CSCI567 Machine Learning (Spring 2025)

Haipeng Luo

University of Southern California

Jan 24, 2025

Please enroll in Piazza (still missing some of you).

Please enroll in Piazza (still missing some of you).

HW1 to be released today.

Please enroll in Piazza (still missing some of you).

HW1 to be released today.

Programming project:

• invitation to enroll is out

Please enroll in Piazza (still missing some of you).

HW1 to be released today.

Programming project:

- invitation to enroll is out
- six tasks available now, four more to come

Outline

- Review of last lecture
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- Overfitting and preventing overfitting

Outline

- Review of last lecture
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- Overfitting and preventing overfitting

Multi-class classification

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{train}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{N}}, y_{\mathsf{N}})\}$
- ullet Each $x_n \in \mathbb{R}^{\mathsf{D}}$ is called a feature vector.
- Each $y_n \in [C] = \{1, 2, \dots, C\}$ is called a label/class/category.
- They are used to learn $f: \mathbb{R}^{D} \to [C]$ for future prediction.

Special case: binary classification

- Number of classes: C=2
- Conventional labels: $\{0,1\}$ or $\{-1,+1\}$

K-NNC: predict the majority label within the K-nearest neighbor set

Datasets

Training data

- N samples/instances: $\mathcal{D}^{ ext{TRAIN}} = \{(m{x}_1, y_1), (m{x}_2, y_2), \cdots, (m{x}_{\mathsf{N}}, y_{\mathsf{N}})\}$
- They are used to learn $f(\cdot)$

Test data

- ullet M samples/instances: $\mathcal{D}^{ ext{TEST}} = \{(m{x}_1, y_1), (m{x}_2, y_2), \cdots, (m{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used to evaluate how well $f(\cdot)$ will do.

Development/Validation data

- L samples/instances: $\mathcal{D}^{ ext{DEV}} = \{(m{x}_1, y_1), (m{x}_2, y_2), \cdots, (m{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyper-parameter(s).

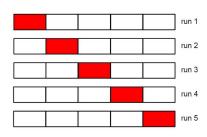
These three sets should *not* overlap!

S-fold Cross-validation

What if we do not have a development set?

- Split the training data into S equal parts.
- Use each part in turn as a development dataset and use the others as a training dataset.
- Choose the hyper-parameter leading to best average performance.

 $\mathsf{S}=5$: 5-fold cross validation



Special case: S = N, called leave-one-out.

High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the red part exactly?

High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

Today: from a simple example to a general recipe

Outline

- Review of last lecture
- 2 Linear regression
 - Motivation
 - Setup and Algorithm
 - Discussions
- 3 Linear regression with nonlinear basis
- 4 Overfitting and preventing overfitting

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

Key difference from classification

- continuous vs discrete
- measure *prediction errors* differently.
- lead to quite different learning algorithms.

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

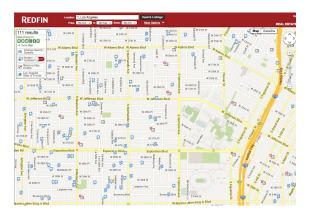
Key difference from classification

- continuous vs discrete
- measure *prediction errors* differently.
- lead to quite different learning algorithms.

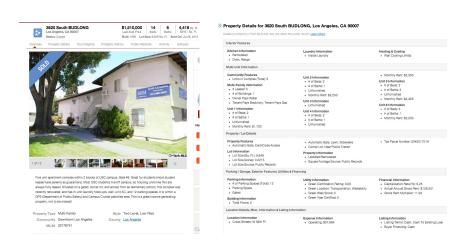
Linear Regression: regression with linear models

Ex: Predicting the sale price of a house

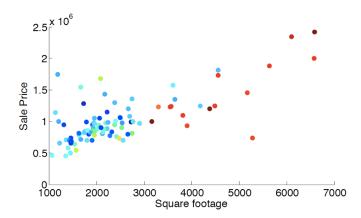
Retrieve historical sales records (training data)



Features used to predict

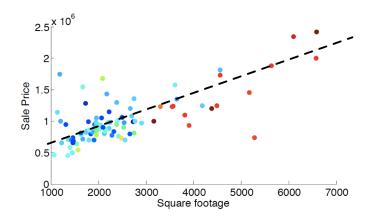


Correlation between square footage and sale price



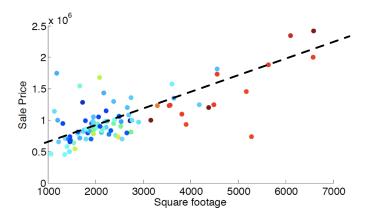
Possibly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense



Possibly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense (slope) (intercept)



How to measure error for one prediction?

