Administration

CSCI567 Machine Learning (Spring 2025) J

HW1 was due yesterday. Remember: only one late day allowed

Haipeng Luo

o L HW?2 will be released next week.
University of Southern California

Feb 07, 2025

1/52 2/52
]
Outline Outline
o Review of Last Lecture 0 Review of Last Lecture
© Multiclass Classification
© Neural Nets
4 /52

3/52

Review of Last Lecture Review of Last Lecture

Linear classifiers Linear classifiers

Linear models for binary classification: Step 2. Pick the surrogate loss

Step 1. Model is the set of separating hyperplanes

F={f(z) = sgn(w"x) | w € R®}

@ perceptron 0ss lperceptron(2) = max{0, —z} (used in Perceptron)

o hinge loss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss £jogistic(2) = log(1 4 exp(—=z)) (used in logistic regression)

5 /52 6/ 52

Review of Last Lecture Review of Last Lecture

Linear classifiers Convergence guarantees of GD/SGD

e GD/SGD converges to a stationary point

Step 3. Find empirical risk minimizer (ERM): e for convex objectives, this is all we need

N @ for nonconvex objectives, can get stuck at local minimizers or “bad”

w* = argmin F(w) = argmin 1 Ze(yanwn) saddle points (random initialization escapes “good” saddle points)
weRP werp IV n=1
/
using
e GD: w <+ w—nVF(w)
0 SGD: w < w—yVF(w) (E[VF(w)] = VF(w))

o Newton: w + w — (V2F(w))_1 VF(w)

“good” saddle points “bad” saddle points

7/52 8 /52

Review of Last Lecture Review of Last Lecture

Perceptron and logistic regression A Probabilistic view of logistic regression
Initialize w = 0 or randomly. Minimizing logistic loss = MLE for the sigmoid model
Repeat: N N
' w* = argmin Y ljogistic(Ynw) = argmax | [P Ty w
@ pick a data point x,, uniformly at random (common trick for SGD) gw nz_:l ogistic (4) 8 nli[l (W | @njw)
@ update parameter: where 1
T Ply | z;w) = o(yw'a) = ————
w < w+]I[ynw anS O]ynmn (Per.ce.ptron) . (y |) (y) 14 e—ywl=
No(—Yp W™ Tp)Yn Ty (logistic regression)
9/ 52 10/ 52

Multiclass Classification Multiclass Classification

Outline Classification

Recall the setup:
e input (feature vector): = € RP
e output (label): y € [C] ={1,2,--- ,C}

© Multiclass Classification e goal: learn a mapping f : RP — [C]
@ Multinomial logistic regression
@ Reduction to binary classification Examples:

e recognizing digits (C = 10) or letters (C = 26 or 52)
@ predicting weather: sunny, cloudy, rainy, etc

e predicting image category: ImageNet dataset (C ~ 20K)

Nearest Neighbor Classifier naturally works for arbitrary C.

11 / 52 12 / 52

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

1 ifwlxz>0
2 ifwle<0

/()

can be written as
1 ifwlz>wlix
fl@) = { T oa

2 ifwix>wlx

= argmax wg:l:
ke{1,2}

for any w1, ws s.t. w = wi — wo

Think of wgw as a score for class k.

13 / 52

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

@ Blue class:
\ b {(L’

1= T
: 1 = argmax;, w; x}

{x : 2 = argmax;, wlx}
°

2t {IB .
2 1 o 1 2

= argmax;, w; =}

15 / 52

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

_.____________--P
1
3 1 1 -
w = (57 5) 1: wy —
wy = (1,-3)
1
@ Blue class:
4__-—_"-—' —
14 / 52
T L) — J T
{z : 1 = argmax;, w;, =}

Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F = f(x) = argmax wiz|wi,..., wc € RP
ke(C]

= {f(w) = argmax (Wa;)k | W ¢ RCXD}

ke[C]

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss

16 / 52

Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w; — wo:

T
1 ewr® T
]P’(y:1|aj;w):g(wT:c): T, — T T oc e ®
1_|_e—w € €w1m+ew2m
Naturally, for multiclass:
Wi T T
Ply=k|x;W) = — x eWr®

w. ., T
Zk’e[C] e

This is called the softmax function.

