN
2 1 1 2 I2 1 1 2

o perceptron 0ss Lperceptron(2) = max{0, —z} (used in Perceptron)
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@ NINge 10SS Lhinge(2) = Max{U, L — zj(used In SVIVI and many others)

o logistic 10ss ueictic(2) = log(1 + exp(—2)) (used in logistic regression;

A Detour of Numerical Optimization Methods
ML becomes convex optimization Outline

Step 3. Find ERM:

N N
1
w” = argmin Z {(ypwT x,) = argmin — Z ((ypw T xy,)
weRP [,y weRP N n=1
where £(-) can be perceptron/hinge/logistic loss © A Detour of Numerical Optimization Methods
@ First-order methods
@ no closed-form in general (unlike linear regression) @ Second-order methods

@ can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.
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A Detour of Numerical Optimization Methods

Numerical optimization

Problem setup
e Given: a function F'(w)

@ Goal: minimize F'(w) (approximately)
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Gradient Descent (GD)

GD: keep moving in the negative gradient direction
Start from some (random) w(®. For t = 0,1,2,...
w — w® — pVF(w®)

where 1 > 0 is called step size or learning rate

@ in theory 7 should be set in terms of some parameters of F

@ in practice we often try different small values

Stop when F(w(") does not change much or ¢ reaches a fixed number

23 / 55

A Detour of Numerical Optimization Methods First-order methods

First-order optimization methods

Two simple yet extremely popular methods
e Gradient Descent (GD): simple and fundamental

e Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems

Gradient is sometimes referred to as first-order information of a function.
Therefore, these methods are called first-order methods.
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Why GD?
Intuition: by first-order Taylor approximation
F(w) ~ Fw®) + VE(w) T (w — w®)
GD ensures
Fw!") = F(w) — | VF(w)]3 < F(w")
reasonable 7 decreases function value but large 7 is unstable
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More on learning rate Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction
Learning rate n might need to be changing over iterations
. ) ) L SGD: keep moving in some noisy negative gradient direction
o often decreasing, according to some schedule (e.g., n =~ § or W)

() oy ® 1 B
o think F(w) = |w] W W =V E (W)

where VF(w®) is a random variable (called stochastic gradient) s.t.
A . . : o : h )
daptive and automatic step size tuning is an active research area E [VF(w(t)):| — VF(w®) (unbiasedness)
@ notable examples: AdaGrad, Adam, etc.

® ideas: tune 7 based on past gradient information Key point: it could be much faster to obtain a stochastic gradient!

(examples coming soon)
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A Detour of Numerical Optimization Methods First-order methods A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — convex objectives Convergence guarantees — nonconvex objectives

Many for both GD and SGD on convex objectives. Even for nonconvex objectives, some guarantees exist: e.g. how many
iterations ¢ (in terms of €) needed to achieve

They tell you how many iterations ¢ (in terms of €) needed to achieve HVF(w(t))H <e

e that is, how close w(® is as an approximate stationary point
@ usually SGD needs more iterations @ for convex objectives, stationary point = global minimizer

@ but again each iteration takes less time e for nonconvex objectives, what does it mean?
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can be a local minimizer or even a local/global
maximizer (but the latter is not an issue for GD/SGD).

10
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

But not all saddle points look like a “saddle” ...
o f(w)=w?+ ws

Vf(w) = (2w, 3w3)

so w = (0,0) is stationary

not local min/max for blue direction
(w1 =0)

GD gets stuck at (0, 0) for any initial
point with wy > 0 and small n

Even worse, distinguishing local min and saddle point is generally NP-hard.
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A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local

maximizer! This is called a saddle point.

flw) = w? — w3

Vf(w) = (2w, —2ws)

so w = (0,0) is stationary

local max for blue direction (w; = 0)
local min for green direction (we = 0)

but GD gets stuck at (0,0) only if
initialized along the green direction

so not a real issue especially when
initialized randomly

30 / 55

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees

Summary:

e GD/SGD converges to a stationary point

@ for convex objectives, this is all we need

@ for nonconvex objectives, can get stuck at local minimizers or “bad”

saddle points (random initialization escapes “good” saddle points)

@ recent research shows that many problems have no “bad” saddle

points or even “bad” local minimizers

e justify the practical effectiveness of GD/SGD (default method to try)
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A Detour of Numerical Optimization Methods Second-order methods A Detour of Numerical Optimization Methods Second-order methods

Second-order methods Newton method

D . . . If we minimize the second-order approximation (via “complete the square”
Recall the intuition of GD: we look at first-order Taylor approximation PP ( P 9 )

F(w) ~ F(w®) + VF(w™)T (w — w®) F(w)

1
~ F(w®) + VF(w™)T(w — w®) + 5w = wNTH, (w — w®)
. L 1 T
What if we look at second-order Taylor approximation? =5 (w —w® 4 H,;lVF(w(t))) H, ('w —w® 4+ Ht_1VF(w(t))) + cnt.

Flw) ~ Fw®) + Vw7 (w — w®) + +(w — w®) T H;(w — w®)
2 for strictly convex F' (so H; is positive

definite), we obtain Newton method:

where H, = V2F(w®) € RP*D is the Hessian of F at w®, ie.,

L orw w0 ¢ ap®  HIYF ()
bag 811)7,8’11)] w=wt)

(think “second derivative” when D = 1)

wht WA{t+1}
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A Detour of Numerical Optimization Methods Second-order methods

Comparing GD and Newton Outline
w) — w® — v F(w®) (GD)
w — w® — H'VF(w®) (Newton)

Both are iterative optimization procedures, but Newton method
@ has no learning rate 7 (so no tuning needed!)

