CSCI567 Machine Learning (Spring 2025)

Haipeng Luo

University of Southern California

Jan 17, 2025

Outline

- Overview of machine learning
- Classification and Nearest Neighbor Classifier (NNC)

Outline

Overview of machine learning

3 Classification and Nearest Neighbor Classifier (NNC)

Theory of NNC (or an example of what are beyond this course...)

Overview

Nature of this course

- Covers both classical machine learning methods and recent advancements (supervised learning, unsupervised learning, reinforcement learning, etc.), in a systemic and rigorous way
- Particular focuses are on the conceptual understanding and derivation of these methods

Overview

Nature of this course

- Covers both classical machine learning methods and recent advancements (supervised learning, unsupervised learning, reinforcement learning, etc.), in a systemic and rigorous way
- Particular focuses are on the conceptual understanding and derivation of these methods

Learning objectives:

- Hone skills on grasping abstract concepts and thinking critically to solve problems with ML techniques
- Solidify your knowledge with hand-on programming tasks
- Prepare you for studying advanced ML techniques

Teaching logistics

Lectures: Friday, 1:00-3:20pm

Discussions: Friday, 3:30-4:20pm (by TAs, same locations)

Web: https://haipeng-luo.net/courses/CSCI567/2025_spring

• general information (schedule, slides, homework, etc.)

Web: https://haipeng-luo.net/courses/CSCI567/2025_spring

• general information (schedule, slides, homework, etc.)

Piazza: https://piazza.com/usc/spring2025/csci567

- main discussion forum
- everyone has to enroll!

Web: https://haipeng-luo.net/courses/CSCI567/2025_spring

• general information (schedule, slides, homework, etc.)

Piazza: https://piazza.com/usc/spring2025/csci567

- main discussion forum
- everyone has to enroll!

DEN: https://courses.uscden.net/d21/login

recorded lectures/discussions

Web: https://haipeng-luo.net/courses/CSCI567/2025_spring

• general information (schedule, slides, homework, etc.)

Piazza: https://piazza.com/usc/spring2025/csci567

- main discussion forum
- everyone has to enroll!

DEN: https://courses.uscden.net/d21/login

recorded lectures/discussions

Gradescope: https://www.gradescope.com

submit homework

Web: https://haipeng-luo.net/courses/CSCI567/2025_spring

• general information (schedule, slides, homework, etc.)

Piazza: https://piazza.com/usc/spring2025/csci567

- main discussion forum
- everyone has to enroll!

DEN: https://courses.uscden.net/d21/login

recorded lectures/discussions

Gradescope: https://www.gradescope.com

submit homework

Vocareum: https://www.vocareum.com/

programming project

Teaching staff

4 TAs

- Dongze Ye
- Xiao Fu
- Soumita Hait
- Robby Costales

2 graders (for grading homework only)

- Joonyoung (Aaron) Bae
- Mounika Mukkamalla

Teaching staff

4 TAs

- Dongze Ye
- Xiao Fu
- Soumita Hait
- Robby Costales

2 graders (for grading homework only)

- Joonyoung (Aaron) Bae
- Mounika Mukkamalla

Emails and office hours are on the course website

Teaching staff

4 TAs

- Dongze Ye
- Xiao Fu
- Soumita Hait
- Robby Costales

2 graders (for grading homework only)

- Joonyoung (Aaron) Bae
- Mounika Mukkamalla

Emails and office hours are on the course website

• note: location for office hours might vary during the semester

• Undergraduate level training in probability and statistics, linear algebra, (multivariate) calculus

• Undergraduate level training in probability and statistics, linear algebra, (multivariate) calculus

Important: attend today's discussion session to see if you have the required background

• Undergraduate level training in probability and statistics, linear algebra, (multivariate) calculus

Important: attend today's discussion session to see if you have the required background

• Programming: Python and necessary packages (e.g. numpy)

• Undergraduate level training in probability and statistics, linear algebra, (multivariate) calculus

Important: attend today's discussion session to see if you have the required background

 Programming: Python and necessary packages (e.g. numpy) not an intro-level CS course, no training of basic programming skills.

Slides and readings

Lectures

Lecture slides/handouts will be posted before the class (and possibly slightly updated after).

Slides and readings

Lectures

Lecture slides/handouts will be posted before the class (and possibly slightly updated after).

Readings

- No required textbooks
- Main recommended readings:
 - Probabilistic Machine Learning: An Introduction by Kevin Murphy
 - Elements of Statistical Learning by Hastie, Tibshirani and Friedman
- More: see course website

Grade

Structure:

- 40%: 4 written assignments
- 40%: 2 quizzes
- 20%: 1 programming project

Grade

Structure:

- 40%: 4 written assignments
- 40%: 2 quizzes
- 20%: 1 programming project

Initial cut-offs (for A and B):

• A- = [86, 92), A = [92, 100]

Grade

Structure:

- 40%: 4 written assignments
- 40%: 2 quizzes
- 20%: 1 programming project

Initial cut-offs (for A and B):

• A- = [86, 92), A = [92, 100]

Important: final cut-offs will NOT be released. If adjusted they could only be LOWER.

4 written assignments (problem sets):

- 4 written assignments (problem sets):
 - submit through gradescope (scanned copy or typeset with LaTeX etc.)

- 4 written assignments (problem sets):
 - submit through gradescope (scanned copy or typeset with LaTeX etc.)
 - graded based on correctness; solutions/rubrics will be released

- 4 written assignments (problem sets):
 - submit through gradescope (scanned copy or typeset with LaTeX etc.)
 - graded based on correctness; solutions/rubrics will be released
 - finding solutions online or from other sources \rightarrow *zero grade*

- 4 written assignments (problem sets):
 - submit through gradescope (scanned copy or typeset with LaTeX etc.)
 - graded based on correctness; solutions/rubrics will be released
 - finding solutions online or from other sources \rightarrow *zero grade*
 - 3 late days in total, at most one can be used for each assignment

- 4 written assignments (problem sets):
 - submit through gradescope (scanned copy or typeset with LaTeX etc.)
 - graded based on correctness; solutions/rubrics will be released
 - finding solutions online or from other sources \rightarrow *zero grade*
 - 3 late days in total, at most one can be used for each assignment
 - A two-day window for re-grading (regarding factual errors)

First one on 03/07, second one on 05/02. In class, 1:00-3:20.