17 / 52

Hivemialleutie temresion
Step 3: Optimization

Apply SGD: what is the gradient of

Fu(W)=In {1+ Y elww=wm)an |2

k' #yn

It's a C x D matrix. Let’'s focus on the k-th row:

If k # yp:

e(wk —Wyp,)Tm"

Vet Fn(W) = xl =Pk | xp; W)z!

1+ Zk,?éy e(wy—wy,) Ten "
else:
T
— (Zk’#y e(wk'_wyn) xn)
_ n T _ . B T
ngFn(W) =1t S Swop—wy) Ta T = (P(yp | xp; W) — 1) @

19 / 52

Multinomial logisic regression
Applying MLE again

Maximize probability of seeing labels v, .

.., YN given x1,..., TN

N wT

N
€ Yn
P(W) =[] P(yn | 20 W) = H—men
n=1 n=1 Zke[c] ek
By taking negative log, this is equivalent to minimizing

Zl (Zke[qe B)

€ Yn

Ln

Zm 1 3 elwrmwn) e

k#yn

This is the multiclass logistic loss, a.k.a. cross-entropy loss.

When C = 2, this is the same as binary logistic loss.

Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

Ply=1|x,; W)

W« W —n

n

Ply=yn | Tn; W) —1 xr
P(y:C|£L'n;W)

Think about why the algorithm makes sense intuitively.

18 / 52

20 / 52

DL Tl (28 iz
A note on prediction

Having learned W, we can either

® make a deterministic prediction argmaxy¢ic; wix

@ make a randomized prediction according to P(k | &; W) Wi ®

21/ 52

Reduction to binary classification
Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.
e one-versus-all (one-versus-rest, one-against-all, etc.)
@ one-versus-one (all-versus-all, etc.)
e Error-Correcting Output Codes (ECOC)

@ tree-based reduction

23 / 52

Gz (R et
Generalization of cross-entropy loss

Given a general model class:
F =1 f(x) = argmax si(x)
ke[C]

where s is the “scoring” function for class k.

The cross-entropy loss of f for a training sample (x,y) is

sy(x)
eSy
—In =Inl1 + esk(w)_sy(m)
<Zke[C] esk(w)> Z

k#y

22 / 52

Reduction to binary classification
One-versus-all (OvA)

(picture credit: link)
Idea: train C binary classifiers to learn “is class k& or not?" for each k.

Training: for each class k € [C],
o relabel examples with class k as +1, and all others as —1

@ train a binary classifier hj using this new dataset

| | [
X1 X1 X1 + | x1 X1
x> N X2 X2 X 4+ | X2
x3 B = || x3 X3 X3 X3 +
X4 X4 Xa + | Xa X4
x; W X5 + | X5 X5 X5
U Y Y 4
hy ho h3 hg

24 / 52

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Reduction to binary classification Reduction to binary classification
One-versus-all (OvA) One-versus-one (OvO)

(picture credit: link)
Idea: train (g) binary classifiers to learn “is class k or k'?".
Training: for each pair (k, k'),

. o relabel examples with class k as +1 and examples with class k&’ as —1
Prediction: for a new example

@ discard all other examples
@ ask each hy: does this belong to class k? (i.e. hi(x))

e train a binary classifier i /) using this new dataset
e randomly pick among all £'s s.t. hi(x) = +1.

W vs. HMvs. B | Wvs. W | Wvs. Mvs. W | Hvs.
X1 X1 X1 X1
Issue: will (probably) make a mistake as long as one of hy, errs. x W X2 X+ X2+
x3 B = X3 x3 + | X3
X4 X4 X4 X4
x; M X5 + | X5 + X5
4 U) 4 4 4
h(1,2) h(13) 3.4 ha2) h1.4) h(3.2)
25 / 52 26 / 52
Reduction to binary classification Reduction to binary classification
One-versus-one (OvO) Error-correcting output codes (ECOC) (picture credit: link)
|dea: based on a code M € {—1,+1}°*L, train L binary classifiers to
learn “is bit b on or off"’.
Training: for each bit b € [L] MI1 2 3 4 5
Prediction: for a new example x o relabel example z;, as M,, , B+ + +
’ + + +
o ask each classifier iy 1 to vote for either class k or K @ train a binary classifier hy using m| -+
. . . this new dataset. |+ + + o+
@ predict the class with the most votes (break tie in some way)
1 2 3 4 5
. .. X1 X1 X1 x1 +|x1 +|x1 -+
More robust than one-versus-all, but slower in prediction. xo W o +|1x +|x X0 x>
x3 B =|x3 +|x3 +|x3 +|x3 +|x3
X4 X4 X4 Xa + | X4 + | XxXa -+
x5 W X5 + | X5 X5 + | X5 X5 +
3 \ \ 3 \
h1 ho h3 ha hs
27 / 52

28 / 52

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf
http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code c = (hi(x),...,h (x))"

@ predict the class with the most similar code: k = argmax;(Mc)y

How to design the code M?