• The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - squared error: (prediction sale price)² (most common)

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - *squared* error: (prediction sale price)² (most common)
 - or *absolute* error: | prediction sale price | (robust to outliers)

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - *squared* error: (prediction sale price)² (most common)
 - or *absolute* error: | prediction sale price | (robust to outliers)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error,

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - *squared* error: (prediction sale price)² (most common)
 - or absolute error: | prediction sale price | (robust to outliers)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - *squared* error: (prediction sale price)² (most common)
 - or *absolute* error: | prediction sale price | (robust to outliers)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

• test set, ideal but we cannot use test set while training

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - *squared* error: (prediction sale price)² (most common)
 - or *absolute* error: | prediction sale price | (robust to outliers)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

- test set, ideal but we cannot use test set while training
- training set √

Example

Predicted price = $price_per_sqft \times square_footage + fixed_expense$ one model: $price_per_sqft = 0.3K$, $fixed_expense = 210K$

sqft	sale price (K)	prediction (K)	squared error
2000	810	810	0
2100	907	840	67^2
1100	312	540	228^{2}
5500	2,600	1,860	740^2
		• • •	• • •
Total			$0 + 67^2 + 228^2 + 740^2 + \cdots$

Adjust price_per_sqft and fixed_expense such that the total squared error is minimized.

Input: $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Input: $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^{D} \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^{D} w_d x_d$

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w^T} x$ (superscript T stands for transpose),

Input: $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \boldsymbol{w^T} \boldsymbol{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias w_0

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \boldsymbol{w^T} x$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias w_0

NOTE: for notation convenience, very often we

ullet append 1 to each x as the first feature: $\tilde{\pmb{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}$

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^T x$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias w_0

NOTE: for notation convenience, very often we

- ullet append 1 to each x as the first feature: $\tilde{\pmb{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$, a concise representation of all D+1 parameters

Formal setup for linear regression

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w^T} x$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias w_0

NOTE: for notation convenience, very often we

- ullet append 1 to each x as the first feature: $ilde{m{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$, a concise representation of all D+1 parameters
- the model becomes simply $f(x) = \tilde{w}^T \tilde{x}$

Formal setup for linear regression

Input: $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^T x$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_D]^T$ (weights, weight vector, parameter vector, etc)
- bias w_0

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{x} = [1 \ x_1 \ x_2 \ \dots \ x_D]^T$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$, a concise representation of all D+1 parameters
- the model becomes simply $f(x) = \tilde{w}^T \tilde{x}$
- sometimes just use w, x, D for $\tilde{w}, \tilde{x}, D + 1!$

Minimize total squared error

$$\sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of $ilde{w}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of $ilde{w}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

ullet find $ilde{m{w}}^* = \mathop{\mathrm{argmin}}_{ ilde{m{w}} \in \mathbb{R}^{\mathsf{D}+1}} \mathrm{RSS}(ilde{m{w}})$, i.e. least squares solution (more generally called empirical risk minimizer)

Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of $ilde{w}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

- $oldsymbol{ ilde{w}}$ find $oldsymbol{ ilde{w}}^* = \mathop{\mathrm{argmin}}_{ ilde{w} \in \mathbb{R}^{\mathsf{D}+1}} \mathrm{RSS}(ilde{w})$, i.e. least squares solution (more generally called empirical risk minimizer)
- reduce machine learning to optimization

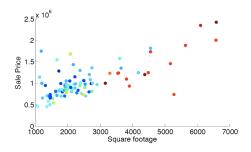
Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of $ilde{w}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

- find $\tilde{w}^* = \operatorname*{argmin}_{\tilde{w} \in \mathbb{R}^{D+1}} \mathrm{RSS}(\tilde{w})$, i.e. least squares solution (more generally called empirical risk minimizer)
- reduce machine learning to optimization
- in principle can apply any optimization algorithm, but linear regression admits a closed-form solution