- First one on **03/07**, second one on **05/02**. In class, 1:00-3:20.
 - for special arrangements, inform us within the first two weeks

- First one on **03/07**, second one on **05/02**. In class, 1:00-3:20.
 - for special arrangements, inform us within the first two weeks

Format/logistic

• double-seating, individual effort, close-book,

- First one on **03/07**, second one on **05/02**. In class, 1:00-3:20.
 - for special arrangements, inform us within the first two weeks

Format/logistic

- double-seating, individual effort, close-book,
- multiple-choice and general problems that are similar to HW

- First one on **03/07**, second one on **05/02**. In class, 1:00-3:20.
 - for special arrangements, inform us within the first two weeks

Format/logistic

- double-seating, individual effort, close-book,
- multiple-choice and general problems that are similar to HW
- sample quizzes will be available

Programing Project

Done on Vocareum

• easy-to-use platform to submit your code for auto-grading

Programing Project

Done on Vocareum

- easy-to-use platform to submit your code for auto-grading
- you will be invited to register next week

- easy-to-use platform to submit your code for auto-grading
- you will be invited to register next week
- consists of about 10 tasks (in Python) with detailed descriptions

- easy-to-use platform to submit your code for auto-grading
- you will be invited to register next week
- consists of about 10 tasks (in Python) with detailed descriptions
- skeleton provided, only need to fill in some key components

- easy-to-use platform to submit your code for auto-grading
- you will be invited to register next week
- consists of about 10 tasks (in Python) with detailed descriptions
- skeleton provided, only need to fill in some key components
- you can make *unlimited submissions* and see your grade immediately

- easy-to-use platform to submit your code for auto-grading
- you will be invited to register next week
- consists of about 10 tasks (in Python) with detailed descriptions
- skeleton provided, only need to fill in some key components
- you can make *unlimited submissions* and see your grade immediately
- the project is available throughout the semester (*due on 05/13*, no late days)

Academic honesty and integrity

Zero tolerance for plagiarism and other unacceptable violations:

- finding solutions online, including using chatbots such as ChatGPT
- uploading any material from the course to the Internet

Very important communication skills.

Very important communication skills.

Bad examples from the past:

• My code passes some cases, but not the others, why?

Very important communication skills.

Bad examples from the past:

• My code passes some cases, but not the others, why? (and it was an anonymous post!)

Very important communication skills.

Bad examples from the past:

- My code passes some cases, but not the others, why? (and it was an anonymous post!)
- I couldn't get the same result as in Slide X, why?

Very important communication skills.

Bad examples from the past:

- My code passes some cases, but not the others, why? (and it was an anonymous post!)
- I couldn't get the same result as in Slide X, why?

Bottom line: help us help you by asking informative questions!

Outline

Overview of machine learning

3) Classification and Nearest Neighbor Classifier (NNC)

Theory of NNC (or an example of what are beyond this course...)

Recent amazing AI advances: generative AI

Recent amazing AI advances: generative AI

Recent amazing AI advances: generative AI

Creating video from text

Recent amazing AI advances: AI for science

Recent amazing AI advances: AI for science

One possible definition (cf. Murphy's book)

a set of methods that can automatically *detect patterns* in data, and then use the uncovered patterns to *predict future data*, or to perform other kinds of *decision making under uncertainty*

Example: detect patterns

How the temperature has been changing?

Example: detect patterns

How the temperature has been changing?

Patterns

- Seems going up
- Repeated periods of going up and down.

How do we describe the pattern?

Build a model: fit the data with a polynomial function

- The model is not accurate for individual years
- But collectively, the model captures the major trend

Predicting future

What is temperature of 2030?

- Again, the model is probably inaccurate for that specific year
- But it might be close enough

What we have learned from this example?

Key ingredients in machine learning

Data

collected from past observation (we often call them *training data*)

What we have learned from this example?

Key ingredients in machine learning

Data

collected from past observation (we often call them *training data*)

Modeling

devised to capture the patterns in the data

• The model does not have to be true — "All models are wrong, but some are useful" by George Box.

What we have learned from this example?

Key ingredients in machine learning

Data

collected from past observation (we often call them *training data*)

- Modeling devised to capture the patterns in the data
 - The model does not have to be true "All models are wrong, but some are useful" by George Box.
- Prediction

apply the model to forecast what is going to happen in future

A rich history of applying statistical learning methods

Recognizing flowers (by R. Fisher, 1936) Types of Iris: setosa, versicolor, and virginica

Huge success with the rise of "deep" learning

A Brief History of Al with Deep Learning

Different flavors of learning problems

• Supervised learning Aim to predict (as in previous examples)

Different flavors of learning problems

- Supervised learning Aim to predict (as in previous examples)
- Unsupervised learning Aim to discover hidden patterns and explore data

Different flavors of learning problems

- Supervised learning Aim to predict (as in previous examples)
- Unsupervised learning Aim to discover hidden patterns and explore data
- Decision making (e.g. reinforcement learning) Aim to act optimally under uncertainty

Different flavors of learning problems

- Supervised learning Aim to predict (as in previous examples)
- Unsupervised learning Aim to discover hidden patterns and explore data
- Decision making (e.g. reinforcement learning) Aim to act optimally under uncertainty
- often mixed together in one application!

Different flavors of learning problems

- Supervised learning Aim to predict (as in previous examples)
- Unsupervised learning Aim to discover hidden patterns and explore data
- Decision making (e.g. reinforcement learning) Aim to act optimally under uncertainty
- often mixed together in one application!