@ the more dissimilar the codes, the more robust

e if any two codes are d bits away, then prediction can tolerate about d/2
errors

@ random code is often a good choice

29 / 52

Multiclass Classification Reduction to binary classification

Comparisons

Reduction tra-ining pre(?iction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code
Tree O((logy C)N) | O(log, C) good for “extreme classification”

x [=
- 31/ 52
X3 W = | X3 X3 X3 X3+
Xa

Xa Xa + | Xa X

Multiclass Classification Reduction to binary classification

Tree based method

Idea: train = C binary classifiers to learn “belongs to which half?".

Training: see pictures

.vs

= | S | S h]_
X1 X1+ | X | .
x W X2 X2 + O
x3 W = | x3 X3
X4 X4 + | Xa
x; M X5 + | X5
Y Y I ho 3
hl h2 h3 . Vs - Vs .

Prediction is also natural, but is very fast! (think ImageNet where

C =~ 20K)

30 / 52

Neural Nets

Outline

© Neural Nets
@ Definition
@ Backpropagation
@ Preventing overfitting

32 /52

Neural Nets Definition

Linear models are not always adequate

We can use a nonlinear mapping as discussed:

¢(x):x € RP — 2z ¢ RM

But what kind of nonlinear mapping ¢ should be used? Can we actually
learn this nonlinear mapping?

The most popular nonlinear models nowadays: neural nets

33 /52
More output nodes
T
X2 o=h(Wzx)
x3
w
W e R4X3, h: R4 — R? SO h(a) = (hl(al), hg(ag), h3(6L3), h4(a4))
Can think of this as a nonlinear mapping: ¢(x) = h(Wx)
35 /52

Neural Nets Definition

Linear model as a one-layer neural net

h(a) = a for linear model

Activation functions

To create non-linearity, can use

o Rectified Linear Unit (ReLU):
h(a) = max{0,a}

@ sigmoid function: h(a) = H%]
1
!
. __ e%—e"? -0.5 /
e TanH: h(a) — edfe—a / — sigmoid
/' —== Tanh
@ many more S IS S - L Ret)
-4 -2 0 2 4
34 /52

Neural Nets Definition

More layers

Becomes a network:

@ each node is called a neuron input layer hiddenlayer1 hidden layer 2 output layer

@ h is called the activation function

e can use h(a) =1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) =a

o #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)
@ deep neural nets can have many layers and millions of parameters

e this is a feedforward, fully connected neural net, there are many
variants (convolutional nets, recurrent nets, transformers, etc.)

36 / 52

Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

o for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

37 / 52

LT
Learning the model

No matter how complicated the model is, our goal is the same: minimize

N

1
FWi,... . W) = & z:an(Wl,...,WL)
where
£ (n) — ynll3 for regression

F,(Wy,..., W) = ificati
n(W1 L) {ln <1+zk¢yn ef(wn)rf(wn)yn) for classification

39 / 52

Definition
Math formulation

An L-layer neural net can be written as

f(x)=hL(WrhL1 (WL hi (Wiz)))

input layer hidden layer 1 hidden layer 2 output layer

To ease notation, for a given input @, define recursively

Oy =@, ay = WgOg_l, Oy = hg(ag) (f = 1,. ,L)
where
o W, € RPrxPe-1 js the weights between layer £ — 1 and ¢
e Do =D,Dyq,...,DL are numbers of neurons at each layer
o ay € RP is input to layer ¢
e o, € RP! is output of layer ¢
o h,:RP¢ — RP¢ is activation functions at layer ¢

38 / 52

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

e for a composite function f(g(w))

of _9f9g
ow 0g dw

e for a composite function f(g1(w), ..., gq(w))