Only one parameter w_0 : constant prediction $f(x) = w_0$



f is a horizontal line, where should it be?

$$RSS(w_0) = \sum_{n} (w_0 - y_n)^2$$

(it's a quadratic
$$aw_0^2 + bw_0 + c$$
)

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \qquad \text{(it's a } \textit{quadratic} \ aw_0^2 + bw_0 + c \text{)} \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt}. \end{split}$$

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a } \textit{quadratic } aw_0^2 + bw_0 + c \text{)} \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt.} \\ &= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \mathrm{cnt.} \end{split}$$

Optimization objective becomes

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a } \textit{quadratic } aw_0^2 + bw_0 + c \text{)} \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt.} \\ &= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \mathrm{cnt.} \end{split}$$

It is clear that $w_0^* = \frac{1}{N} \sum_n y_n$, i.e. the average

Optimization objective becomes

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a } \textit{quadratic } aw_0^2 + bw_0 + c \text{)} \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt.} \\ &= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \mathrm{cnt.} \end{split}$$

It is clear that $w_0^* = \frac{1}{N} \sum_n y_n$, i.e. the average

Exercise: what if we use absolute error instead of squared error?

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

Optimization objective becomes

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0\\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \sum_{n} (w_0 + w_1 x_n - y_n) = 0\\ \sum_{n} (w_0 + w_1 x_n - y_n) x_n = 0$$

Optimization objective becomes

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0\\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \begin{cases} \sum_n (w_0 + w_1 x_n - y_n) = 0\\ \sum_n (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

$$\Rightarrow \begin{array}{ll} Nw_0 + w_1 \sum_n x_n &= \sum_n y_n \\ w_0 \sum_n x_n + w_1 \sum_n x_n^2 &= \sum_n y_n x_n \end{array} \quad \text{(a linear system)}$$

Optimization objective becomes

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \mathrm{RSS}(\vec{w})}{\partial w_0} = 0 \\ \frac{\partial \mathrm{RSS}(\vec{w})}{\partial w_1} = 0 \end{cases} \Rightarrow \frac{\sum_n (w_0 + w_1 x_n - y_n)}{\sum_n (w_0 + w_1 x_n - y_n) x_n} = 0$$

$$\Rightarrow \frac{N w_0 + w_1 \sum_n x_n}{w_0 \sum_n x_n + w_1 \sum_n x_n^2} = \frac{\sum_n y_n}{\sum_n y_n x_n} \quad \text{(a linear system)}$$

$$\Rightarrow \left(\frac{N}{\sum_n x_n} \sum_n \frac{x_n}{x_n^2} \right) \left(\frac{w_0}{w_1} \right) = \left(\frac{\sum_n y_n}{\sum_n x_n y_n} \right)$$

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

Are stationary points minimizers?

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

Are stationary points minimizers?

ullet yes for **convex** objectives (RSS is convex in $ilde{w})$

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

Are stationary points minimizers?

- ullet yes for **convex** objectives (RSS is convex in $ilde{w}$)
- not true in general

Objective:
$$RSS(\tilde{\boldsymbol{w}}) = \sum (\tilde{\boldsymbol{x}}_n^T \tilde{\boldsymbol{w}} - y_n)^2$$

Objective:
$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{T} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Calculate the gradient (multivariate calculus):

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n})$$

Objective:
$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_n^T \tilde{\boldsymbol{w}} - y_n)^2$$

Calculate the gradient (multivariate calculus):

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) = 2\left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}}\right) \tilde{\boldsymbol{w}} - 2\sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$

Objective:
$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_n^T \tilde{\boldsymbol{w}} - y_n)^2$$

Calculate the gradient (multivariate calculus):

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) = 2\left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}}\right) \tilde{\boldsymbol{w}} - 2\sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$

A compact form:

$$RSS(\tilde{\boldsymbol{w}}) = \|\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\|_2^2$$

where
$$ilde{m{X}} = \left(egin{array}{c} ilde{m{x}}_1^{\mathrm{T}} \\ ilde{m{x}}_2^{\mathrm{T}} \\ dots \\ ilde{m{x}}_{\mathsf{N}}^{\mathrm{T}} \end{array}
ight) \in \mathbb{R}^{\mathsf{N} imes (D+1)}, \quad m{y} = \left(egin{array}{c} y_1 \\ y_2 \\ dots \\ y_{\mathsf{N}} \end{array}
ight) \in \mathbb{R}^{\mathsf{N}}$$

