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Administration

HW?2 is due on Feb 27th and will be graded before Quiz 1 (Mar 7th).
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© Review of last lecture
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Convolutional Neural Nets

Typical architecture for CNNs:

Input — [[Conv — ReLU]*N — Pool?]*M — [FC — ReLU]*Q — FC |

2D Convolution MAX POOLING

) . Single depth slice
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A work ot Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-73  April 18, 2017
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Review of last lecture

Kernelizing ML algorithms

Feasible as long as only inner products are required:

@ regularized linear regression (dual formulation)

o) w* = p(x)T®T (K + M) 'y (K = ®®7 is kernel matrix)

@ nearest neighbor, Perceptron, logistic regression, SVM, ...
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Kernel functions

Definition: a function k : RP x RP — R is called a kernel function if
there exists a function ¢ : RP — RM so that for any z, 2’ € RP,

k(z,z') = ¢p(x)" p(x)

Examples we have seen

k(xz,x') = (xTa')?

Support vector machines (primal formulation)
Outline

© Support vector machines (primal formulation)

(polynomial kernel)

(Gaussian/RBF kernel)
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Support vector machines (primal formulation) Support vector machines (primal formulation)

Support vector machines (SVM) Primal formulation

In one sentence: linear model with L2 regularized hinge loss. Recall

@ most commonly used classification algorithms before deep learning

@ works well with the kernel trick e

@ strong theoretical guarantees

We focus on binary classification here. ° Cperceptron(2) = max{0, —z} — Perceptron

o logistic loss logistic(2) = log(1 4 exp(—=z)) — logistic regression

o hinge loss lhinge(2) = max{0,1 — z} — SVM
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Primal formulation Geometric motivation: separable case
When data is linearly separable, there are infinitely many hyperplanes
For a linear model (w, b), this means with zero training error.
min Z max {0, 1 — y,(w  p(xn) + )} + inH%
w,b - 2
o recall y, € {—1,+1}
@ a nonlinear mapping ¢ is applied
@ the bias/intercept term b is used explicitly (think about why after this
lecture)
So why L2 regularized hinge loss?
So which one should we choose?
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Support vector machines (primal formulation)

Intuition

The further away from data points the better.

How to formalize this intuition?
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Maximizing margin
Margin: the smallest distance from all training points to the hyperplane

yn(wrP(x,) +b)
|wl]2

MARGIN OF (w, b) = min
n

llwll2

T b 1
max min Yn(w_ P(@n) + ) = max min y, (w' ¢(x,) + b)
wh w2 n
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Support vector machines (primal formulation)

Distance to hyperplane

What is the distance from a point  to a hyperplane {z : w'x +b = 0}?

Assume the projection is x — Em, then

0=w’ <m—€w)—|—b:wT:c—€||wH+b

_ wTlz+b
and thus ¢ = Tl -

Therefore the distance is
lwTz + b|

[[wlla

For a hyperplane that correctly classifies (x,y), the distance becomes

y(wrx + b)

[|[w]l2
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Support vector machines (primal formulation)

Rescaling

Note: rescaling (w,b) does not change the hyperplane at all.

We can thus always scale (w,b) s.t. min,, y,(w'¢(x,) +b) =1

The margin then becomes
MARGIN OF (w, b)

1 )
— m min yn(wTd)(mn) +b)
1

[w]2
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Support vector machines (primal formulation)

Summary for separable data

For a separable training set, we aim to solve

1
max —— s.t. miny,(w’ ¢(x,) +b) =1
wb [wlly "

This is equivalent to

. 1 9
—||w
min 2|| 12

st yo(w @(mn) +0) >1, Vn

SVM is thus also called max-margin classifier. The constraints above are
called hard-margin constraints.
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SVM Primal formulation

We want &, to be as small as possible too. The objective becomes

1 2
min —|wl|5 + C
i i

s.t. yn('wTd)(mn) +b)>1-&, Vn
£, >0, Vn

where C' is a hyperparameter to balance the two goals.
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Support vector machines (primal formulation)

General non-separable case

If data is not linearly separable, the previous constraint
yn(wre(x,) +b) > 1, Vn

is obviously not feasible.

To deal with this issue, we relax them to soft-margin constraints:
yn(wT¢(mn) + b) 2 1- €n7 v n

where we introduce slack variables &, > 0.
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Support vector machines (primal formulation)

Equivalent form

Formulation

1
min C W+ = ||w|?
ol Xn:é‘ 2H I
st. 1—yp(wie(z,)+b) <&, Vn

€n =20, Vn

is equivalent to

w,b,{&n
s.t. max {0, 1-— yn(’wT¢(iEn) + b)} =&, Y

. 1
min , C;fn + §Hw||%
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Support vector machines (primal formulation)

Equivalent form

. 1 2

min C E —

’w,b,{{n} gn * 2Hw||2
n

s.t. max {0, 1-— yn(wT(b(wn) + b)} =&, Y1
is equivalent to

w,b

1
min C’Zmax {0, 1-— yn(thj)(azn) + b)} + §HwH%

and
. A
min ; max {0, 1— yn(qub(:I:n) + b)} + §Hw||§

w,b

with A =1/C. This is exactly minimizing L2 regularized hinge loss!

