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Administrative stuff

Please enroll in Piazza (still missing some of you).

HW1 to be released today.

Programming project:

invitation to enroll is out

six tasks available now, four more to come
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Outline

1 Review of last lecture

2 Linear regression

3 Linear regression with nonlinear basis

4 Overfitting and preventing overfitting

3 / 54



Review of last lecture

Outline

1 Review of last lecture

2 Linear regression

3 Linear regression with nonlinear basis

4 Overfitting and preventing overfitting

4 / 54



Review of last lecture

Multi-class classification

Training data (set)

N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}
Each xn ∈ RD is called a feature vector.

Each yn ∈ [C] = {1, 2, · · · ,C} is called a label/class/category.

They are used to learn f : RD → [C] for future prediction.

Special case: binary classification

Number of classes: C = 2

Conventional labels: {0, 1} or {−1,+1}

K-NNC: predict the majority label within the K-nearest neighbor set
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Review of last lecture

Datasets

Training data

N samples/instances: Dtrain = {(x1, y1), (x2, y2), · · · , (xN, yN)}
They are used to learn f(·)

Test data

M samples/instances: Dtest = {(x1, y1), (x2, y2), · · · , (xM, yM)}
They are used to evaluate how well f(·) will do.

Development/Validation data

L samples/instances: Ddev = {(x1, y1), (x2, y2), · · · , (xL, yL)}
They are used to optimize hyper-parameter(s).

These three sets should not overlap!
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Review of last lecture

S-fold Cross-validation

What if we do not have a development set?

Split the training data into S
equal parts.

Use each part in turn as a
development dataset and use
the others as a training dataset.

Choose the hyper-parameter
leading to best average
performance.

S = 5: 5-fold cross validation

Special case: S = N, called leave-one-out.
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Review of last lecture

High level picture

Typical steps of developing a machine learning system:

Collect data, split into training, development, and test sets.

Train a model with a machine learning algorithm. Most often we
apply cross-validation to tune hyper-parameters.

Evaluate using the test data and report performance.

Use the model to predict future/make decisions.

How to do the red part exactly?

Today: from a simple example to a general recipe
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Linear regression

Outline

1 Review of last lecture

2 Linear regression
Motivation
Setup and Algorithm
Discussions

3 Linear regression with nonlinear basis

4 Overfitting and preventing overfitting
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Linear regression Motivation

Regression

Predicting a continuous outcome variable using past observations

Predicting future temperature (last lecture)

Predicting the amount of rainfall

Predicting the demand of a product

Predicting the sale price of a house

...

Key difference from classification

continuous vs discrete

measure prediction errors differently.

lead to quite different learning algorithms.

Linear Regression: regression with linear models
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Linear regression Motivation

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)
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Linear regression Motivation

Features used to predict
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Linear regression Motivation

Correlation between square footage and sale price

13 / 54



Linear regression Motivation

Possibly linear relationship

Sale price ≈ price per sqft × square footage + fixed expense

(slope) (intercept)
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Linear regression Motivation

How to learn the unknown parameters?

How to measure error for one prediction?

The classification error (0-1 loss, i.e. right or wrong) is inappropriate
for continuous outcomes.

We can look at

squared error: (prediction - sale price)2 (most common)

or absolute error: | prediction - sale price | (robust to outliers)

Goal: pick the model (unknown parameters) that minimizes the
average/total prediction error, but on what set?

test set, ideal but we cannot use test set while training

training set ✓
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Linear regression Motivation

Example

Predicted price = price per sqft × square footage + fixed expense

one model: price per sqft = 0.3K, fixed expense = 210K

sqft sale price (K) prediction (K) squared error

2000 810 810 0

2100 907 840 672

1100 312 540 2282

5500 2,600 1,860 7402

· · · · · · · · · · · ·
Total 0 + 672 + 2282 + 7402 + · · ·

Adjust price per sqft and fixed expense such that the total squared error is
minimized.
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Linear regression Setup and Algorithm

