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I
Quiz 1 Coverage

Coverage: mostly Lec 1-6, some multiple-choice questions from Lec 7.

#Pages: ~19 (but a lot of empty space!) + 5 for scratch work.
Five problems in total

@ one problem of 15 multiple-choice multiple-answer questions

e 0.5 point for selecting (not selecting) each correct (incorrect) answer

o “which of the following is correct?” does not imply one correct answer

@ four other homework-like problems, each has a couple sub-problems

o linear regression, linear classifiers, backpropagation, kernel, SVM

Tips: expect to see variants of questions from discussion/homework
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I
Quiz 1 Logistics

Date: Friday, March 7th
Time: 1:00-3:20pm

Location: THH 101 (double seating), waiting for an overflow room (will
announce on Piazza)

Individual effort, close-book (no cheat sheet), no calculators or any other

electronics, but need your phone to upload your solutions to Gradescope
from 3:20-3:30pm
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Quiz 1 Coverage

Formulas provided:

@ chain rule, activation functions, SVM dual formulation, entropy
definition

Basic stuff that will not be provided:

@ SGD, softmax, CNN dimension/#parameters calculations, etc.

Most other formulas are not needed (do not overthink!)

@ Taylor expansion, complete Backprop algorithm in matrix form, KKT
conditions, etc.
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Outline Outline

© Review of last lecture © Review of last lecture

© Decision tree

© Boosting
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Support Vector Machine Separable Case
SVM: max-margin linear classifier
Primal (equivalent to minimizing L2 regularized hinge loss):
wfgl%?n} C;fn + %HWH% " WH:{::ledu(x)er:o
st 1= (@ $(@a) +0) &, i SN
20, Voo Tl
Dual (kernelizable, reveals what training points are support vectors):
I{I;i)}( zn: Qn — ;;ﬂymyn@man(ﬁ(wm)T(b(mn)
s.t. Zanyn =0 and 0<q,<C, Vn
n
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Review of last lecture

Geometric interpretation of support vectors

A support vector satisfies oy # 0 and

L =& = yn(w ™ (an) +b%) =0

When wT(@)+b=1
° f;; =0, yn(w*T (ajn) + b*) =1 // /H:wT‘b(wa:O
and thus the point is 1/[|w*||2 4
away from the hyperplane.

e & < 1, the point is classified
correctly but does not satisfy
the large margin constraint.

Support vectors (circled with the
orange line) are the only points that
matter!

e & > 1, the point is
misclassified.
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Decision tree

We have seen different ML models for classification/regression:

@ linear models, neural nets and other nonlinear models induced by
kernels

Decision tree is yet another one:
@ nonlinear in general
@ works for both classification and regression; we focus on classification
@ one key advantage is good interpretability
@ not to be confused with the "“tree reduction” in Lec 4

@ still very popular for small tabular data, especially when used in
ensemble (i.e. “forest”)
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Outline

© Decision tree
@ The model
@ Learning a decision tree

Tree-based models outperform neural nets sometimes

Why do tree-based models still outperform deep
learning on tabular data?

Gaél Varoquaux
Soda, Inria Saclay

Edouard Oyallon
ISIR, CNRS, Sorbonne University

Léo Grinsztajn
Soda, Inria Saclay
leo.grinsztajn@inria.fr

Abstract

While deep learning has enabled tremendous progress on text and image datasets,
its superiority on tabular data is not clear. We contribute extensive benchmarks of
standard and novel deep learning methods as well as tree-based models such as
XGBoost and Random Forests, across a large number of datasets and hyperparame-
ter combinations. We define a standard set of 45 datasets from varied domains with
clear characteristics of tabular data and a benchmarking methodology accounting
for both fitting models and finding good hyperparameters. Results show that tree-
based models remain state-of-the-art on mcdium—sizcdwm)_c[v—ii
without accounting for their superior speed. To understand this gap, we conduct an
empirical investigation into the differing inductive biases of tree-based models and
Neural Networks (NNs). This leads to a series of challenges which should guide
researchers aiming to build tabular-specific NNs: 1. be robust to uninformative
features, 2. preserve the orientation of the data, and 3. be able to easily learn
irregular functions. To stimulate research on tabular architectures, we contribute a
standard benchmark and raw data for baselines: every point of a 20 000 compute
hours hyperparameter search for each learner.
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Example Tree terminology

Many decisions are made based on some tree structure

. .
Medical treatment Salary in a company
Fever Degree
T>400 7% 100
Treatment #1 Muscle Pain . . X
Work Experience Work Experience Work Experience
/Igh/\w\ <syr o Ssyr A <gyr sy
Treatment #2 Treatment #3 $x, $Xp X X, sXs sX,
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A more abstract example of decision trees The decision boundary

Input: © = (z1,22)

Output: f(x) determined
naturally by traversing the tree

Corresponds to a classifier with boundaries:

T2,
@ start from the root .
@ test at each node to decide ol
which child to visit next ’ B
o finally the leaf gives the
prediction f(x) A B ¢ P £ , C D
2
A
For example, f((61 — 1,02+ 1)) =B A B c 5 e
0, 0, I

Complex to formally write down, but easy to represent pictorially or as
codes.