Outline

© A detour of Lagrangian duality
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Support vector machines (primal formulation)

Optimization

w,b,{&n

st. 1—y(wie(x,) +b) <&, Yn
& >0, Vn

) 1
min , C'En:fn + §||w||§

e It is a convex (quadratic in fact) problem

thus can apply any convex optimization algorithms, e.g. SGD

@ there are more specialized and efficient algorithms

but usually we apply kernel trick, which requires solving the dual
problem

A detour of Lagrangian duality

Lagrangian duality

Extremely important and powerful tool in analyzing optimizations

We will introduce basic concepts and derive the KKT conditions
@ the derivation is not required for this course

@ but the application of KKT conditions is required

Applying it to SVM reveals an important aspect of the algorithm
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A detour of Lagrangian duality

Primal problem
Suppose we want to solve

min F(w) st hj(w) <0 Vjel[]]

w

where functions hq, ..., h define J constraints.

SVM primal formulation is clearly of this form with J = 2N constraints:
1
F(w,b, {.}) = 0;@ + 5wl

B (w, b, {€,}) =1 — yo(wl () +b) — &, ¥V n e N]
ANgn(w, b, {én}) = =& YV n e [N]
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Duality

We define the dual problem by swapping the min and max:

duax min L (w, {A;})

How are the primal and dual connected? Let w* and {A}} be the primal
and dual solutions respectively, then

{gj}gofq}]ﬂL (w, {A;}) =min L (w, {Aj}) <L (w", {A}})
< {rArj}goL (w”, {;}) = min {glf]}?gOL (w, {A;})

This is called “weak duality”.
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A detour of Lagrangian duality

Lagrangian

The Lagrangian of the previous problem is defined as:

J
L(w,{\j}) = F(w) + Z Ajhj(w)

where A1, ..., A > 0 are called Lagrange multipliers.

Note that

{Aj}=>0

and thus,

min max L (w,{)\;}) < n}}’nF(w) st. hj(w) <0 Vjell

w {A;}=20

max L(w, {};}) = {i (:’O) :fé“w) <0 Vjel

A detour of Lagrangian duality

Strong duality

When F, hi,...,hy are convex, under some mild conditions:

i L (w, {),
min max (w, {A;})

This is called “strong duality”.

— in L :
max min (w, {A;})
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Deriving the Karush-Kuhn-Tucker (KKT) conditions

Observe that if strong duality holds:
F(w”) = min {gr;‘gOL (w,{A;j}) = b min I (w, {A;})

J
=minL (w, {\}) <L(w{\}) = Fw)+ Y Nhj(w) < Fw')
j=1

Implications:
@ all inequalities above have to be equalities!
o last equality implies A7h;(w™) = 0 for all j € [J]
o equality miny, L(w, {A}}) = L(w”, {A]}) implies w* is a minimizer
of L(w,{A}}) and thus has zero gradienﬁ:
Vw L(w*, {\j}) = VF(w*) + Y \;Vhj(w*) =0
j=1
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Support vector machines (dual formulation)
Outline

@ Support vector machines (dual formulation)
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A detour of Lagrangian duality

The Karush-Kuhn-Tucker (KKT) conditions

If w* and {A7} are the primal and dual solution respectively, then:

Stationarity:
J
Vu L (w*,{X;}) = VF(w") + > NiVh;(w*) =0
j=1

Complementary slackness:
Ajhj(w*) =0 forall j € [J]
Feasibility:
hj(w*) <0 and A; >0 forall j€ [J]

These are necessary conditions. They are also sufficient when F' is convex

and hy,..., hy are continuously differentiable convex functions.
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Writing down the Lagrangian

Recall the primal formulation

min CZ§n+1HwH§
w7b7{§n} n 2
st. 1—yp(whé(x,) +b) <&, Vn
&n =20, Vn
Lagrangian is
1
L b (&) {end ) = O D6t gl = 3 A
+3 an (1= yn(w d(an) +b) — &)
n

where ap,...,an > 0 and Aq,..., Ay > 0 are Lagrange multipliers.
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Applying the stationarity condition

L=CY 6t sl = 3 A+ an (1~ a0 blaa) + 1)~ &)

3 primal and dual variables w, b, {&, }, {an}, {An} st. Vi p ey L =0,
which means

OL
8710 = w — Zynand)(wn) =0 —— w = Zynan¢($n)

L L
gbz—Zanyn:O and g{:C—)\n—QTLZO, Vn
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Support vector machines (dual formulation)

The dual formulation

To find the dual solutions, it amounts to solving

{on}{An}

s.t. Z anyn =0
n

C—X —a,=0,0,>20, A\; >0, Vn

1
max Z Qpn — 5 Z ymynaman¢(wm)T¢(mn)
n m,n

Note the last three constraints can be written as 0 < «,, < C for all n. So
the final dual formulation of SVM is:

1
tmax D0 =5 D UmUnOman(@m)’ d(xn)

s.t. Zanyn:() and 0<a,<C, Vn
n
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Support vector machines (dual formulation)

Rewrite the Lagrangian in terms of dual variables

Replacing w by ) y,o,¢(x,) in the Lagrangian gives
1
L=CY &+ 5|\wug = Ml D an (1—yn(w (zn) +b) — &)

=06t 5 S mandlen)li - 3 ot

T
Z oan | 1—yy (Z ymam¢(mm)> ¢(mn) +b| — gn

= ant IS pmand@n)lB — 3 ancmpmpndln) dlwn)
? O, anyn =0and C =\, + ay)
= Z On — % Z anamymyn¢(wm)T¢(mn)
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Support vector machines (dual formulation)

Kernelizing SVM

Now it is clear that with a kernel function & for the mapping ¢, we can
kernelize SVM as:

1
Enew}( E oy — 5 g ymynamank(wmamn)
On

n

m,n

s.t. Zanynzo and 0<a,<C, Vn

Again, no need to compute ¢(x). It is a quadratic program and many
efficient optimization algorithms exist.
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Support vector machines (dual formulation)

Recover the primal solution

But how do we predict given the dual solution {c}:}? Need to figure out
the primal solution w™* and b*.

Based on previous observation,

D T ICH I s

n:ag, >0

A point with o}, > 0 is called a “support vector’. Hence the name SVM.

To identify b*, we need to apply complementary slackness.
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Geometric interpretation of support vectors
A support vector satisfies oy # 0 and
L= & — yn(w* B(a,) + %) = 0
When ° waﬁsz:l
© & =0, yn(w (xy) +b7) =1 e =0

and thus the point is 1/[|w*||2
away from the hyperplane.

@ & < 1, the point is classified
correctly but does not satisfy
the large margin constraint.

Support vectors (circled with the
orange line) are the only points that
matter!

e & > 1, the point is
misclassified.
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Support vector machines (dual formulation)
Applying complementary slackness
For all n we should have

N6 =0, a; (1= —pn(w p(@a) +07)) =0

For any support vector ¢p(x,,) with 0 < o) < C, X} = C — o > 0 holds.
o first condition implies £ = 0.

@ second condition implies 1 = y,, (w* T ¢(x,,) + b*) and thus

b* = Yn — W*T¢(wn) =Yn — Z a;;zymk(wmv wn)
m

Usually average over all n with 0 < a;, < C' to stabilize computation.

The prediction on a new point x is therefore

SGN (w*T (x) + b*) = SGN (Z o Ymk(Tm, ) + b*>
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An example
One drawback of kernel method: non-parametric, need to keep all
training points potentially
For SVM, very often #support vectors < N
Training data Support Vectors in the Training data
7 .‘ 7 1000
° L
° o.::: 1 X 4 6 800
5 o0 e 5 WLE]
. ot ° o o> 600
4 4
400
3 3
2 2 200
1l 1=
4 5 6 7 8 4 5 6 7 8
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Support vector machines (dual formulation) Support vector machines (dual formulation)

Summary Summary

SVM: max-margin linear classifier

Primal (equivalent to minimizing L2 regularized hinge loss): Typical steps of applying Lagrangian duality
) 1 @ start with a primal problem
min O &+ olwl e
w,b,{&n} 2 . . . .
n e write down the Lagrangian (one dual variable per constraint)
st. 1—yp(wio(x,) +b) <&, YVn
yn(w” $(@n) +b) < & o apply KKT conditions to find the connections between primal and
¢n 20, Vn dual solutions
Dual (kernelizable, reveals what training points are support vectors): @ eliminate primal variables and arrive at the dual formulation
1 @ maximize the Lagrangian with respect to dual variables
max D0 =5 D UmYnOmn(@m)’ d(xn) grang P
Qn
n m,n

@ recover the primal solutions from the dual solutions
s.t. Zanyn =0 and 0<a,<C, Vn
n
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Outline Coverage of Quiz 1

Coverage: mostly Lec 1-6, some multiple-choice questions from Lec 7.
Will provide necessary formulas.

Five problems in total
@ one problem of 15 multiple-choice multiple-answer questions

o 0.5 point for selecting (not selecting) each correct (incorrect) answer

e “which of the following is correct?” does not imply one correct answer

o four other homework-like problems, each has a couple sub-problems

e A bit about Quiz One o linear regression, linear classifiers, backpropagation, kernel, SVM

Tips: expect to see variants of questions from discussion/homework
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A bit about Quiz One

Sample Quizzes

Two samples from 2021 and 2024 (available on course website):

@ 2021 is slightly harder (especially Problem 5) and some formulas are
not provided, because it was open-book/internet (due to covid)

@ will work on Problems 1 and 3(c-e) from 2021 now, and discuss
solutions

@ work on the rest in your own time, will keep discussing and release all
solutions next week.
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