Formal setup for linear regression

Input: x ∈ RD (features, covariates, context, etc)

Output: y ∈ R (responses, targets, outcomes, etc)

Training data: D = {(xn, yn), n = 1, 2, . . . ,N}

Linear model: f : RD → R, with f(x) = w0 +
∑D

d=1wdxd= w0 +wTx
(superscript T stands for transpose), i.e. a hyper-plane parametrized by

w = [w1 w2 · · · wD]
T (weights, weight vector, parameter vector, etc)

bias w0

NOTE: for notation convenience, very often we

append 1 to each x as the first feature: x̃ = [1 x1 x2 . . . xD]
T

let w̃ = [w0 w1 w2 · · · wD]
T, a concise representation of all D + 1

parameters
the model becomes simply f(x) = w̃Tx̃
sometimes just use w,x,D for w̃, x̃,D+ 1!
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Linear regression Setup and Algorithm

Goal

Minimize total squared error

Residual Sum of Squares (RSS), a function of w̃

RSS(w̃) =

∑
n

(f(xn)− yn)
2 =

∑
n

(x̃T
n w̃ − yn)

2

find w̃∗ = argmin
w̃∈RD+1

RSS(w̃), i.e. least squares solution (more

generally called empirical risk minimizer)

reduce machine learning to optimization

in principle can apply any optimization algorithm, but linear
regression admits a closed-form solution
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Linear regression Setup and Algorithm

Warm-up: D = 0

Only one parameter w0: constant prediction f(x) = w0

f is a horizontal line, where should it be?
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Linear regression Setup and Algorithm

Warm-up: D = 0

Optimization objective becomes

RSS(w0) =
∑
n

(w0 − yn)
2 (it’s a quadratic aw2

0 + bw0 + c)

= Nw2
0 − 2

(∑
n

yn

)
w0 + cnt.

= N

(
w0 −

1

N

∑
n

yn

)2

+ cnt.

It is clear that w∗
0 = 1

N

∑
n yn, i.e. the average

Exercise: what if we use absolute error instead of squared error?
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Linear regression Setup and Algorithm

Warm-up: D = 1

Optimization objective becomes

RSS(w̃) =
∑
n

(w0 + w1xn − yn)
2

General approach: find stationary points, i.e., points with zero gradient{
∂RSS(w̃)

∂w0
= 0

∂RSS(w̃)
∂w1

= 0
⇒

∑
n(w0 + w1xn − yn) = 0∑
n(w0 + w1xn − yn)xn = 0

⇒ Nw0 + w1
∑

n xn =
∑

n yn
w0
∑

n xn + w1
∑

n x
2
n =

∑
n ynxn

(a linear system)

⇒
(

N
∑

n xn∑
n xn

∑
n x

2
n

)(
w0

w1

)
=

( ∑
n yn∑

n xnyn

)
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∑
n ynxn

(a linear system)

⇒
(

N
∑

n xn∑
n xn

∑
n x

2
n

)(
w0

w1

)
=

( ∑
n yn∑

n xnyn

)
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Linear regression Setup and Algorithm

Least square solution for D = 1

⇒
(

w∗
0

w∗
1

)
=

(
N

∑
n xn∑

n xn
∑

n x
2
n

)−1( ∑
n yn∑

n xnyn

)
(assuming the matrix is invertible)

Are stationary points minimizers?

yes for convex objectives (RSS is convex in w̃)

not true in general
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Linear regression Setup and Algorithm

General least square solution

Objective: RSS(w̃) =
∑
n

(x̃T
n w̃ − yn)

2

Calculate the gradient (multivariate calculus):

∇RSS(w̃) = 2
∑
n

x̃n(x̃
T
n w̃ − yn)

= 2

(∑
n

x̃nx̃
T
n

)
w̃ − 2

∑
n

x̃nyn

A compact form:

RSS(w̃) = ∥X̃w̃ − y∥22

and ∇RSS(w̃) = 2(X̃TX̃)w̃ − 2X̃Ty

where X̃ =


x̃T
1

x̃T
2
...
x̃T
N

 ∈ RN×(D+1), y =


y1
y2
...
yN

 ∈ RN
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Linear regression Setup and Algorithm

General least square solution

(X̃TX̃)w̃ − X̃Ty = 0 ⇒ w̃∗ = (X̃TX̃)−1X̃Ty

assuming X̃TX̃ (covariance matrix) is invertible for now.

