CSCI567 Machine Learning (Spring 2025)

Haipeng Luo
University of Southern California

Feb 14, 2025

I
Outline

@ Convolutional neural networks (ConvNets/CNNs)

© Kernel methods

1/42

3/ 42

Administration

HW?2 will be released today. Due on Feb 27th.

Convolutional neural networks (ConvNets/CNNs)
Outline

@ Convolutional neural networks (ConvNets/CNNs)
@ Motivation
@ Architecture

2/ 42

4/ 42

Convolutional neural networks (ConvNets/CNNs)

Acknowledgements

Image Classification: A core task in Computer Vision

Not much math, a lot of empirical intuitions) ,
(assume given set of discrete labels)

{dog, cat, truck, plane, ...}
The materials borrow heavily from the following sources:

@ Stanford Course CS231n: http://cs231n.stanford.edu/

- cat

@ Dr. lan Goodfellow's lectures on deep learning:
http://deeplearningbook.org

Both website provides tons of useful resources: notes, demos, videos, etc. T

Also, demo from https://poloclub.github.io/cnn-explainer/
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 6 April 6, 2017

5/ 42

The Problem: Semantic Gap TR T ISR TR Challenges: Viewpoint variation

/o 125 133 148 137 119 121 117 94 65 79 80 65 54 64 72 98
Jags

122 164 148 103 71 56 78 83 93 103 119 139 102 61 69 8411

What the computer sees

An image is just a big grid of
numbers between [0, 255]: All pixels change when
the camera moves!
e.g. 800 x 600 x 3

loonsedsndor GG.BY 20 (3 channels RGB)

This ima Nikita is
licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 7 April 6, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 8 April 6, 2017

http://cs231n.stanford.edu/
http://deeplearningbook.org
https://poloclub.github.io/cnn-explainer/

Challenges: lllumination Challenges: Deformation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 9 April 6, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 10 April 6, 2017

Challenges: Occlusion Challenges: Background Clutter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 11 April 6, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 12 April 6, 2017

Convolutional neural networks (ConvNets/CNNs) Motivation

Fundamental problems in vision
Challenges: Intraclass variation

The key challenge
How to train a model that can tolerate all those variations?

Main ideas

@ need a lot of data that exhibits those variations

@ need more specialized models to capture the invariance

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 13 April 6, 2017

6/ 42

Moivatin Mevation
Issues of standard NN for image inputs Solution: Convolutional Neural Net (ConvNet/CNN)

A special case of fully connected neural nets
Fully Connected Layer

@ usually consist of convolution layers, ReLU layers, pooling layers,
32x32x3 image -> stretch to 3072 x 1 and regular fully connected layers
o key idea: learning from low-level to high-level features

input activation
Wz
11] —>» — 1o 1 RELU RELU| RELU RELU| RELU RELU
3072 10X.3072 10 CONV |CONV CONV |CONV| CONV [CONV
weights
1 number: * ¢ i

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

fruck

=
=] car
=
=

aifplane

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-27 April 18, 2017

ship

horse

Spatial structure is lost!

7/ 42 8/ 42

Convolutional neural networks (ConvNets/CNNs) Architecture Convolutional neural networks (ConvNets/CNNs) Architecture
Convolution layer Convolution

Arrange neurons as a 3D volume naturally

Convolution Layer 2D Convolution

Input

32x32x3 image -> preserve spatial structure N o
1, "L ||~ (filter/receptive field)
32 height _T_OuT
aw + br + bw + ez + caw + dr +
ey + fz fy + gz 9y + hz
3 depth
ew + fxr + fw 4+ gz + gw + hxr +
Wy o+ gz jy o+ kz ky + Iz
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-28 April 18, 2017
9/ 42 10 / 42
Convolution Layer Convolution Layer Filters always extend the ful
. depth of the input volume
32x32x3 image 32x32x3 image /
/ 5x5x3 filter / 5x5x3 filter
32 74 32 £/
I Convolve the filter with the image I Convolve the filter with the image
i.e. “slide over the image spatially, i.e. “slide over the image spatially,

computing dot products” computing dot products”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-29 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-30 April 18, 2017