The main focus and goal of this course

- Supervised learning (before Quiz 1)
- Unsupervised learning and reinforcement learning (after Quiz 1)

Outline

About this course

Classification and Nearest Neighbor Classifier (NNC)

- Intuitive example
- General setup for classification
- Algorithm
- How to measure performance
- Variants, Parameters, and Tuning
- Summary

Intuitive example

Recognizing flowers

Types of Iris: setosa, versicolor, and virginica

Measuring the properties of the flowers

Features and attributes: the widths and lengths of sepal and petal

Often, data is conveniently organized as a table

Fisher's <i>Iris</i> Data					
Sepal length +	Sepal width +	Petal length +	Petal width +	Species +	
5.1	3.5	1.4	0.2	I. setosa	
4.9	3.0	1.4	0.2	I. setosa	
4.7	3.2	1.3	0.2	I. setosa	
4.6	3.1	1.5	0.2	I. setosa	
5.0	3.6	1.4	0.2	I. setosa	
5.4	3.9	1.7	0.4	I. setosa	
4.6	3.4	1.4	0.3	I. setosa	
5.0	3.4	1.5	0.2	I. setosa	
4.4	2.9	1.4	0.2	I. setosa	
4.9	3.1	1.5	0.1	I. setosa	

Pairwise scatter plots of 131 flower specimens

Visualization of data helps identify the right learning model to use

Each colored point is a flower specimen: setosa, versicolor, virginica

Different types seem well-clustered and separable

Using two features: petal width and sepal length

Labeling an unknown flower type

Closer to red cluster: so predict setosa

Training data (set)

• N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- Each $x_n \in \mathbb{R}^{\mathsf{D}}$ is called a feature vector.

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- Each $x_n \in \mathbb{R}^{\mathsf{D}}$ is called a feature vector.
- Each $y_n \in [C] = \{1, 2, \cdots, C\}$ is called a label/class/category.

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- Each $x_n \in \mathbb{R}^{\mathsf{D}}$ is called a feature vector.
- Each $y_n \in [C] = \{1, 2, \cdots, C\}$ is called a label/class/category.
- They are used to learn a *classifier* $f : \mathbb{R}^{D} \to [C]$ for future prediction.

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- Each $x_n \in \mathbb{R}^{\mathsf{D}}$ is called a feature vector.
- Each $y_n \in [C] = \{1, 2, \cdots, C\}$ is called a label/class/category.
- They are used to learn a *classifier* $f : \mathbb{R}^{D} \to [C]$ for future prediction.

Special case: binary classification

- Number of classes: C = 2
- Conventional labels: $\{0,1\}$ or $\{-1,+1\}$ (instead of $\{1,2\}$)

Algorithm

Nearest neighbor classification (NNC)

The index of the **nearest neighbor** of a point x is

$$\mathsf{nn}(\boldsymbol{x}) = \operatorname*{argmin}_{n \in [\mathsf{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2 = \operatorname*{argmin}_{n \in [\mathsf{N}]} \sqrt{\sum_{d=1}^{\mathsf{D}} (x_d - x_{nd})^2}$$

where $\|\cdot\|_2$ is the L_2 /Euclidean distance.

Nearest neighbor classification (NNC)

The index of the **nearest neighbor** of a point x is

$$\mathsf{nn}(\boldsymbol{x}) = \operatorname*{argmin}_{n \in [\mathsf{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2 = \operatorname*{argmin}_{n \in [\mathsf{N}]} \sqrt{\sum_{d=1}^{\mathsf{D}} (x_d - x_{nd})^2}$$

where $\|\cdot\|_2$ is the L_2 /Euclidean distance.

Classification rule

$$f(\boldsymbol{x}) = y_{\mathsf{nn}(\boldsymbol{x})}$$

Visual example

In this 2-dimensional example, the nearest point to x is a red training instance, thus, x will be labeled as red.

Algorithm

Example: classify Iris with two features

Training data

ID (n)	petal width (x_1)	sepal length (x_2)	category (y)
1	0.2	5.1	setoas
2	1.4	7.0	versicolor
3	2.5	6.7	virginica
:	:	:	

Example: classify Iris with two features

Training data

ID (n)	petal width (x_1)	sepal length (x_2)	category (y)
1	0.2	5.1	setoas
2	1.4	7.0	versicolor
3	2.5	6.7	virginica
:	:		

A new specimen with unknown category:

petal width = 1.8 and sepal length = 6.4 (i.e. $\boldsymbol{x} = (1.8, 6.4)$) Calculating distance $\|\boldsymbol{x} - \boldsymbol{x}_n\|_2 = \sqrt{(x_1 - x_{n1})^2 + (x_2 - x_{n2})^2}$

ID	distance
1	2.06
2	0.72
3	0.76

Thus, the prediction is versicolor.

Decision boundary

For every point in the space, we can determine its label using the NNC rule. This gives rise to a *decision boundary* that partitions the space into different regions.

Is NNC doing the right thing for us?

Intuition

We should compute accuracy — the percentage of data points being correctly classified, or the error rate — the percentage of data points being incorrectly classified. (accuracy + error rate = 1)

Is NNC doing the right thing for us?

Intuition

We should compute accuracy — the percentage of data points being correctly classified, or the error rate — the percentage of data points being incorrectly classified. (accuracy + error rate = 1)

Defined on the training data set

$$A^{\text{TRAIN}} = \frac{1}{\mathsf{N}} \sum_{n} \mathbb{I}[f(\boldsymbol{x}_n) == y_n], \quad \varepsilon^{\text{TRAIN}} = \frac{1}{\mathsf{N}} \sum_{n} \mathbb{I}[f(\boldsymbol{x}_n) \neq y_n]$$

where $\mathbb{I}[\cdot]$ is the indicator function.

Is NNC doing the right thing for us?

Intuition

We should compute accuracy — the percentage of data points being correctly classified, or the error rate — the percentage of data points being incorrectly classified. (accuracy + error rate = 1)

Defined on the training data set

$$A^{\text{TRAIN}} = \frac{1}{\mathsf{N}} \sum_{n} \mathbb{I}[f(\boldsymbol{x}_n) == y_n], \quad \varepsilon^{\text{TRAIN}} = \frac{1}{\mathsf{N}} \sum_{n} \mathbb{I}[f(\boldsymbol{x}_n) \neq y_n]$$

where $\mathbb{I}[\cdot]$ is the indicator function.

Is this the right measure?

Example

Training data

What are A^{TRAIN} and $\varepsilon^{\text{TRAIN}}$?

Example

What are A^{TRAIN} and $\varepsilon^{\text{TRAIN}}$?

$$A^{\text{TRAIN}} = 100\%, \quad \varepsilon^{\text{TRAIN}} = 0\%$$

For every training data point, its nearest neighbor is itself.

Does it mean nearest neighbor is a very good algorithm?

Does it mean nearest neighbor is a very good algorithm?

Not really, having zero training error is simple!

Does it mean nearest neighbor is a very good algorithm?

Not really, having zero training error is simple!