Objective:
$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_n^T \tilde{\boldsymbol{w}} - y_n)^2$$

Calculate the gradient (multivariate calculus):

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) = 2\left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}}\right) \tilde{\boldsymbol{w}} - 2\sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$

A compact form:

$$\mathrm{RSS}(\tilde{\boldsymbol{w}}) = \|\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\|_2^2 \quad \text{and} \quad \nabla \mathrm{RSS}(\tilde{\boldsymbol{w}}) = 2(\tilde{\boldsymbol{X}}^\mathrm{T}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - 2\tilde{\boldsymbol{X}}^\mathrm{T}\boldsymbol{y}$$

where
$$ilde{m{X}} = \left(egin{array}{c} ilde{m{x}}_1^{\mathrm{T}} \\ ilde{m{x}}_2^{\mathrm{T}} \\ dots \\ ilde{m{x}}_{\mathsf{N}}^{\mathrm{T}} \end{array}
ight) \in \mathbb{R}^{\mathsf{N} imes (D+1)}, \quad m{y} = \left(egin{array}{c} y_1 \\ y_2 \\ dots \\ y_{\mathsf{N}} \end{array}
ight) \in \mathbb{R}^{\mathsf{N}}$$

$$(\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}})\tilde{m{w}} - \tilde{m{X}}^{\mathrm{T}}m{y} = m{0} \quad \Rightarrow \quad \tilde{m{w}}^* = (\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}})^{-1}\tilde{m{X}}^{\mathrm{T}}m{y}$$

assuming $ilde{X}^{\mathrm{T}} ilde{X}$ (covariance matrix) is invertible for now.

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^* = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{X}^{\mathrm{T}} ilde{X}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{w}^*$ is the minimizer of RSS.

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^* = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{X}^{\mathrm{T}} ilde{X}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{w}^*$ is the minimizer of RSS.

Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^* = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

Again by convexity \tilde{w}^* is the minimizer of RSS.

Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

when D = 0:
$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}=\frac{1}{N}$$
, $\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}=\sum_{n}y_{n}$

$$RSS(\tilde{\boldsymbol{w}}) = \|\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\|_2^2$$

$$RSS(\tilde{\boldsymbol{w}}) = \|\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2}$$
$$= \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{T} \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right)$$

$$egin{aligned} & ext{RSS}(ilde{oldsymbol{w}}) = \| ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{y}\|_2^2 \ &= \left(ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{y}
ight)^{ ext{T}}\left(ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{y}^{ ext{T}} ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{y}^{ ext{T}} ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{oldsymbol{w}}^{ ext{T}} ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{oldsymbol{w}}^{ ext{T}} ilde{oldsymbol{X}} ilde{oldsymbol{w}} + \operatorname{cnt}. \end{aligned}$$

$$\begin{split} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \|\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\|_2^2 \\ &= \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} + \operatorname{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right) + \operatorname{cnt.} \end{split}$$

$$\begin{split} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \|\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\|_2^2 \\ &= \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} + \mathrm{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right) + \mathrm{cnt.} \end{split}$$

Note:
$$\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)\boldsymbol{u}=\left(\tilde{\boldsymbol{X}}\boldsymbol{u}\right)^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{u}=\|\tilde{\boldsymbol{X}}\boldsymbol{u}\|_{2}^{2}\geq0$$
 and is 0 if $\boldsymbol{u}=0$.

$$\begin{split} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \|\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\|_2^2 \\ &= \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} + \mathrm{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right) + \mathrm{cnt.} \end{split}$$

Note:
$$\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)\boldsymbol{u} = \left(\tilde{\boldsymbol{X}}\boldsymbol{u}\right)^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{u} = \|\tilde{\boldsymbol{X}}\boldsymbol{u}\|_{2}^{2} \geq 0$$
 and is 0 if $\boldsymbol{u} = 0$. So $\tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$ is the minimizer.