3

w|

Convolution Layer Convolution Layer

activation map

___— 32x32x3 image ___— 32x32x3 image

/ 5x5x3 filter w / 5x5x3 filter /
32 32

28

™~ 1 number: convolve (slide) over all

the result of taking a dot product between the spatial locations
filter and a small 5x5x3 chunk of the image 28
L 32 (i.e. 5*5*3 = 75-dimensional dot product + bias) L 32 |
3 3 1
wlz +b
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 31 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-32 April 18, 2017

consider a second, green filter For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

activation maps

Convolution Layer

— 32x32x3 image activation maps
/ s 5x5x3 filter / 32
] e et 28
28
>O Convolution Layer
convolve (slide) over all
spatial locations
o8 32 28
32 — AU
B W U 3 6
1

We stack these up to get a “new image” of size 28x28x6!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-33 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-34 April 18, 2017

Preview: ConvNet is a sequence of Convolution Layers, interspersed with Preview: ConvNet is a sequence of Convolutional Layers, interspersed with

activation functions activation functions
CONV, CONV, CONV, CONYV,
RelLU RelLU RelLU RelLU
eg.6 eg.6 e.g. 10
5x5x3 5x5x3 5x5x6
L] 32 filters L] 28 L] 32 filters L] 28 filters L 24
3 6 3 6 10

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-35 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-36 April 18, 2017

Convolutional neural networks (ConvNets/CNNs) Architecture Convolutional neural networks (ConvNets/CNNs) Architecture

Why convolution makes sense? Connection to fully connected NNs

Main idea: if a filter is useful at one location, it should be useful at
other locations.

A simple example why
filtering is useful

A convolution layer is a special case of a fully connected layer:

o filter = weights with sparse connection

Kernel

11/ 42 12 / 42

Local Receptive Field Leads to Sparse connectivity: being

Sparse Connectivity (affects less) affected by less
S S
connections comnections (. () @) () ()
due to small due to small
kol kol g’ ofoRoRe
Dense Dense
connections connections

(Goodfellow 2016) F|gure 93 (Goodfellow 2016

Convolutional neural networks (ConvNets/CNNs) [ENZIIeqleS

Connection to fully connected NNs

Parameter Sharing

PN ONORONO
shares the same

A convolution layer is a special case of a fully connected layer: parameters.
@ _ _ _ across all spatial 0
o filter = weights with sparse connection locations

@ parameters sharing

Traditional @ @ @
matrix

multiplication

does not share @ @

any parameters

13 / 42 Figure 95 (Goodellow 2016

Convolutional neural networks (ConvNets/CNNs) Architecture

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:
o filter = weights with sparse connection
@ parameters sharing

Much fewer parameters! Example (ignore bias terms):
o FC: (32 x 32 x 3) x (28 x 28) ~ 2.4M

@ CNN: 5 x5 x3=7T5

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

14/ 42

A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-43 April 18, 2017

Convolutional neural networks (ConvNets/CNNs) Architecture

Spatial arrangement: stride and padding

A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-42 April 18, 2017

15 / 42
A closer look at spatial dimensions:
7
7X7 input (spatially)
assume 3x3 filter
7
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-44 April 18, 2017

A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3xa3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 45 April 18, 2017

A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3xa3 filter

=> 5x5 output

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-46 April 18, 2017

A closer look at spatial dimensions:

7
7X7 input (spatially)

assume 3x3 filter
applied with stride 2

Fei-Fei Li & Justin Johnson & Serena Yeung

A closer look at spatial dimensions:

7
7X7 input (spatially)

assume 3x3 filter
applied with stride 2

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 -47 April 18, 2017

Lecture 5 -48 April 18, 2017

A closer look at spatial dimensions:

7

Fei-Fei Li & Justin Johnson & Serena Yeung

A closer look at spatial dimensions:

7

Fei-Fei Li & Justin Johnson & Serena Yeung

7X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

Lecture 5 - 49 April 18, 2017

7X7 input (spatially)
assume 3x3 filter
applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on
7X7 input with stride 3.

Lecture 5 - 51 April 18, 2017

A closer look at spatial dimensions:

7

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung

7X7 input (spatially)
assume 3x3 filter
applied with stride 3?