15 / 50 16 / 50



Parameters
Parameters to learn for a decision tree:

@ the structure of the tree, such as the depth, #branches, #nodes, etc

e some of them are sometimes considered as hyperparameters

o unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

@ the test at each internal node

e which feature(s) to test on?

o if the feature is continuous,
what threshold (61, 62,...)?

@ the value/prediction of the leaves (A, B, ...)
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Decision tree Learning a decision tree

A running example [Russell & Norvig, AIMA]

@ predict whether a customer will wait for a table at a restaurant
@ 12 training examples

@ 10 features (all discrete)

Example Attributes Target
Alt| Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est || WillWait
X, T| F F T |Some| $$% F T | French| 0-10 T
X, T| F | F T | Full $ F F | Thai |30-60 F
X3 F| T | F F |Some| § F F | Burger| 0-10 T
X, T| F T | T | Full $ F F | Thai | 10-30 T
X; T| F T F | Full | $$% F T | French| >60 F
X F| T | F T |Some| $% T T | ltalian| 0-10 T
X7 F| T | F F | None| § T F | Burger| 0-10 F
Xs F| F | F T |Some| $$ T T | Thai | 0-10 T
Xo F| T | T| F | Full $ T F | Burger| >60 F
Xio T| T | T| T |Ful| $8 | F | T |ltalian|10-30| F
X1 F| F | F F | None| § F F | Thai | 0-10 F
X2 T| T | T | T | Ful $ F F | Burger| 30-60 T
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Decision tree Learning a decision tree

Learning the parameters

So how do we learn all these parameters?
Recall typical approach is to find the parameters that minimize some loss.

This is unfortunately not feasible for trees

o For Z nodes, there are roughly #features? different ways to decide
“which feature to test on each node”, which is a /ot.

@ enumerating all these configurations to find the one that minimizes
some loss is too computationally expensive.

Instead, we turn to some greedy top-down approach.
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bl o con
First step: how to build the root?

l.e., which feature should we test at the root? Examples:

000000 000000
000000 000000
None Some Full
000 00 o o 00 o0
o0 o000 @ ® oo o0

Which split is better?

@ intuitively “patrons” is a better feature since it leads to “more pure”
or “more certain” children

@ how to quantify this intuition?
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Decision tree Learning a decision tree

Measure of uncertainty of a node

It should be a function of the distribution of classes

@ e.g. a node with 2 positive and 4

\FU"
negative examples can be

summarized by a distribution P . .

with P(Y = +1) = 1/3 and 000

P(Y =-1)=2/3
One classic uncertainty measure of a distribution is its (Shannon) entropy:

C
=—> P(Y =k)logP(Y = k)
k=1
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Examples of computing entropy
With base e and 4 classes:
)
H(Y) = 0.8360
() of  H(Y)=1.3863
%O.G E‘US
£ 2
50'4 §04
03 0.2
T R [ ][]
1 cless ) ’ 0 ! 2 Class 3 4
N H(Y)=0
? Class % %\
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Decision tree Learning a decision tree

Properties of entropy

C
=—> P(Y =k)logP(Y = k)
k=1

the base of log can be 2, e or 10

always non-negative

@ it's the smallest codeword length to encode symbols drawn from P
@ maximized if P is uniform (max = log C): most uncertain case

@ minimized if P focuses on one class (min = 0): most certain case
e eg. P=(1,0,...,0)

e 0logO0 is defined naturally as lim,_,o4 zlogz =0

Decision tree Learning a decision tree

Another example

Entropy in each child if root tests on “patrons”

For “None” branch

0l 0 i 2 1 2 0
— 0 (8} =
0+2 2042 042 ®0+2

o00000
For “Some” branch o00000
Patrons?
4 4 0 0 ~
— log - +- log - ) =0 N(me/l’/sume S Ful
(4+U 440 4+0 440 0000 .i
For “Full” branch o0 oooe@

2 2 [
7(2+4 371371 °g2+4)'” "

So how good is choosing “patrons” overall?
Very naturally, we take the weighted average of entropy:
2

4 6
EXO+EXO+—XO9—045
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Decision tree Learning a decision tree

Measure of uncertainty of a split

Suppose we split based on a discrete feature A, the uncertainty can be
measured by the conditional entropy:

H(Y | A)
=Y P(A=a)H(Y |A=aq)