Computational complexity

Bottleneck of computing

$$ilde{m{w}}^* = \left(ilde{m{X}}^{ ext{T}} ilde{m{X}}
ight)^{-1} ilde{m{X}}^{ ext{T}}m{y}$$

is to invert the matrix $\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}} \in \mathbb{R}^{(\mathsf{D}+1)\times(\mathsf{D}+1)}$

• naively need $O(\mathsf{D}^3)$ time

Computational complexity

Bottleneck of computing

$$ilde{oldsymbol{w}}^* = \left(ilde{oldsymbol{X}}^{\mathrm{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}^{\mathrm{T}}oldsymbol{y}$$

is to invert the matrix $\tilde{{m{X}}}^{\mathrm{T}} \tilde{{m{X}}} \in \mathbb{R}^{(\mathsf{D}+1) \times (\mathsf{D}+1)}$

- naively need $O(\mathsf{D}^3)$ time
- there are many faster approaches (such as conjugate gradient)

What does that imply?

What does that imply?

Recall
$$\left(ilde{m{X}}^{\mathrm{T}} ilde{m{X}}
ight) m{w}^* = ilde{m{X}}^{\mathrm{T}} m{y}.$$

What does that imply?

Recall
$$\left(ilde{m{X}}^{\mathrm{T}} ilde{m{X}}
ight)m{w}^* = ilde{m{X}}^{\mathrm{T}}m{y}$$
. If $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ not invertible, this equation has

no solution

What does that imply?

Recall $\left(ilde{m{X}}^{\mathrm{T}} ilde{m{X}}
ight)m{w}^* = ilde{m{X}}^{\mathrm{T}}m{y}$. If $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ not invertible, this equation has

- no solution
- or infinitely many solutions

What does that imply?

Recall $\left(ilde{m{X}}^{\mathrm{T}} ilde{m{X}}
ight)m{w}^* = ilde{m{X}}^{\mathrm{T}}m{y}$. If $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ not invertible, this equation has

- no solution (⇒ RSS has no minimizer? X)
- or infinitely many solutions (⇒ infinitely many minimizers √)

Why would that happen?

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Example:
$$D = N = 1$$

sqft	sale price	
1000	500K	

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Example:
$$D = N = 1$$

sqft	sale price	
1000	500K	

Any line passing this single point is a minimizer of RSS.

$$D = 1, N = 2$$

sqft	sale price
1000	500K
1000	600K

$$D = 1, N = 2$$

sqft	sale price
1000	500K
1000	600K

Any line passing the average is a minimizer of RSS.

$$D=1, N=2$$

sqft	sale price
1000	500K
1000	600K

Any line passing the average is a minimizer of RSS.

$$D = 2, N = 3$$
?

sqft	#bedroom	sale price
	**	•
1000	2	500K
1500	3	700K
2000	1	800K
2000	4	800K

$$D=1, N=2$$

sqft	sale price
1000	500K
1000	600K

Any line passing the average is a minimizer of RSS.

$$D = 2, N = 3$$
?

sqft	#bedroom	sale price
1000	2	500K
1500	3	700K
2000	4	800K

Again infinitely many minimizers.

How to resolve this issue?

Intuition: what does inverting $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ do?

eigendecomposition:
$$\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}} = m{U}^{\mathrm{T}} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} \end{bmatrix} m{U}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are **eigenvalues**.

How to resolve this issue?

Intuition: what does inverting $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ do?

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are **eigenvalues**.

i.e. just invert the eigenvalues

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix.

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix. Now it is invertible:

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I})^{-1} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \frac{1}{\lambda_{1} + \lambda} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_{2} + \lambda} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \frac{1}{\lambda_{\mathsf{D}} + \lambda} & 0 \\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathsf{D}+1} + \lambda} \end{bmatrix} \boldsymbol{U}$$

The solution becomes

$$\tilde{\boldsymbol{w}}^* = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I}\right)^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

The solution becomes

$$\tilde{\boldsymbol{w}}^* = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I}\right)^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

• not a minimizer of the original RSS

The solution becomes

$$\tilde{m{w}}^* = \left(\tilde{m{X}}^{\mathrm{T}} \tilde{m{X}} + \lambda m{I} \right)^{-1} \tilde{m{X}}^{\mathrm{T}} m{y}$$

- not a minimizer of the original RSS
- more than an arbitrary hack (as we will see soon)

The solution becomes

$$\tilde{m{w}}^* = \left(\tilde{m{X}}^{\mathrm{T}} \tilde{m{X}} + \lambda m{I} \right)^{-1} \tilde{m{X}}^{\mathrm{T}} m{y}$$

- not a minimizer of the original RSS
- more than an arbitrary hack (as we will see soon)

 λ is a *hyper-parameter*, can be tuned by cross-validation.