Again by convexity w̃∗ is the minimizer of RSS.

Verify the solution when D = 1:

X̃TX̃ =

(
1 1 · · · 1
x1 x2 · · · xN

)
1 x1
1 x2
· · · · · ·
1 xN

 =

(
N

∑
n xn∑

n xn
∑

n x
2
n

)

when D = 0: (X̃TX̃)−1 = 1
N , X̃Ty =

∑
n yn
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Linear regression Setup and Algorithm

Another approach

RSS is a quadratic, so let’s complete the square:

RSS(w̃) = ∥X̃w̃ − y∥22

=
(
X̃w̃ − y

)T (
X̃w̃ − y

)
= w̃TX̃TX̃w̃ − yTX̃w̃ − w̃TX̃Ty + cnt.

=
(
w̃ − (X̃TX̃)−1X̃Ty

)T (
X̃TX̃

)(
w̃ − (X̃TX̃)−1X̃Ty

)
+ cnt.

Note: uT
(
X̃TX̃

)
u =

(
X̃u

)T
X̃u = ∥X̃u∥22 ≥ 0 and is 0 if u = 0.

So w̃∗ = (X̃TX̃)−1X̃Ty is the minimizer.
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Linear regression Discussions

Computational complexity

Bottleneck of computing

w̃∗ =
(
X̃TX̃

)−1
X̃Ty

is to invert the matrix X̃TX̃ ∈ R(D+1)×(D+1)

naively need O(D3) time

there are many faster approaches (such as conjugate gradient)
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Linear regression Discussions

What if X̃TX̃ is not invertible

What does that imply?

Recall
(
X̃TX̃

)
w∗ = X̃Ty.

If X̃TX̃ not invertible, this equation has

no solution

(⇒ RSS has no minimizer? ✗)

or infinitely many solutions

(⇒ infinitely many minimizers ✓)
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Linear regression Discussions

What if X̃TX̃ is not invertible

Why would that happen?

One situation: N < D+1, i.e. not enough data to estimate all parameters.

Example: D = N = 1

sqft sale price

1000 500K

Any line passing this single point is a minimizer of RSS.

28 / 54



Linear regression Discussions

What if X̃TX̃ is not invertible

Why would that happen?

One situation: N < D+1, i.e. not enough data to estimate all parameters.

Example: D = N = 1

sqft sale price

1000 500K

Any line passing this single point is a minimizer of RSS.

28 / 54



Linear regression Discussions

What if X̃TX̃ is not invertible

Why would that happen?

One situation: N < D+1, i.e. not enough data to estimate all parameters.

Example: D = N = 1

sqft sale price

1000 500K

Any line passing this single point is a minimizer of RSS.

28 / 54



Linear regression Discussions

What if X̃TX̃ is not invertible

Why would that happen?

One situation: N < D+1, i.e. not enough data to estimate all parameters.

Example: D = N = 1

sqft sale price

1000 500K

Any line passing this single point is a minimizer of RSS.

28 / 54



Linear regression Discussions

How about the following?

D = 1,N = 2

sqft sale price

1000 500K

1000 600K

Any line passing the average is a minimizer of RSS.

D = 2,N = 3?

sqft #bedroom sale price

1000 2 500K

1500 3 700K

2000 4 800K

Again infinitely many minimizers.
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Linear regression Discussions

How to resolve this issue?