C
=Y P(A=a) (=) P(Y|A=a)logP(Y | A=a)
a k=1

= Z “fraction of example at node A = a" x “entropy at node A = a"

a

Pick the feature that leads to the smallest conditional entropy.
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bl o cden 2
Repeat recursively

Split each child in the same way. 000000

@ but no need to split children “none” 000000

and “some”: they are pure already Patrons?
and become leaves
None
o for “full”, repeat, focusing on those
6 examples:
" [Alt| Bar | Fri| Hun| Pat | Price | Rain | Res Type | Est | WillWait

X, T| F | F| T |Some| $$% F T | French| 0-10 T
X, T|F | F| T | Ful $ F F | Thai | 30-60 F
X5 F T F F_|Some| $ F F_| Burger| 0-10 T
X, T| F T T | Full $ ki F | Thai |10-30 T
Xs T| F | T | F | Full | 33§ F T | French| >60 (=
Xe F| T | F| T |Some|l $$ T T | htalian | 0-10 T
X7 F| T | F| F |None| $§ T F | Burger| 0-10 F
Xs F F F T |Some| $% T T | Thai | 0-10 T
Xo F| T | T F | Full $ T F | Burger| >60 F
X1 T| T | T T | Full | $$$ F T | ltalian | 10-30 F
X F| F F F |None| § F F | Thai | 0-10 F
Xy T| T T T | Full $ F F | Burger | 30-60 T
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Lzl (i B
Deciding the root

For “French” branch 000000
1 1 1 1 oo0000
A )-

log 1 Type?
11 %141 "1 BTt =
o French tahan Thai Butger
For “ltalian” branch é oo Y
o0

1 1 1 ., 1 1 1 . o L) o0
— og O —

T+1 21+1  1+1 °1+1
For “Thai"” and “Burger” branches

2 2 2 2 _
— log + log =1
242 242 242 242

The conditional entropy is % x 1+ % x 1+ 1% x 1+ % x1=1>0.45
So splitting with “patrons” is better than splitting with “type”.
In fact by similar calculation “patrons” is the best split among all features.

We are now done with building the root (this is also called a stump).
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Patrons?
French Italian Burger

Again, very easy to interpret.
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e
Putting it together

DecisionTreeLearning(Examples, Features)

e if Examples have the same class, return a leaf with this class

@ else if Features is empty, return a leaf with the majority class

else if Examples is empty, return a leaf with majority class of parent

@ else

find the best feature A to split (e.g. based on conditional entropy)
Tree + a root with test on A

For each value a of A:

Child < DecisionTreeLearning(Examples with A = a, Features\{A})
add Child to Tree as a new branch

@ return Tree
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Regularization
If the dataset has no contradiction (i.e. same x but different y), the
training error of a tree is always zero, which might indicate overfitting.
Pruning is a typical way to prevent overfitting for a tree:
@ restrict the depth or #nodes
@ other more principled approaches
@ all make use of a validation set
31/ 50

Learning a decision tree
Variants

Popular decision tree algorithms (e.g. C4.5, CART, etc) are all based on
this framework.

Variants:
@ replace entropy by Gini impurity:

C
G(P)=> P(Y =k)(1-P(Y =k))
k=1

meaning: probability of two randomly drawn classes being different

e if a feature is continuous, we need to find a threshold that leads to
minimum conditional entropy or Gini impurity. Think about how to
do it efficiently.
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Learning a decision tree
Random Forests

Random forest is an ensemble of trees:

@ each tree is built using a bootstrapped dataset (that is, a set of
points randomly sampled from the training set with replacement)

@ each split of each tree is selected from a random subset of features

e final prediction is the majority vote of all tress (for classification
tasks) or the averaged prediction of all trees (for regression tasks)

@ much better performance than a single tree, trivially parallelizable!
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Outline

© Boosting
@ Examples

@ AdaBoost
@ Derivation of AdaBoost

A simple example

Email spam detection:
@ given a training set like:

o (“Want to make money fast? ...", spam)
o ("“Viterbi Research Gist ...", not spam)

Introduction

Boosting (an even more powerful/general ensemble method):

@ is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

@ main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

@ works very well in practice (especially in combination with trees)
@ often is resistant to overfitting

@ has strong theoretical guarantees

We again focus on binary classification.
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ERL
The base algorithm

A base algorithm A (also called weak learning algorithm /oracle) takes a
training set S weighted by D as input, and outputs classifier h < A(S, D)

e first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e e.g. contains the word “money” = spam

@ reweight the examples so that “difficult” ones get more attention
e e.g. spam that doesn't contain the word “money”

@ obtain another classifier by applying the same base algorithm:
e e.g. empty “to address” = spam

@ repeat ...

e final classifier is the (weighted) majority vote of all weak classifiers

35 / 50

@ this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

@ many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by “weighted total loss")

@ even if it's not obvious how to deal with weight directly, we can

always resample according to D to create a new unweighted dataset
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LT
Boosting Algorithms

Given:
@ a training set S

@ a base algorithm A

Two things to specify a boosting algorithm:
@ how to reweight the examples?