Comparison to NNC

Non-parametric versus Parametric

- Non-parametric methods: the size of the model *grows* with the size of the training set.
 - e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.

Comparison to NNC

Non-parametric versus Parametric

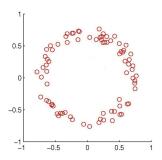
- **Non-parametric methods**: the size of the model *grows* with the size of the training set.
 - e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.
- Parametric methods: the size of the model does *not grow* with the size of the training set N.
 - ullet e.g. linear regression, D + 1 parameters, independent of N.

Outline

- Review of last lecture
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- Overfitting and preventing overfitting

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data



Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^D
ightarrowoldsymbol{z}\in\mathbb{R}^M$$

to transform the data to a more complicated feature space

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^D
ightarrowoldsymbol{z}\in\mathbb{R}^M$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

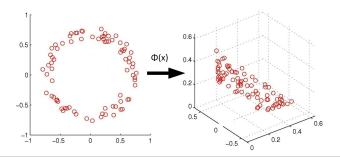
Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}): oldsymbol{x} \in \mathbb{R}^D
ightarrow oldsymbol{z} \in \mathbb{R}^M$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).



Regression with nonlinear basis

Model:
$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$$
 where $\boldsymbol{w} \in \mathbb{R}^{M}$

Regression with nonlinear basis

Model:
$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$$
 where $\boldsymbol{w} \in \mathbb{R}^{M}$

Objective:

$$RSS(\boldsymbol{w}) = \sum_{n} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n})^{2}$$

Regression with nonlinear basis

Model: $f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^{M}$

Objective:

$$RSS(\boldsymbol{w}) = \sum_{n} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n})^{2}$$

Similar least square solution:

$$m{w}^* = \left(m{\Phi}^{ ext{T}}m{\Phi}
ight)^{-1}m{\Phi}^{ ext{T}}m{y} \quad ext{where} \quad m{\Phi} = \left(egin{array}{c} m{\phi}(m{x}_1)^{ ext{T}} \ m{\phi}(m{x}_2)^{ ext{T}} \ dots \ m{\phi}(m{x}_N)^{ ext{T}} \end{array}
ight) \in \mathbb{R}^{N imes M}$$

Example

Polynomial basis functions for D=1

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Example

Polynomial basis functions for D=1

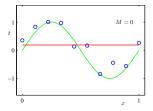
$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Learning a linear model in the new space

= learning an M-degree polynomial model in the original space

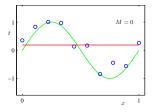
Example

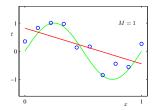
Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):



Example

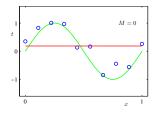
Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):

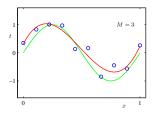


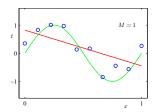


Example

Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):







Why nonlinear?

Can I use a fancy linear feature map?

$$m{\phi}(m{x}) = \left[egin{array}{c} x_1 - x_2 \ 3x_4 - x_3 \ 2x_1 + x_4 + x_5 \ dots \end{array}
ight] = m{A}m{x} \quad ext{ for some } m{A} \in \mathbb{R}^{\mathsf{M} imes \mathsf{D}}$$

Why nonlinear?

Can I use a fancy linear feature map?

$$oldsymbol{\phi}(oldsymbol{x}) = \left[egin{array}{c} x_1 - x_2 \ 3x_4 - x_3 \ 2x_1 + x_4 + x_5 \ dots \end{array}
ight] = oldsymbol{A} oldsymbol{x} \quad ext{ for some } oldsymbol{A} \in \mathbb{R}^{\mathsf{M} imes \mathsf{D}}$$

No, it basically does nothing since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w'} \in \mathsf{Im}(\boldsymbol{A}^{\mathsf{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left(\boldsymbol{w'}^{\mathsf{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

Why nonlinear?