@ converges super fast in terms of #iterations (for convex objectives) © Perceptron

e e.g. how many iterations needed when applied to a quadratic?

computing Hessian in each iteration is very slow though

@ does not really make sense for nonconvex objectives
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Recall the perceptron loss

N
1
F(w) = N Z Cperceptron (yanxn)

n=1

N
1
=5 > max{0, —yhw  x,}

n=1

Let's approximately minimize it with GD/SGD.
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Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —]I[yanar:n < Olypxn

clearly unbiased (convince yourself).

SGD update:
w < w A+ nH[yanwn < O]ynwn

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!
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Applying GD to perceptron loss
Objective
1 N
_ o T
F(w) = an_:lmax{o, YW Ty}

Gradient (or really sub-gradient) is

N
1
= Z [ynw' 2, < Olynz,

(only misclassified examples contribute to the gradient)
GD update

N
w < w+ Z H[yn'wT:cn < Olynxn,

n=1

i
N

Slow: each update makes one pass of the entire training set!

The Perceptron Algorithm

Perceptron algorithm is SGD with = 1 applied to perceptron loss:

Repeat:
@ Pick a data point x,, uniformly at random

o If sgn(w@,) # yn
W W+ YnTy

Note:
@ w is always a linear combination of the training examples

@ why 1 =17 Does not really matter in terms of prediction of w
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Why does it make sense?

If the current weight w makes a mistake

yanxn <0

then after the update w’ = w + y,x,, we have

/T T
YnW ITp = Ypw

Thus it is more likely to get it right after the update.

Example: Perceptron for Iris Dataset

Iteration 1 Iteration 25

T

2T
Ty + YnT, Ty = YnW Ty
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Example: Iris Dataset

Iris Dataset Scatter Plot (Setosa vs Non-Setosa)

4.5 A
b e Setosa
. e Non-Setosa
.
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° ° . .
e o
2.0 1 L]
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

sepal length (cm)

Any theory?

If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0
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There are also guarantees when the data are not linearly separable.
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Outline

© Logistic Regression
@ A probabilistic view
@ Algorithms
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Predicting probability
Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities
One way: sigmoid function + linear model
Ply=+1|x;w) = o(w'x)
where ¢ is the sigmoid function:
1 e
o\z) = 05,
=) 14+e
47 / 55

Logistic Regression

A simple view

In one sentence: find the minimizer of
1 N
= N Z Elogistic(yanmn)

n=1

F(w)

1 N T
= > n(1 et
n=1

Before optimizing it: why logistic loss? and why “regression”?
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Sty
Properties

1

Properties of sigmoid 0(2) = 17—

@ between 0 and 1 (good as probability) ‘

° a('wT:c) > 0.5 < wrx > 0, consistent 07

with predicting the label with sgn(wTx)
o larger wlx = larger o(w'x) = higher ”
confidence in label 1 o1

@ 0(z)+o(—z)=1forall z
The probability of label —1 is naturally
1-Ply=+1|z;w)=1-oc(wx) =o(—wTx)

and thus
1

. — Tr) — I
Ply | @iw) = olyw’e) =
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Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view
@ assume data is independently generated in this way by some w

@ perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1,--- ,y, given

r1, -+, Ty, as a function of some w?

N
P(w) = H P(yn | @n; w)
n=1
MLE: find w* that maximizes the probability P(w)
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AleaRTs
Let's apply SGD again

w — w — nVF(w)

=w - nvwelogistic<yn'men> (’n € [N] is drawn u.a.r.)

aElogistic(z)
=w-—n ( R YnTn
—€

0z
XL
1+e 2 z:yanmn) Ynin

—z
=w+ nd(_yaniEn)ynmn
(

—Yn | xn§'w)ynmn

I

g

|

3
/~

This is a soft version of Perceptron!

T

P(—yn|Tn; w) versus Iy, # sgn(w" x,)] »
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A probabilistic view
The MLE solution

N
w”* = argmax P(w) = argmax H P(yn | @n;w)
w

n=1
N N
= argmaxz InP(y, | Tn;w) = argminz —InP(y, | zn;w)
w n=1 w n=1
N N
= argmin Z In(1 + eiyanmn) = argmin Z glogistic(yn'men)
w n=1 w n=1
= argmin F(w)

w

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!
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Applying Newton to logistic loss
vwglogistic(yn'walf'n) = _U(_ynw mn)ynmn
Oo(z
v'?l;glogistic(yn'wTaf'n) = < 8( ) T )yixnx;l;
V4 Z=—Ynpw" Tn
e ” T
= Ty
(<1+€ Z)Q Z_yanwn) ndn
= U(ynw Tn) (1 - U(yanwn)) xnxz
Exercises:
@ why is the Hessian of logistic loss positive semidefinite?
@ can we apply Newton method to perceptron/hinge loss?
52 / 55



Logistic Regression Algorithms

Summary

Linear models for classification:
Step 1. Model is the set of separating hyperplanes

F = {f(x) = sgn(w"z) | w € R}

53 / 55

Logistic Regression Algorithms

Step 3. Find empirical risk minimizer (ERM):

N

1 T
w* = argmin — » {(y,w x,)
were NV ngl
using
e GD: w +— w —nVF(w)
e SGD: w <+ w — nVF(w) (E[VF(w)] = VF(w))

e Newton: w + w — (V2F(w))_1 VF(w)

55 / 55

Logistic Regression Algorithms

Step 2. Pick the surrogate loss

° Cperceptron(z) = max{0, —z} (used in Perceptron)
o hinge l0ss fhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss £jogistic(2) = log(1 4 exp(—z)) (used in logistic regression)
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