Lecture 5-50 April 18, 2017

Output size:
(N - F) / stride + 1

eg.N=7,F=3:

stride 1=>(7-3)/1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=2.33:\

Lecture 5 - 52 April 18, 2017

In practice: Common to zero pad the border

0

0

0

0

0

oO|o|o|o| oo

Fei-Fei Li & Justin Johnson & Serena Yeung

e.g. input 7x7
3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1

Lecture 5 - 53

April 18, 2017

In practice: Common to zero pad the border

0

0

0

0

0

oO|o|o|o| o

Fei-Fei Li & Justin Johnson & Serena Yeung

e.g. input 7x7
3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =5 => zero pad with 2

F =7 => zero pad with 3

Lecture 5 - 55

April 18, 2017

In practice: Common to zero pad the border

0|0

0

0|0

oO|o|o|o| o

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

Fei-Fei Li & Justin Johnson & Serena Yeung

Remember back to...

Lecture 5 - 54

April 18, 2017

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

7

32

3

32

CONYV,

RelLU
eg.6
5x5x3
filters

.

28

6

28

CONV,

RelLU
e.g. 10
5x5x6
filters

Fei-Fei Li & Justin Johnson & Serena Yeung

A

.

10

Lecture 5 - 56

24

CONYV,

RelLU

April 18, 2017

Convolutional neural networks (ConvNets/CNNs) Architecture

Summary for convolution layer

Input: a volume of size W7 x Hy x Dq Examples time:

Hyperparameters: .
o K filters of size F' x F |npUt volume: 32x32x3
o stride 5 10 5x5 filters with stride 1, pad 2

@ amount of zero padding P (for one side)

Output: a volume of size W5 x Hy x Dy where OUtpUt volume size: ?
o Wy= (W1 +2P —F)/S+1
o Hy= (H +2P—F)/S+1
e Dy=K

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-57 April 18, 2017

#parameters: (F' x F' x D; + 1) x K weights

Common setting: F=3,5=P=1

16 / 42

Examples time: Examples time:

Input volume: 32x32x3 Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2 10 5x5 filters with stride 1, pad 2
Output volume size: Number of parameters in this layer?
(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-58 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-59 April 18, 2017

Examples time:

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params
=>76*10 =760

(+1 for bias)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 60

April 18, 2017

Convolutional neural networks (ConvNets/CNNs) Architecture

Another element: pooling

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

pool

e

!

112
224 downsampling !
112

224

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-72 April 18, 2017

Convolutional neural networks (ConvNets/CNNs) Architecture
Pooling

Similar to a filter, except

@ depth is always 1
o different operations: average, L2-norm, max
@ no parameters to be learned

Max pooling with 2 x 2 filter and stride 2 is very common

MAX POOLING
Single depth slice
X 17112 4
max pool with 2x2 filters
5(6 |78 and stride 2 6 | 8
32110 34
112|3]| 4
y

18 / 42

17 / 42

Convolutional neural networks (ConvNets/CNNs) Architecture

Putting everything together

Typical architecture for CNNs:

Input — [[Conv — ReLU]*N — Pool?]*M — [FC — ReLU]*Q — FC |

Common choices: N <5,Q <2, M is large

Well-known CNNs: LeNet, AlexNet, ZF Net, GoogleNet, VGGNet, etc.

All achieve excellent performance on image classification tasks.

19 / 42

Architecture
How to train a CNN?

How do we learn the filters/weights?

Essentially the same as FC NNs: apply SGD /backpropagation

20 / 42

Kernel methods Motivation

Motivation

Recall the question: how to choose nonlinear basis ¢ : RP — RM?

w'¢(x)

@ neural network is one approach: learn ¢ from data

@ kernel method is another one: sidestep the issue of choosing ¢ by
using kernel functions

22/ 42

Outline

© Kernel methods
@ Motivation
@ Dual formulation of linear regression
o Kernel Trick

21/ 42

Kernel methods Motivation

Case study: regularized linear regression

Kernel methods work for many problems and we take regularized linear
regression as an example.