Can I use a fancy linear feature map?

$$oldsymbol{\phi}(oldsymbol{x}) = \left[egin{array}{c} x_1 - x_2 \ 3x_4 - x_3 \ 2x_1 + x_4 + x_5 \ dots \end{array}
ight] = oldsymbol{A} oldsymbol{x} \quad ext{ for some } oldsymbol{A} \in \mathbb{R}^{\mathsf{M} imes \mathsf{D}}$$

No, it basically does nothing since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w}' \in \mathsf{Im}(\boldsymbol{A}^{\mathsf{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left(\boldsymbol{w}'^{\mathsf{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

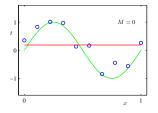
We will see more nonlinear mappings soon.

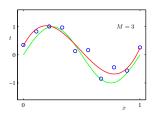
Outline

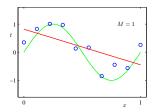
- Review of last lecture
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- Overfitting and preventing overfitting

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

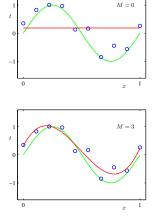


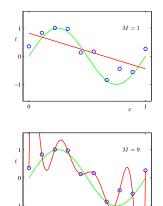




Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:





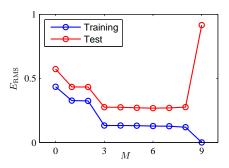
Underfitting and Overfitting

 $M \leq 2$ is *underfitting* the data

- large training error
- large test error

 $M \geq 9$ is *overfitting* the data

- small training error
- large test error



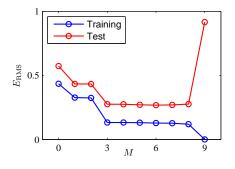
Underfitting and Overfitting

 $M \leq 2$ is *underfitting* the data

- large training error
- large test error

 $M \geq 9$ is *overfitting* the data

- small training error
- large test error



More complicated models ⇒ larger gap between training and test error

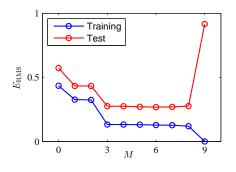
Underfitting and Overfitting

 $M \leq 2$ is *underfitting* the data

- large training error
- large test error

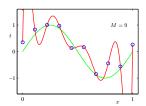
 $M \geq 9$ is *overfitting* the data

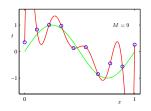
- small training error
- large test error

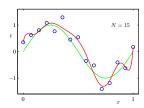


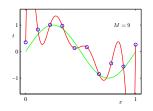
More complicated models ⇒ larger gap between training and test error

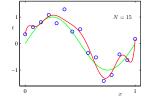
How to prevent overfitting?

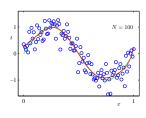














More data ⇒ smaller gap between training and test error

Method 2: control the model complexity

For polynomial basis, the **degree** M clearly controls the complexity

ullet use cross-validation to pick hyper-parameter M

Method 2: control the model complexity

For polynomial basis, the **degree** M clearly controls the complexity

ullet use cross-validation to pick hyper-parameter M

When M or in general Φ is fixed, are there still other ways to control complexity?

Magnitude of weights

Least square solution for the polynomial example:

	M=0	M = 1	M = 3	M = 9
$\overline{w_0}$	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Magnitude of weights

Least square solution for the polynomial example:

	M = 0	M = 1	M = 3	M = 9
$\overline{w_0}$	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Intuitively, large weights ⇒ more complex model

How to make w small?

Regularized linear regression: new objective

$$F(\boldsymbol{w}) = \mathrm{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

Goal: find $oldsymbol{w}^* = \operatorname{argmin}_w \mathcal{E}(oldsymbol{w})$

How to make w small?

Regularized linear regression: new objective

$$F(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

Goal: find $w^* = \operatorname{argmin}_w \mathcal{E}(w)$

- $R: \mathbb{R}^{\mathsf{D}} \to \mathbb{R}^+$ is the *regularizer*
 - ullet measure how complex the model w is, penalize complex models
 - common choices: $\|\boldsymbol{w}\|_2^2$, $\|\boldsymbol{w}\|_1$, etc.