Intuition: what does inverting X̃TX̃ do?

eigendecomposition: X̃TX̃ = UT


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

...
0 · · · λD 0
0 · · · 0 λD+1

U

where λ1 ≥ λ2 ≥ · · ·λD+1 ≥ 0 are eigenvalues.

inverse: (X̃TX̃)−1 = UT



1
λ1

0 · · · 0

0 1
λ2

· · · 0
...

...
...

...
0 · · · 1

λD
0

0 · · · 0 1
λD+1

U

i.e. just invert the eigenvalues
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Linear regression Discussions

How to solve this problem?

Non-invertible ⇒ some eigenvalues are 0.

One natural fix: add something positive

X̃TX̃ + λI = UT


λ1 + λ 0 · · · 0

0 λ2 + λ · · · 0
...

...
...

...
0 · · · λD + λ 0
0 · · · 0 λD+1 + λ

U

where λ > 0 and I is the identity matrix. Now it is invertible:

(X̃TX̃ + λI)−1 = UT



1
λ1+λ 0 · · · 0

0 1
λ2+λ · · · 0

...
...

...
...

0 · · · 1
λD+λ 0

0 · · · 0 1
λD+1+λ

U
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Linear regression Discussions

Fix the problem

The solution becomes

w̃∗ =
(
X̃TX̃ + λI

)−1
X̃Ty

not a minimizer of the original RSS

more than an arbitrary hack (as we will see soon)

λ is a hyper-parameter, can be tuned by cross-validation.
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Linear regression Discussions

Comparison to NNC

Non-parametric versus Parametric

Non-parametric methods: the size of the model grows with the size
of the training set.

e.g. NNC, the training set itself needs to be kept in order to predict.
Thus, the size of the model is the size of the training set.

Parametric methods: the size of the model does not grow with the
size of the training set N.

e.g. linear regression, D+ 1 parameters, independent of N.
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Linear regression with nonlinear basis

Outline

1 Review of last lecture

2 Linear regression

3 Linear regression with nonlinear basis

4 Overfitting and preventing overfitting
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Linear regression with nonlinear basis

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data
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Linear regression with nonlinear basis

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

ϕ(x) : x ∈ RD → z ∈ RM

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for
the new feature space).
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Linear regression with nonlinear basis

Regression with nonlinear basis

Model: f(x) = wTϕ(x) where w ∈ RM

Objective:

RSS(w) =
∑
n

(
wTϕ(xn)− yn

)2
Similar least square solution:

w∗ =
(
ΦTΦ

)−1
ΦTy where Φ =


ϕ(x1)

T

ϕ(x2)
T

...
ϕ(xN )T

 ∈ RN×M
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Linear regression with nonlinear basis

Example

Polynomial basis functions for D = 1

ϕ(x) =


1
x
x2

...
xM

 ⇒ f(x) = w0 +

M∑
m=1

wmxm

Learning a linear model in the new space
= learning an M -degree polynomial model in the original space
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Linear regression with nonlinear basis

Example

Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):

x
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Linear regression with nonlinear basis

Why nonlinear?

Can I use a fancy linear feature map?

ϕ(x) =


x1 − x2
3x4 − x3

2x1 + x4 + x5
...

 = Ax for some A ∈ RM×D

No, it basically does nothing since

min
w∈RM

∑
n

(
wTAxn − yn

)2
= min

w′∈Im(AT)⊂RD

∑
n

(
w′Txn − yn

)2

We will see more nonlinear mappings soon.
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Overfitting and preventing overfitting

Outline

1 Review of last lecture

2 Linear regression

3 Linear regression with nonlinear basis

4 Overfitting and preventing overfitting
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Overfitting and preventing overfitting

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:
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Overfitting and preventing overfitting

Underfitting and Overfitting

M ≤ 2 is underfitting the data

large training error

large test error

M ≥ 9 is overfitting the data

small training error

large test error M

E
R
M
S

 

 