We should care about accuracy when predicting unseen data

Does it mean nearest neighbor is a very good algorithm?

Not really, having zero training error is simple!

We should care about accuracy when predicting unseen data

Test/Evaluation data

- $\mathcal{D}^{\text{TEST}} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_M, y_M)\}$
- A fresh dataset, *not* overlap with training set.

Does it mean nearest neighbor is a very good algorithm?

Not really, having zero training error is simple!

We should care about accuracy when predicting unseen data

Test/Evaluation data

- $\mathcal{D}^{\text{TEST}} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_M, y_M)\}$
- A fresh dataset, *not* overlap with training set.
- Test accuracy and test error

$$A^{\text{TEST}} = \frac{1}{\mathsf{M}} \sum_{m} \mathbb{I}[f(\boldsymbol{x}_m) == y_m], \quad \varepsilon^{\text{TEST}} = \frac{1}{\mathsf{M}} \sum_{m} \mathbb{I}[f(\boldsymbol{x}_m) \neq y_m]$$

Does it mean nearest neighbor is a very good algorithm?

Not really, having zero training error is simple!

We should care about accuracy when predicting unseen data

Test/Evaluation data

- $\mathcal{D}^{\text{TEST}} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_M, y_M)\}$
- A fresh dataset, *not* overlap with training set.
- Test accuracy and test error

$$A^{ ext{TEST}} = rac{1}{\mathsf{M}} \sum_m \mathbb{I}[f(oldsymbol{x}_m) == y_m], \quad arepsilon^{ ext{TEST}} = rac{1}{\mathsf{M}} \sum_m \mathbb{I}[f(oldsymbol{x}_m)
eq y_m]$$

· Good measurement of a classifier's performance

Variant 1: measure nearness with other distances Previously, we use the Euclidean distance

$$\mathsf{nn}(oldsymbol{x}) = \operatorname*{argmin}_{n \in [\mathsf{N}]} \|oldsymbol{x} - oldsymbol{x}_n\|_2$$

Variant 1: measure nearness with other distances Previously, we use the Euclidean distance

$$\mathsf{nn}(oldsymbol{x}) = \operatorname*{argmin}_{n \in [\mathsf{N}]} \|oldsymbol{x} - oldsymbol{x}_n\|_2$$

Many other alternative distances E.g., the following L_1 distance (i.e., city block distance, or Manhattan distance)

$$\|\boldsymbol{x} - \boldsymbol{x}_n\|_1 = \sum_{d=1}^{\mathsf{D}} |x_d - x_{nd}|$$

Green line is Euclidean distance. Red, Blue, and Yellow lines are L_1 distance

Variant 1: measure nearness with other distances Previously, we use the Euclidean distance

$$\mathsf{nn}(oldsymbol{x}) = \operatorname*{argmin}_{n \in [\mathsf{N}]} \|oldsymbol{x} - oldsymbol{x}_n\|_2$$

Many other alternative distances E.g., the following L_1 distance (i.e., city block distance, or Manhattan distance)

$$\|\boldsymbol{x} - \boldsymbol{x}_n\|_1 = \sum_{d=1}^{\mathsf{D}} |x_d - x_{nd}|$$

More generally, L_p distance (for $p \ge 1$):

$$\|\boldsymbol{x} - \boldsymbol{x}_n\|_p = \left(\sum_d |x_d - x_{nd}|^p\right)^{1/p}$$

Green line is Euclidean distance. Red, Blue, and Yellow lines are L_1 distance

Variant 2: K-nearest neighbor (KNN)

Increase the number of nearest neighbors to use?

- 1st-nearest neighbor: $\mathsf{nn}_1(x) = \operatorname{argmin}_{n \in [\mathsf{N}]} \|x x_n\|_2$
- 2nd-nearest neighbor: $\mathsf{nn}_2(x) = \operatorname{argmin}_{n \in [\mathsf{N}] \setminus \{\mathsf{nn}_1(x)\}} \|x x_n\|_2$
- 3rd-nearest neighbor: $nn_3(x) = \operatorname{argmin}_{n \in [N] \setminus \{nn_1(x), nn_2(x)\}} \|x x_n\|_2$

Variant 2: K-nearest neighbor (KNN)

Increase the number of nearest neighbors to use?

- 1st-nearest neighbor: $\mathsf{nn}_1(x) = \operatorname{argmin}_{n \in [\mathsf{N}]} \|x x_n\|_2$
- 2nd-nearest neighbor: $\mathsf{nn}_2(x) = \operatorname{argmin}_{n \in [\mathsf{N}] \setminus \{\mathsf{nn}_1(x)\}} \|x x_n\|_2$
- 3rd-nearest neighbor: $nn_3(x) = \operatorname{argmin}_{n \in [N] \setminus \{nn_1(x), nn_2(x)\}} \|x x_n\|_2$

The set of K-nearest neighbor

$$\mathsf{knn}(\boldsymbol{x}) = \{\mathsf{nn}_1(\boldsymbol{x}), \mathsf{nn}_2(\boldsymbol{x}), \cdots, \mathsf{nn}_K(\boldsymbol{x})\}$$

Variant 2: K-nearest neighbor (KNN)

Increase the number of nearest neighbors to use?

- 1st-nearest neighbor: $\mathsf{nn}_1(x) = \operatorname{argmin}_{n \in [\mathsf{N}]} \|x x_n\|_2$
- 2nd-nearest neighbor: $\mathsf{nn}_2(x) = \operatorname{argmin}_{n \in [\mathsf{N}] \setminus \{\mathsf{nn}_1(x)\}} \|x x_n\|_2$
- 3rd-nearest neighbor: $nn_3(x) = \operatorname{argmin}_{n \in [N] \setminus \{nn_1(x), nn_2(x)\}} \|x x_n\|_2$

The set of K-nearest neighbor

$$\mathsf{knn}(\boldsymbol{x}) = \{\mathsf{nn}_1(\boldsymbol{x}), \mathsf{nn}_2(\boldsymbol{x}), \cdots, \mathsf{nn}_K(\boldsymbol{x})\}$$

Note: we have

$$\|oldsymbol{x}-oldsymbol{x}_{\mathsf{nn}_1(oldsymbol{x})}\|_2 \leq \|oldsymbol{x}-oldsymbol{x}_{\mathsf{nn}_2(oldsymbol{x})}\|_2 \cdots \leq \|oldsymbol{x}-oldsymbol{x}_{\mathsf{nn}_K(oldsymbol{x})}\|_2$$

How to classify with K neighbors?