How to make w small?

Regularized linear regression: new objective

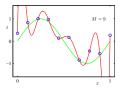
$$F(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

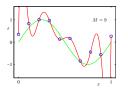
Goal: find $oldsymbol{w}^* = \operatorname{argmin}_w \mathcal{E}(oldsymbol{w})$

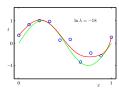
- $R: \mathbb{R}^{\mathsf{D}} \to \mathbb{R}^+$ is the *regularizer*
 - ullet measure how complex the model w is, penalize complex models
 - common choices: $\|\boldsymbol{w}\|_2^2$, $\|\boldsymbol{w}\|_1$, etc.
- $\lambda > 0$ is the regularization coefficient
 - $\lambda = 0$, no regularization
 - $\lambda \to +\infty$, $\boldsymbol{w} \to \operatorname{argmin}_w R(\boldsymbol{w})$
 - i.e. control trade-off between training error and complexity

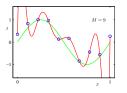
The effect of λ

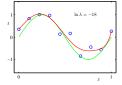
	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0}$	0.35	0.35	0.13
w_1	232.37	4.74	-0.05
w_2	-5321.83	-0.77	-0.06
w_3	48568.31	-31.97	-0.06
w_4	-231639.30	-3.89	-0.03
w_5	640042.26	55.28	-0.02
w_6	-1061800.52	41.32	-0.01
w_7	1042400.18	-45.95	-0.00
w_8	-557682.99	-91.53	0.00
w_9	125201.43	72.68	0.01

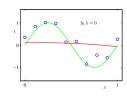


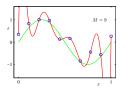


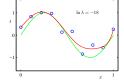


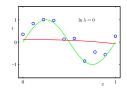


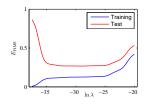












Simple for
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
:

$$F(w) = \text{RSS}(w) + \lambda ||w||_2^2 = ||\Phi w - y||_2^2 + \lambda ||w||_2^2$$

Simple for
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
:
$$F(\boldsymbol{w}) = \mathrm{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$

$$\nabla F(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

Simple for
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
:

$$F(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$

$$\nabla F(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

$$\Rightarrow (\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$

Simple for
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
:

$$F(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$

$$\nabla F(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\text{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\text{T}}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

$$\Rightarrow (\boldsymbol{\Phi}^{\text{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\text{T}}\boldsymbol{y}$$

$$\Rightarrow \boldsymbol{w}^* = (\boldsymbol{\Phi}^{\text{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\text{T}}\boldsymbol{y}$$

Simple for
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
:

$$F(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$

$$\nabla F(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\text{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\text{T}}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

$$\Rightarrow (\boldsymbol{\Phi}^{\text{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\text{T}}\boldsymbol{y}$$

$$\Rightarrow \boldsymbol{w}^* = (\boldsymbol{\Phi}^{\text{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\text{T}}\boldsymbol{y}$$

Note the same form as in the fix when X^TX is not invertible!

Simple for
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
:

$$F(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$

$$\nabla F(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1}\boldsymbol{\Phi}^{T}\boldsymbol{y}$$

Note the same form as in the fix when X^TX is not invertible!

For other regularizers, can apply general optimization algorithms (Lec 3).

Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where β is some hyper-parameter.

Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where β is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where β is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Choosing either λ or β can be done by cross-validation.

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

Important to understand the derivation than remembering the formula

$$oldsymbol{w}^* = \left(oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{\Phi} + \lambda oldsymbol{I}
ight)^{-1}oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

$$oldsymbol{w}^* = \left(oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{\Phi} + \lambda oldsymbol{I}
ight)^{-1}oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

Preventing Overfitting: more data + regularization

Recall the question

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

- 1. Pick a set of **models** \mathcal{F}
 - \bullet e.g. $\mathcal{F} = \{ f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$

- 1. Pick a set of **models** \mathcal{F}
 - \bullet e.g. $\mathcal{F} = \{ f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)

- 1. Pick a set of **models** \mathcal{F}
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

- 1. Pick a set of **models** \mathcal{F}
 - ullet e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

- 1. Pick a set of models \mathcal{F}
 - ullet e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)
- Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

ML becomes optimization