9f 5~ 0f 09
ow dg; Ow

=1

the simplest example f(g1(w), g2(w)) = g1(w)ga(w)

40 / 52

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

8Fn - 8Fn 8(11' . 6Fn 8(wijoj) . aFnO'
8wij N 8ai 8wij N 8@1' 8w,-j - 8@1' J

0F, O0F,00; %8% oy % A
da; Oo; Da; (; day, 302> hi(a;) = (- day, wkz) hi(a;)

41/ 52

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

5Fn aFn T D D
— " R e XDpe—1
oW, ~ 9a, 1 <
oF, _ [(Whi)ohjla) ife<lL
dag 2(h(aL) — yn) o b (ay) else

where v] o vy = (v11V21, " - -

,U1pV2p) Is the element-wise product (a.k.a.
Hadamard product).

Verify yourself!

43/ 52

Computing the derivative

Adding the subscript for layer:

oF, OF,
6wg7,-j 8&@72'

i | Poi(an,
a% (Z 3ae+1kw”1’k> vilaes)

For the last layer, for square loss

Op—1,5

OF, O(hyi(aL;) — yni)?
— ’ > : =2(h i i
8a|_,i aaL,i (b (aL’)

— Yni)h i (ar)

Exercise: try to do it for cross-entropy loss yourself.

42 / 52
Putting everything into SGD
The backpropagation algorithm (Backprop)
Initialize W1, ..., W| randomly. Repeat:
@ randomly pick one data point n € [N]
@ forward propagation: for each layer / =1,...,L
o compute ay = Wyoy_1 and o; = hy(ay) (00 = xy)
© backward propagation: foreach /= L,... 1
e compute
oOF, _ [(Whitte)onjlar) ifl<L
da; 2(hi(aL) —yn) o h{(ar) else
o update weights
OF,
W, — Wy — né)W W, — %05—1

(Important: should Wy be overwritten immediately in the last step?)

44 / 52

Important tricks to optimize neural nets

Many important tricks on top on Backprop

@ mini-batch: randomly sample a batch of examples to form a
stochastic gradient (common batch size: 32, 64, 128, etc.)
@ batch normalization: normalize the inputs of each neuron over the
mini-batch (to zero-mean and one-variance; c.f. Lec 1)
@ adaptive learning rate: scale the learning rate of each parameter
based on some moving average of the magnitude of the gradients
e momentum: make use of previous gradients (taking inspiration from
physics)
o -
45 / 52
Overfitting
Overfitting is very likely since neural nets are too powerful.
Methods to overcome overfitting:
@ data augmentation
@ regularization
@ dropout
o early stopping
o -
47 / 52

SGD with momentum (a simple version)

Initialize wq and velocity v =0
Fort=1,2,...
e form a stochastic gradient gy
@ update velocity v <— awv + g¢ for some discount factor « € (0, 1)

@ update weight w; < wy_1 — nv

Updates for first few rounds:
¢ w; = wo — Ng1
® w2 = w1 — angy — 192
o w3 = ws — a’ng1 — angs — 193

Adam (most popular) ~ SGD + adaptive learning rate + momentum

Neural Nets Preventing overfitting

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data

Affine
Distortion

Elastic
Deformation

Noise

-,»r"»»'“; ‘ g]

B B _
Hue Shift

Horizontal Random
Translation

i A

flip

46 / 52

48 / 52

B i
Regularization

L2 regularization: minimize

L
F'(Wy,..., W) = F(Wy,..., W) +) |Wif3
/=1

Simple change to the gradient:

OF OF
8w¢j N 0wij

Introduce weight decaying effect

49 / 52
Early stopping
Stop training when the performance on validation set stops improving
/ Early stopping
e—e Training set loss
— Validation set loss |
= 0.00 - .
0 50 100 150 200 250
Time (epochs)
51 /52

Neural Nets Preventing overfitting

Dropout

Independently delete each neuron with a fixed probability (say 0.5),
during each iteration of Backprop (only for training, not for testing)

Q——f
N7AY,

.\\\' n.t\\'lu

Very effective, makes training faster as well

50 / 52

Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a ot of data to work well
@ take a /ot of time to train (need GPUs for massive parallel computing)
@ take some work to select architecture and hyperparameters

@ are still not well understood in theory

52 / 52

	Review of Last Lecture
	Multiclass Classification
	Neural Nets