Classification rule

• Every neighbor votes: naturally x_n votes for its label y_n .

How to classify with K neighbors?

Classification rule

- Every neighbor votes: naturally x_n votes for its label y_n .
- ullet Aggregate everyone's vote on a class label c

$$v_c = \sum_{n \in \mathsf{knn}(\mathbf{x})} \mathbb{I}(y_n == c), \quad \forall \quad c \in [\mathsf{C}]$$

How to classify with K neighbors?

Classification rule

- Every neighbor votes: naturally x_n votes for its label y_n .
- $\bullet\,$ Aggregate everyone's vote on a class label c

$$v_c = \sum_{n \in \mathsf{knn}(\mathbf{x})} \mathbb{I}(y_n == c), \quad \forall \quad c \in [\mathsf{C}]$$

• Predict with the majority

$$f(\boldsymbol{x}) = \operatorname*{argmax}_{c \in [\mathsf{C}]} v_c$$

Example

Decision boundary

When K increases, the decision boundary becomes smoother.

Decision boundary

When K increases, the decision boundary becomes smoother.

What happens when K = N?

One issue of NNC: distances depend on units of the features!

One issue of NNC: distances depend on units of the features!

One solution: preprocess data so it looks more "normalized".

One issue of NNC: *distances depend on units of the features!* One solution: preprocess data so it looks more "normalized". Example:

compute the means and standard deviations in each feature

$$\bar{x}_d = \frac{1}{N} \sum_n x_{nd}, \qquad s_d^2 = \frac{1}{N} \sum_n (x_{nd} - \bar{x}_d)^2$$

Scale the feature accordingly

$$x_{nd} \leftarrow \frac{x_{nd} - \bar{x}_d}{s_d}$$

One issue of NNC: *distances depend on units of the features!* One solution: preprocess data so it looks more "normalized". Example:

• compute the means and standard deviations in each feature

$$\bar{x}_d = \frac{1}{N} \sum_n x_{nd}, \qquad s_d^2 = \frac{1}{N} \sum_n (x_{nd} - \bar{x}_d)^2$$

• Scale the feature accordingly

$$x_{nd} \leftarrow \frac{x_{nd} - \bar{x}_d}{s_d}$$

Many other ways of normalizing data.

Which variants should we use?

Hyper-parameters in NNC

- The distance measure (e.g. the parameter p for L_p norm)
- K (i.e. how many nearest neighbor?)
- Different ways of preprocessing

Which variants should we use?

Hyper-parameters in NNC

- The distance measure (e.g. the parameter p for L_p norm)
- K (i.e. how many nearest neighbor?)
- Different ways of preprocessing

Most algorithms have hyper-parameters. Tuning them is a significant part of applying an algorithm.

Tuning via a validation dataset

Training data

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- \bullet They are used to learn $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used to evaluate how well $f(\cdot)$ will do.

Tuning via a validation dataset

Training data

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- They are used to learn $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used to evaluate how well $f(\cdot)$ will do.

Validation/Development data

- L samples/instances: $\mathcal{D}^{\text{DEV}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyper-parameter(s).

Tuning via a validation dataset

Training data

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- They are used to learn $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used to evaluate how well $f(\cdot)$ will do.

Validation/Development data

- L samples/instances: $\mathcal{D}^{\text{DEV}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyper-parameter(s).

These three sets should *not* overlap!

Recipe

- For each possible value of the hyperparameter (e.g. $K = 1, 3, \cdots$)
 - $\bullet~$ Train a model using $\mathcal{D}^{\rm TRAIN}$
 - $\bullet\,$ Evaluate the performance of the model on $\mathcal{D}^{\mbox{\tiny DEV}}$

Recipe

- For each possible value of the hyperparameter (e.g. $K=1,3,\cdots$)
 - Train a model using $\mathcal{D}^{^{\mathrm{TRAIN}}}$
 - $\bullet\,$ Evaluate the performance of the model on $\mathcal{D}^{\mbox{\tiny DEV}}$
- $\bullet\,$ Choose the model with the best performance on $\mathcal{D}^{\rm DEV}$

Recipe

- For each possible value of the hyperparameter (e.g. $K=1,3,\cdots$)
 - Train a model using $\mathcal{D}^{^{\mathrm{TRAIN}}}$
 - $\bullet\,$ Evaluate the performance of the model on $\mathcal{D}^{\mbox{\tiny DEV}}$
- $\bullet\,$ Choose the model with the best performance on $\mathcal{D}^{\rm DEV}$
- Evaluate the model on $\mathcal{D}^{\rm TEST}$

S-fold Cross-validation

What if we do not have a validation set?

• Split the training data into S equal parts.

$$S = 5$$
: 5-fold cross validation

Variants, Parameters, and Tuning

S-fold Cross-validation

What if we do not have a validation set?

- Split the training data into S equal parts.
- Use each part *in turn* as a validation dataset and use the others as a training dataset.

$$S = 5$$
: 5-fold cross validation

Variants, Parameters, and Tuning

S-fold Cross-validation

What if we do not have a validation set?

- Split the training data into S equal parts.
- Use each part *in turn* as a validation dataset and use the others as a training dataset.
- Choose the hyper-parameter leading to best *average* performance.

$$S = 5$$
: 5-fold cross validation

Variants, Parameters, and Tuning

S-fold Cross-validation

What if we do not have a validation set?

- Split the training data into S equal parts.
- Use each part *in turn* as a validation dataset and use the others as a training dataset.
- Choose the hyper-parameter leading to best *average* performance.

$$S = 5$$
: 5-fold cross validation

Special case:
$$S = N$$
, called leave-one-out.

• Split the training data into S equal parts. Denote each part as $\mathcal{D}_s^{\mathrm{TRAIN}}$.