Recall the regularized least square solution:

w* = argmin F(w) ¢(w1); Y1
w
: é(x2) Y2
= argmin (| ®w — y|3 + N|w|3) | ® = : Y=
w . .
— (3D +)" BTy p(an)" N

Issue: operate in space RM and M could be huge or even infinity!

23 / 42

T)
A closer look at the least square solution Why is this helpful?

By setting the gradient of F(w) = ||®w — y||3 + \||w||3 to be O: Assuming we know «, the prediction of w* on a new example x is

T (dw* —y) + \w* =0 . N
w* ¢(w) = Z an(j’(xn)Td)(m)
n=1

we know

Therefore we do not really need to know w*. Only inner products in the

N
1
* *‘I’T — dw*) = (I,T —
w h\ (y w’”) o 21 an(@n) new feature space matter!
n=

Kernel methods are exactly about computing inner products without

Thus the least square solution is a linear combination of features! K .
nowing ¢.

Note this is true for perceptron and many other problems.

Of course, the above calculation does not show what o is. But we need to figure out what a is first!

24 / 42 25 / 42

Kernel methods Dual formulation of linear regression Kernel methods Dual formulation of linear regression

How to find a? Example of the Gram matrix
Plugging in w = ®%a into F(w) gives _11 (1) 1
d(z1) =] | d(x2) = | d(z3) = |
G(a)=F(®'a)) 0 .

=[|2@ 0 — y|3 + A2 er[l3
= |[Ka - y|} + ' Ka (K =@ c RVN) Gram/Kernel matrix

(1) d(x1) d(x1) d(2) D(z1)T P(a3)
K= | ¢(z2)"¢p(x1) @(x2) d(x2) (w2)" p(3)
K is called Gram matrix or kernel matrix where the (i, ;) entry is d(x3) p(z1) P(a3)TP(z2) P(a3)T P(z3)

4 1 0
B ()T () -1 11
01 4

26 / 42 27 / 42

Kernel methods Dual formulation of linear regression

Gram matrix vs covariance matrix

dimensions
T N x N
TP M x M

entry (i,7) property
d(x:)" p(z;)

Sl B(En)id(Tn);

both are symmetric and
positive semidefinite

28 / 42

Kernel methods Dual formulation of linear regression

Comparing two solutions

Minimizing F(w) gives w* = (®T® + \I)1®Ty
Minimizing G (o) gives w* = ®T(®dT + A1)~y

Note I has different dimensions in these two formulas.
Natural question: are they the same or different?
They have to be the same because F'(w) has a unique minimizer!

And they are:
(@T® + ATy
= (®T® +) 'eT (@ + AI)(®2T + M)y
(@T® + A1) (@ @ + N)(®@DT + AI)ly
=(@"® +)" (@T® + A)®T (@2 + AD) "y
=31 (®d" + A1)y

30 / 42

Kernel methods Dual formulation of linear regression

How to find a?

Minimize (the so-called dual formulation)
Gla) = |[Ka—y|3+ a"Ka
Setting the derivative to 0 we have

0= (K’+)\K)a - Ky =K (K +M)a—y)

Thus o = (K + M)~y is a minimizer and we obtain

w* =®Ta=8" K+ 'y

Exercise: are there other minimizers? and are there other w*'s?

29 / 42

Dual formulation of linear regression
Then what is the difference?

First, computing (2®* + AI)~! can be more efficient than computing
(®T® + AI)~* when N < M.

More importantly, computing o = (K + A\)~y also only requires
computing inner products in the new feature space!

Now we can conclude that the exact form of ¢(-) is not essential; all we
need is computing inner products ¢(x) ¢ (x').

For some ¢ it is indeed possible to compute ¢ ()" ¢ (x) without
computing/knowing ¢. This is the kernel trick.

31/ 42

oAl
Example

Consider the following polynomial basis ¢ : R? — R3:

What is the inner product between ¢(x) and ¢(x')?

2 2
¢>(:I:)Tqi>(w') = x12x/1 + 2z wox 2h + x22x'2

= (z12] + z9ah)? = (xTa)?

Therefore, the inner product in the new space is simply a function of the
inner product in the original space.