@ how to combine all the weak classifiers?

Focus on AdaBoost, one of the most successful boosting algorithms.
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Example

+
10 data points in R? o+
The size of + or - indicates the + =
weight, which starts from uniform Dy N _

Base algorithm is decision stump:

r1 > 04 x, >0,

Observe that no stump can predict very accurately for this dataset
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The AdaBoost Algorithm
Given a training set S and a base algorithm A, initialize D1 to be uniform

Fort=1,....,T
@ obtain a weak classifier h; < A(S, D;)

@ calculate the importance of h; as

1 1—6t
=-1
Bt 211( o )

where € =, ., (@), Dt() is the weighted error of ;.

(B; >0 < ¢ < 0.5)

@ update distributions

Dt(n)efﬁt if h(zn) = yn

D n) o< Dy(n)e Prynhe(zn) —
e+ () t(n) Di(n)eP  else

Output the final classifier H(x) = sgn (Zz;l Btht(m)>
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Round 1: t =1
/1] D,
® +
® @- + +
- + 7 -
+ = + -
o 3 misclassified (circled): €; = 0.3 — 31 = 1 1In (t—ft) ~~ 0.42.
@ D> puts more weights on those examples
40 / 50



AdaBoost
Round 2: t =2

e 3 misclassified (circled): e = 0.21 — 55 = 0.65.

@ D3 puts more weights on those examples
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Final classifier: combining 3 classifiers

All data points are now classified correctly, even though each weak
classifier makes 3 mistakes.
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AdaBoost
Round 3: t =3

@ again 3 misclassified (circled): e3 = 0.14 — 3 = 0.92.
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il
Overfitting

When T is large, the model is very complicated and overfitting can happen

30

25

20 ¢ tw
S \A,M/VW
=15 " .
5} (boosting “stumps” on

10| train heart-disease dataset)

5 -

0 L L

1 10 100 1000
# rounds
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Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

20

i

10; (boosting C4.5 on
5 test “letter” dataset)

\_tram

error

[ E

100 1000
# of rounds (7)

e test error does not increase, even after 1000 rounds
(total size > 2,000,000 nodes)
e test error continues to drop even after training error is zero!
# rounds
5 | 100 | 1000

train error | 0.0 | 0.0 0.0
test error | 8.4 | 3.3 3.1

Used to be a mystery, but by now rigorous theory has been developed to
explain this phenomenon.
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Greedy minimization

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find 8¢, hy one by onefort =1,...,T.

Specifically, let f; = ZtT=1 Brh-. Suppose we have found f;_1, what
should f; be? Greedily, we want to find 53, hy to minimize

N N
> exp (—ynfi(@n)) =D exp (—ynfi1(n)) exp (—ynBihu(an))
n=1

n=1
x Z Dy(n) exp (—ynBihi(xs))
where the last step is by the definition of weights

Dy(n) o< Di—1(n) exp (—ynBi—1hi—1(xn)) o< - < exp (=Yn fi—1(2n))
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i A B
Why AdaBoost works?

In fact, AdaBoost also follows the general framework of minimizing some
surrogate loss.

Step 1: the model that AdaBoost considers is

T
{sgn (f(4) ‘ f() = Zﬁtht(-) for some B; > 0 and h; € 7—[}
t=1

where H is the set of models considered by the base algorithm

Step 2: the loss that AdaBoost
minimizes is the exponential loss

N
> exp (—ynf(n))

n=1
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Greedy minimization
So the goal becomes finding B;, hy € H that minimize
Z Dt exp ynﬁtht(wn))
n=1
- Z Dy(n)e’ + Z Dy(n)e Pt
n:ynF#ht (@n) n:yn=h(en)
= e+ (1—¢)e ™ (recall € = 32,0, 2hy(@n) Di(0))

= (Pt —eTPry pe P

It is now clear we should find h; to minimize its the weighted classification
error ¢;, exactly what the base algorithm should do intuitively!

This greedy step is abstracted out through a base algorithm.
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Greedy minimization

When h; (and thus ¢€;) is fixed, we then find 3; to minimize

Et(eﬁt _ e—ﬁt) + 6_,31&’

which gives (by setting the derivative to 0):
1 1-— €t
B = =1
B 9 n < o )

Keep doing this greedy minimization gives the AdaBoost algorithm.
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Summary for boosting

Key idea of boosting is to combine weak predictors into a strong one.

There are many boosting algorithms: AdaBoost is the most classic one
(XGBoost is the most popular in practice)

AdaBoost is greedily minimizing the exponential loss.

AdaBoost is often resistant to overfitting.
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