- Split the training data into S equal parts. Denote each part as $\mathcal{D}_s^{ ext{TRAIN}}$.
- For each possible value of the hyper-parameter (e.g. $K=1,3,\cdots$)
 - For every $s \in [S]$
 - Train a model using $\mathcal{D}_{\backslash s}^{\text{\tiny TRAIN}} = \mathcal{D}^{\text{\tiny TRAIN}} \mathcal{D}_{s}^{\text{\tiny TRAIN}}$
 - ullet Evaluate the performance of the model on $\mathcal{D}^{\mbox{\tiny TRAIN}}_s$
 - Average the S performance metrics

- Split the training data into S equal parts. Denote each part as $\mathcal{D}_s^{ ext{TRAIN}}$.
- For each possible value of the hyper-parameter (e.g. $K = 1, 3, \cdots$)
 - For every $s \in [S]$
 - Train a model using $\mathcal{D}_{\backslash s}^{\text{\tiny TRAIN}} = \mathcal{D}^{\text{\tiny TRAIN}} \mathcal{D}_s^{\text{\tiny TRAIN}}$
 - Evaluate the performance of the model on $\mathcal{D}^{\scriptscriptstyle\mathrm{TRAIN}}_s$
 - Average the S performance metrics
- Choose the hyper-parameter with the best averaged performance

- Split the training data into S equal parts. Denote each part as $\mathcal{D}_s^{ ext{TRAIN}}$.
- For each possible value of the hyper-parameter (e.g. $K=1,3,\cdots$)
 - For every $s \in [S]$
 - Train a model using $\mathcal{D}_{\backslash s}^{\text{\tiny TRAIN}} = \mathcal{D}^{\text{\tiny TRAIN}} \mathcal{D}_{s}^{\text{\tiny TRAIN}}$
 - Evaluate the performance of the model on $\mathcal{D}^{\text{\tiny TRAIN}}_s$
 - Average the S performance metrics
- Choose the hyper-parameter with the best averaged performance
- \bullet Use the best hyper-parameter to train a model using all \mathcal{D}^{train}

- Split the training data into S equal parts. Denote each part as $\mathcal{D}_s^{ ext{TRAIN}}$.
- For each possible value of the hyper-parameter (e.g. $K=1,3,\cdots$)
 - For every $s \in [S]$
 - Train a model using $\mathcal{D}_{\backslash s}^{\text{\tiny TRAIN}} = \mathcal{D}^{\text{\tiny TRAIN}} \mathcal{D}_{s}^{\text{\tiny TRAIN}}$
 - Evaluate the performance of the model on $\mathcal{D}^{\text{\tiny TRAIN}}_s$
 - Average the S performance metrics
- Choose the hyper-parameter with the best averaged performance
- \bullet Use the best hyper-parameter to train a model using all $\mathcal{D}^{\text{train}}$
- Evaluate the model on $\mathcal{D}^{^{\rm TEST}}$

Summary

Advantages of NNC

• Simple, easy to implement (wildly used in practice)

Advantages of NNC

• Simple, easy to implement (wildly used in practice)

Disadvantages of NNC

• Computationally intensive for large-scale problems: O(ND) for each prediction *naively*.

Advantages of NNC

• Simple, easy to implement (wildly used in practice)

Disadvantages of NNC

- Computationally intensive for large-scale problems: O(ND) for each prediction *naively*.
- Need to *"carry"* the training data around. This type of method is called *nonparametric*.

Advantages of NNC

• Simple, easy to implement (wildly used in practice)

Disadvantages of NNC

- Computationally intensive for large-scale problems: O(ND) for each prediction *naively*.
- Need to *"carry"* the training data around. This type of method is called *nonparametric*.
- Choosing the right hyper-parameters can be involved.

Typical steps of developing a machine learning system:

- Collect data, split into training, validation, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

Outline

- About this course
- 2 Overview of machine learning
- 3 Classification and Nearest Neighbor Classifier (NNC)
- Theory of NNC (or an example of what are beyond this course...)
 - Step 1: Expected risk
 - Step 2: The ideal classifier
 - Step 3: Comparing NNC to the ideal classifier

To answer this question, we proceed in 3 steps

To answer this question, we proceed in 3 steps

1 Define *more carefully* a performance metric for a classifier.

To answer this question, we proceed in 3 steps

- **1** Define *more carefully* a performance metric for a classifier.
- **2** Hypothesize an ideal classifier *the best possible one*.

To answer this question, we proceed in 3 steps

- **1** Define *more carefully* a performance metric for a classifier.
- **2** Hypothesize an ideal classifier *the best possible one*.
- Ompare NNC to the ideal one.

Why does test error make sense?

Test error makes sense only when training set and test set are correlated.

Why does test error make sense?

Test error makes sense only when training set and test set are correlated.

Most standard assumption: every data point (x, y) (from $\mathcal{D}^{\text{TRAIN}}$, \mathcal{D}^{DEV} , or $\mathcal{D}^{\text{TEST}}$) is an *independently and identically distributed (i.i.d.)* sample of an unknown joint distribution \mathcal{P} .

• often written as $(\pmb{x}, y) \stackrel{i.i.d.}{\sim} \mathcal{P}$

Why does test error make sense?

Test error makes sense only when training set and test set are correlated.

Most standard assumption: every data point (x, y) (from $\mathcal{D}^{\text{TRAIN}}$, \mathcal{D}^{DEV} , or $\mathcal{D}^{\text{TEST}}$) is an *independently and identically distributed (i.i.d.)* sample of an unknown joint distribution \mathcal{P} .

• often written as $(\pmb{x}, y) \stackrel{i.i.d.}{\sim} \mathcal{P}$

Test error of a fixed classifier is therefore a *random variable*.

Why does test error make sense?

Test error makes sense only when training set and test set are correlated.

Most standard assumption: every data point (x, y) (from $\mathcal{D}^{\text{TRAIN}}$, \mathcal{D}^{DEV} , or $\mathcal{D}^{\text{TEST}}$) is an *independently and identically distributed (i.i.d.)* sample of an unknown joint distribution \mathcal{P} .

• often written as $(\pmb{x}, y) \stackrel{i.i.d.}{\sim} \mathcal{P}$

Test error of a fixed classifier is therefore a *random variable*.

Need a more "certain" measure of performance (so it's easy to compare different classifiers for example).

What about the expectation of this random variable?