32/ 42
More complicated example
Based on ¢y, define ¢z, : RP — R2P(L+D) for some integer L:
¢o(x)
¢2x ()
or(z) = | Poz=(T)
¢L2T’T(33)
What is the inner product between ¢ (x) and ¢r(x')?
L
$1(@) pu(a') = ; G2zt ()" pas (')
L D
2
= Z Zcos (Zg(xd — a?:i))
=0 d=1
34 /42

G T
Another example

¢ : RP — R?P is parameterized by 6:

cos(0z1)
sin(0x1)
bo(x) = :
cos(fzp)
sin(fzp)
What is the inner product between ¢y (x) and ¢g(x’)?
D
do(x)Tdp(a) = Z cos(fxy) cos(0x))) + sin(fz4) sin(fz)
d=1

(trigonometric identity)

D
= Z cos(0(zq —)
d=1
Once again, the inner product in the new space is a simple function of the

features in the original space.
33/ 42

Kernel methods Kernel Trick

Infinite dimensional mapping

When L — oo, even if we cannot compute ¢(z), a vector of infinite
dimension, we can still compute inner product:

Boo ()T oo () = /27r ZD: cos(0(zq —) do
0 a=1

D .
_ sin(2m(xzq — 1))

rq—x)

Again, a simple function of the original features.

Note that using this mapping in linear regression, we are learning a weight
w™ with infinite dimension!

35/ 42

CEREIGRE CEREIGRE
Kernel functions Using kernel functions

Choosing a nonlinear basis ¢ becomes choosing a kernel function.

Definition: a function k : RP x RP — R is called a kernel function if

_ _ As long as computing the kernel function is more efficient, we should apply
there exists a function ¢ : RP — RM so that for any =, 2’ € RP,

the kernel trick.

k(z,2') = ¢(z)" p(a')

Gram/kernel matrix becomes:

k:(:cl,ml) k(:cl,ccg) k:(ml,:nN)
Examples we have seen P k:(:cg.,:cl) k:(zcg., x2) - k(xo,xy)
klx,x') = (xTa')? .
° gin(2n() k(xn,z1) k(xy,®2) - k(zn,zN)
sin(2w(zg — x
k(:c,a:/) = Z T — 2 :
d=1 d d In fact, k is a kernel if and only if K is positive semidefinite for any N and
any x1, xs, ..., xy (Mercer theorem).
@ useful for proving that a function is not a kernel
36 / 42 37 /42
Examples that are not kernels More examples of kernel functions
Two most commonly used kernel functions in practice:
Function , . Polynomial kernel
k(z,z') = ||lo —z'[|3 k(x,z') = (T2’ + ¢)?
i ? . o
is not a kernel, why for ¢ > 0 and d is a positive integer.
If it is a kernel, the kernel matrix for two data points 1 and xs: Gaussian kernel or Radial basis function (RBF) kernel
O ||£L‘1 — ZL'Q||2 2
K — 2 _ll=—a'113
(||;1;1 — ;1;2”% 0 k(a:,:c') —e 252
must be positive semidefinite, but is it? for some o > 0.
Think about what the corresponding ¢ is for each kernel.
38 / 42

39 / 42

Kernel methods Kernel Trick Kernel methods Kernel Trick

Composing kernels Predicting with a kernel function

Creating more kernel functions using the following rules:

If k1(+,-) and ka(-,-) are kernels, the followings are kernels too As long as w* = 2711\[:1 an@(xy,), prediction on a new example & becomes

e conical combination: ak;(-,-) + Bka(-,-) if a, 5 >0 N N

«T T
w x) = and(x, x) = ank(x,,x

o product: (- V(.. 8(@) = 3 andlan)B(o) = D ank(zn2)

e exponential: ()

° - This is a non-parametric method!
Verify using the definition of kernel!

40 / 42 41 / 42

Kemel Trick
Kernelizing other ML algorithms

Kernel trick is applicable to many ML algorithms:

@ nearest neighbor classifier

Perceptron (HW2)

logistic regression

@ SVM (next week)

42 / 42

	Convolutional neural networks (ConvNets/CNNs)
	Kernel methods