0 3 6 9
0

0.5

1
Training
Test

More complicated models ⇒ larger gap between training and test error

How to prevent overfitting?
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Overfitting and preventing overfitting

Method 1: use more training data

The more, the merrier
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More data ⇒ smaller gap between training and test error
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Overfitting and preventing overfitting

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

use cross-validation to pick hyper-parameter M

When M or in general Φ is fixed, are there still other ways to control
complexity?
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Overfitting and preventing overfitting

Magnitude of weights

Least square solution for the polynomial example:

M = 0 M = 1 M = 3 M = 9

w0 0.19 0.82 0.31 0.35
w1 -1.27 7.99 232.37
w2 -25.43 -5321.83
w3 17.37 48568.31
w4 -231639.30
w5 640042.26
w6 -1061800.52
w7 1042400.18
w8 -557682.99
w9 125201.43

Intuitively, large weights ⇒ more complex model
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Overfitting and preventing overfitting

How to make w small?

Regularized linear regression: new objective

F (w) = RSS(w) + λR(w)

Goal: find w∗ = argminw E(w)

R : RD → R+ is the regularizer

measure how complex the model w is, penalize complex models

common choices: ∥w∥22, ∥w∥1, etc.

λ > 0 is the regularization coefficient

λ = 0, no regularization

λ → +∞, w → argminw R(w)

i.e. control trade-off between training error and complexity
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Overfitting and preventing overfitting

The effect of λ

when we increase regularization coefficient λ

lnλ = −∞ lnλ = −18 lnλ = 0

w0 0.35 0.35 0.13
w1 232.37 4.74 -0.05
w2 -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.06
w4 -231639.30 -3.89 -0.03
w5 640042.26 55.28 -0.02
w6 -1061800.52 41.32 -0.01
w7 1042400.18 -45.95 -0.00
w8 -557682.99 -91.53 0.00
w9 125201.43 72.68 0.01
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Overfitting and preventing overfitting

The trade-off

when we increase regularization coefficient λ
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Overfitting and preventing overfitting

How to solve the new objective?

Simple for R(w) = ∥w∥22:

F (w) = RSS(w) + λ∥w∥22 = ∥Φw − y∥22 + λ∥w∥22

∇F (w) = 2(ΦTΦw −ΦTy) + 2λw = 0

⇒
(
ΦTΦ+ λI

)
w = ΦTy

⇒ w∗ =
(
ΦTΦ+ λI

)−1
ΦTy

Note the same form as in the fix when XTX is not invertible!

For other regularizers, can apply general optimization algorithms (Lec 3).
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Overfitting and preventing overfitting

Equivalent form

Regularization is also sometimes formulated as

argmin
w

RSS(w) subject to R(w) ≤ β

where β is some hyper-parameter.

Finding the solution becomes a constrained optimization problem.

Choosing either λ or β can be done by cross-validation.
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Overfitting and preventing overfitting

Summary

w∗ =
(
ΦTΦ+ λI

)−1
ΦTy

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

Preventing Overfitting: more data + regularization
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Overfitting and preventing overfitting

Recall the question

Typical steps of developing a machine learning system:

Collect data, split into training, development, and test sets.

Train a model with a machine learning algorithm. Most often we
apply cross-validation to tune hyper-parameters.

Evaluate using the test data and report performance.

Use the model to predict future/make decisions.

How to do the red part exactly?
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Overfitting and preventing overfitting

General idea to derive ML algorithms

1. Pick a set of models F
e.g. F = {f(x) = wTx | w ∈ RD}
e.g. F = {f(x) = wTΦ(x) | w ∈ RM}

2. Define error/loss L(y′, y)

3. Find empirical risk minimizer (ERM):

f∗ = argmin
f∈F

N∑
n=1

L(f(xn), yn)

or regularized empirical risk minimizer:

f∗ = argmin
f∈F

N∑
n=1

L(f(xn), yn) + λR(f)

ML becomes optimization
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