 $\mathbb{E}[\epsilon^{\text{TEST}}]$

What about the expectation of this random variable?

$$\mathbb{E}[\epsilon^{\text{TEST}}] = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{(\boldsymbol{x_m}, y_m) \sim \mathcal{P}} \mathbb{I}[f(\boldsymbol{x_m}) \neq y_m]$$

What about the expectation of this random variable?

$$\mathbb{E}[\epsilon^{\text{TEST}}] = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{(\boldsymbol{x_m}, y_m) \sim \mathcal{P}} \mathbb{I}[f(\boldsymbol{x}_m) \neq y_m] = \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f(\boldsymbol{x}) \neq y]$$

What about the expectation of this random variable?

$$\mathbb{E}[\epsilon^{\text{TEST}}] = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{(\boldsymbol{x_m}, y_m) \sim \mathcal{P}} \mathbb{I}[f(\boldsymbol{x}_m) \neq y_m] = \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f(\boldsymbol{x}) \neq y]$$

• i.e. the expected error/mistake of f

What about the expectation of this random variable?

$$\mathbb{E}[\epsilon^{\text{TEST}}] = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{(\boldsymbol{x_m}, y_m) \sim \mathcal{P}} \mathbb{I}[f(\boldsymbol{x}_m) \neq y_m] = \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f(\boldsymbol{x}) \neq y]$$

• i.e. the expected error/mistake of f

Test error is a proxy of expected error. *The larger the test set, the better the approximation.*

What about the expectation of this random variable?

$$\mathbb{E}[\epsilon^{\text{TEST}}] = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{(\boldsymbol{x_m}, y_m) \sim \mathcal{P}} \mathbb{I}[f(\boldsymbol{x}_m) \neq y_m] = \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f(\boldsymbol{x}) \neq y]$$

• i.e. the expected error/mistake of f

Test error is a proxy of expected error. *The larger the test set, the better the approximation.*

What about the expectation of training error? Is training error a good proxy of expected error?

Expected risk

More generally, for a loss function L(y', y),

- e.g. $L(y', y) = \mathbb{I}[y' \neq y]$, called *0-1 loss*.
- many more other losses as we will see.

Expected risk

More generally, for a loss function L(y', y),

- e.g. $L(y', y) = \mathbb{I}[y' \neq y]$, called *0-1 loss*.
- many more other losses as we will see.

the *expected risk* of f is defined as

$$R(f) = \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} L(f(\boldsymbol{x}), y)$$

Expected risk

More generally, for a loss function L(y',y),

- e.g. $L(y', y) = \mathbb{I}[y' \neq y]$, called *0-1 loss*. **Default**
- many more other losses as we will see.

the *expected risk* of f is defined as

$$R(f) = \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} L(f(\boldsymbol{x}), y)$$

What should we predict for x, knowing $\mathcal{P}(y|x)$?

Step 2: The ideal classifier

Bayes optimal classifier

What should we predict for x, knowing $\mathcal{P}(y|x)$?

Bayes optimal classifier: $f^*(\boldsymbol{x}) = \operatorname{argmax}_{c \in [C]} \mathcal{P}(c|\boldsymbol{x}).$

What should we predict for x, knowing $\mathcal{P}(y|x)$?

Bayes optimal classifier: $f^*(\boldsymbol{x}) = \operatorname{argmax}_{c \in [C]} \mathcal{P}(c|\boldsymbol{x}).$

The optimal risk: $R(f^*) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}}[1 - \max_{c \in [C]} \mathcal{P}(c|\boldsymbol{x})]$ where $\mathcal{P}_{\boldsymbol{x}}$ is the marginal distribution of \boldsymbol{x} .

What should we predict for x, knowing $\mathcal{P}(y|x)$?

Bayes optimal classifier: $f^*(\boldsymbol{x}) = \operatorname{argmax}_{c \in [C]} \mathcal{P}(c|\boldsymbol{x}).$

The optimal risk: $R(f^*) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}}[1 - \max_{c \in [C]} \mathcal{P}(c|\boldsymbol{x})]$ where $\mathcal{P}_{\boldsymbol{x}}$ is the marginal distribution of \boldsymbol{x} .

It is easy to show $R(f^*) \leq R(f)$ for any f.

What should we predict for x, knowing $\mathcal{P}(y|x)$?

Bayes optimal classifier: $f^*(\boldsymbol{x}) = \operatorname{argmax}_{c \in [C]} \mathcal{P}(c|\boldsymbol{x}).$

The optimal risk: $R(f^*) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}}[1 - \max_{c \in [C]} \mathcal{P}(c|\boldsymbol{x})]$ where $\mathcal{P}_{\boldsymbol{x}}$ is the marginal distribution of \boldsymbol{x} .

It is easy to show $R(f^*) \leq R(f)$ for any f.

For special case C = 2, let $\eta(\boldsymbol{x}) = \mathcal{P}(0|\boldsymbol{x})$, then

$$R(f^*) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}}[\min\{\eta(\boldsymbol{x}), 1 - \eta(\boldsymbol{x})\}].$$

Comparing NNC to Bayes optimal classifier

Come back to the question: how good is NNC?

Comparing NNC to Bayes optimal classifier

Come back to the question: how good is NNC?

Theorem (Cover and Hart, 1967)

Let f_N be the 1-nearest neighbor binary classifier using N training data points, we have (under mild conditions)

 $R(f^*) \leq \lim_{N \to \infty} \mathbb{E}[R(f_N)] \leq 2R(f^*)$

i.e., expected risk of NNC in the limit is at most twice of the best possible.

Comparing NNC to Bayes optimal classifier

Come back to the question: how good is NNC?

Theorem (Cover and Hart, 1967)

Let f_N be the 1-nearest neighbor binary classifier using N training data points, we have (under mild conditions)

$$R(f^*) \le \lim_{N \to \infty} \mathbb{E}[R(f_N)] \le 2R(f^*)$$

i.e., expected risk of NNC in the limit is at most twice of the best possible.

A pretty strong guarantee. In particular, $R(f^*) = 0$ implies $\mathbb{E}[R(f_N)] \to 0$.

Fact: $x_{{\sf nn}_{({m x})}} o {m x}$ as $N o \infty$ with probability 1

 $\mathbb{E}[R(f_N)] = \mathbb{E}[\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f_N(\boldsymbol{x}) \neq y]]$

$$\mathbb{E}[R(f_N)] = \mathbb{E}[\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f_N(\boldsymbol{x}) \neq y]] \\ \rightarrow \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} \mathbb{E}_{y, y'^{i.i.d.} \mathcal{P}(\cdot | \boldsymbol{x})}[\mathbb{I}[y' \neq y]]$$

$$\begin{split} \mathbb{E}[R(f_N)] &= \mathbb{E}[\mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{P}}\mathbb{I}[f_N(\boldsymbol{x}) \neq y]] \\ &\to \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}}\mathbb{E}_{y,y'^{i,\cdot,d}\cdot\mathcal{P}(\cdot|\boldsymbol{x})}[\mathbb{I}[y'\neq y]] \\ &= \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}}\mathbb{E}_{y,y'^{i,\cdot,d}\cdot\mathcal{P}(\cdot|\boldsymbol{x})}[\mathbb{I}[y'=0 \text{ and } y=1] + \mathbb{I}[y'=1 \text{ and } y=0]] \end{split}$$

$$\begin{split} \mathbb{E}[R(f_N)] &= \mathbb{E}[\mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{P}}\mathbb{I}[f_N(\boldsymbol{x}) \neq y]] \\ &\to \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}}\mathbb{E}_{y,y'^{i.\cdot,d.}\mathcal{P}(\cdot|\boldsymbol{x})}[\mathbb{I}[y' \neq y]] \\ &= \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}}\mathbb{E}_{y,y'^{i.\cdot,d.}\mathcal{P}(\cdot|\boldsymbol{x})}[\mathbb{I}[y' = 0 \text{ and } y = 1] + \mathbb{I}[y' = 1 \text{ and } y = 0]] \\ &= \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}}[\eta(\boldsymbol{x})(1 - \eta(\boldsymbol{x})) + (1 - \eta(\boldsymbol{x}))\eta(\boldsymbol{x})] \end{split}$$

$$\begin{split} \mathbb{E}[R(f_N)] &= \mathbb{E}[\mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{P}}\mathbb{I}[f_N(\boldsymbol{x}) \neq y]] \\ &\to \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}} \mathbb{E}_{y,y'} \mathbb{E}_{y,y'} \mathbb{I}[y' \neq y]] \\ &= \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}} \mathbb{E}_{y,y'} \mathbb{E}_{y,y'} \mathbb{I}[y' = 0 \text{ and } y = 1] + \mathbb{I}[y' = 1 \text{ and } y = 0]] \\ &= \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}} [\eta(\boldsymbol{x})(1 - \eta(\boldsymbol{x})) + (1 - \eta(\boldsymbol{x}))\eta(\boldsymbol{x})] \\ &= 2\mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}} [\eta(\boldsymbol{x})(1 - \eta(\boldsymbol{x}))] \end{split}$$

$$\begin{split} \mathbb{E}[R(f_N)] &= \mathbb{E}[\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f_N(\boldsymbol{x}) \neq y]] \\ &\to \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} \mathbb{E}_{y, y'^{i, \vdots, d} \cdot \mathcal{P}(\cdot | \boldsymbol{x})} [\mathbb{I}[y' \neq y]] \\ &= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} \mathbb{E}_{y, y'^{i, \vdots, d} \cdot \mathcal{P}(\cdot | \boldsymbol{x})} [\mathbb{I}[y' = 0 \text{ and } y = 1] + \mathbb{I}[y' = 1 \text{ and } y = 0]] \\ &= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} [\eta(\boldsymbol{x})(1 - \eta(\boldsymbol{x})) + (1 - \eta(\boldsymbol{x}))\eta(\boldsymbol{x})] \\ &= 2\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} [\eta(\boldsymbol{x})(1 - \eta(\boldsymbol{x}))] \\ &\leq 2\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} [\min\{\eta(\boldsymbol{x}), (1 - \eta(\boldsymbol{x}))\}] \end{split}$$

$$\begin{split} \mathbb{E}[R(f_N)] &= \mathbb{E}[\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f_N(\boldsymbol{x}) \neq y]] \\ &\to \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} \mathbb{E}_{\boldsymbol{y}, \boldsymbol{y'}^{i.i.d.} \mathcal{P}(\cdot | \boldsymbol{x})} [\mathbb{I}[\boldsymbol{y'} \neq \boldsymbol{y}]] \\ &= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} \mathbb{E}_{\boldsymbol{y}, \boldsymbol{y'}^{i.i.d.} \mathcal{P}(\cdot | \boldsymbol{x})} [\mathbb{I}[\boldsymbol{y'} = 0 \text{ and } \boldsymbol{y} = 1] + \mathbb{I}[\boldsymbol{y'} = 1 \text{ and } \boldsymbol{y} = 0]] \\ &= \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} [\eta(\boldsymbol{x})(1 - \eta(\boldsymbol{x})) + (1 - \eta(\boldsymbol{x}))\eta(\boldsymbol{x})] \\ &= 2\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} [\eta(\boldsymbol{x})(1 - \eta(\boldsymbol{x}))] \\ &\leq 2\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_{\boldsymbol{x}}} [\min\{\eta(\boldsymbol{x}), (1 - \eta(\boldsymbol{x}))\}] \\ &= 2R(f^*) \end{split}$$

Fact: $x_{\mathsf{nn}_{(x)}} o x$ as $N o \infty$ with probability 1

$$\begin{split} \mathbb{E}[R(f_N)] &= \mathbb{E}[\mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{P}}\mathbb{I}[f_N(\boldsymbol{x}) \neq y]] \\ &\to \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}} \mathbb{E}_{y,y'^{i,i,d,}\mathcal{P}(\cdot|\boldsymbol{x})}[\mathbb{I}[y' \neq y]] \\ &= \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}} \mathbb{E}_{y,y'^{i,i,d,}\mathcal{P}(\cdot|\boldsymbol{x})}[\mathbb{I}[y' = 0 \text{ and } y = 1] + \mathbb{I}[y' = 1 \text{ and } y = 0]] \\ &= \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}}[\eta(\boldsymbol{x})(1 - \eta(\boldsymbol{x})) + (1 - \eta(\boldsymbol{x}))\eta(\boldsymbol{x})] \\ &= 2\mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}}[\eta(\boldsymbol{x})(1 - \eta(\boldsymbol{x}))] \\ &\leq 2\mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_{\boldsymbol{x}}}[\min\{\eta(\boldsymbol{x}), (1 - \eta(\boldsymbol{x}))\}] \\ &= 2R(f^*) \end{split}$$

This kind of ML theory is not covered/required in this course!