CSCI 678: Theoretical Machine Learning Homework 1

Fall 2024, Instructor: Haipeng Luo

This homework is due on **9/22**, **11:59pm**. See course website for more instructions on finishing and submitting your homework as well as the late policy. Total points: 50

- 1. (Rademacher complexity and Dudley entropy integral) Consider inputs $x_1, \ldots, x_n \in \mathbb{R}^d$ and the linear class $\mathcal{F} = \{f_{\theta}(x) = \langle \theta, x \rangle \mid \theta \in \mathbb{R}^d, \|\theta\|_2 \leq b\}.$
 - (a) (5pts) Prove the following:

$$\widehat{\mathcal{R}}^{\mathrm{iid}}(\mathcal{F}; x_{1:n}) \leq \frac{b}{n} \sqrt{\sum_{t=1}^{n} \|x_t\|_2^2}$$

using the definition of Rademacher complexity directly (that is, without invoking its upper bounds in terms of covering numbers or other measures). Hint: you will need to use the inequality $\mathbb{E}[a] \leq \sqrt{\mathbb{E}[a^2]}$ for any $a \geq 0$ (which is a consequence of Jensen's inequality).

(b) (3pts) In Lecture 4, we will prove the following log covering number bound for this class: $\ln \mathcal{N}_2(\mathcal{F}|_{x_{1:n}}, \alpha) \leq \frac{b^2 \ln(2d) \sum_{t=1}^n ||x_t||_2^2}{n\alpha^2}.$ Use this bound and the Dudley entropy integral to prove

$$\widehat{\mathcal{R}}^{\text{iid}}(\mathcal{F}; x_{1:n}) \leq \widetilde{\mathcal{O}}\left(\frac{b}{n} \sqrt{\sum_{t=1}^{n} \|x_t\|_2^2}\right),$$

where the $\widetilde{\mathcal{O}}(\cdot)$ notation hides all logarithmic factors. (This bound is thus of the same order as the one from the last question.)

2. (Growth function and VC-dimension)

- (a) Let $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{F} = \{f_{\theta,b}(x) = \operatorname{sign}(\langle x, \theta \rangle + b) \mid \theta \in \mathbb{R}^d, b \in \mathbb{R}\}\$ be the set of *d*-dimensional linear classifiers. Prove VCdim $(\mathcal{F}) = d + 1$ by following the two steps below.
 - i. (4pts) Construct d + 1 points $x_1, \ldots, x_{d+1} \in \mathbb{R}^d$ and argue that for any labeling $y_1, \ldots, y_{d+1} \in \{-1, +1\}$, there exists $f \in \mathcal{F}$ such that $f(x_t) = y_t$ for all $t = 1, \ldots, d+1$.
 - ii. (6pts) Prove that for any d + 2 points $x_1, \ldots, x_{d+2} \in \mathbb{R}^d$, there exists a labeling $y_1, \ldots, y_{d+2} \in \{-1, +1\}$ such that no $f \in \mathcal{F}$ satisfies $f(x_t) = y_t$ for all $t = 1, \ldots, d + 2$. Hint: consider appending 1 to the end of each of the d + 2 points: $(x_1, 1), \cdots, (x_{d+2}, 1) \in \mathbb{R}^{d+1}$, and start with the fact that these d + 2 points must be linearly dependent (since they live in \mathbb{R}^{d+1}).

(b) (5pts) Let $\mathcal{X} = \mathbb{R}$ and $\mathcal{F} = \{f_{\theta}(x) = \operatorname{sign}(\sin(\theta x)) \mid \theta \in \mathbb{R}\}$. Prove that for any n, if $x_t = 2^{-2t}$, then \mathcal{F} shatters the set $x_{1:n}$, which means $\operatorname{VCdim}(\mathcal{F}) = \infty$. (Hint: for any labeling $y_{1:n}$, consider $\theta = \pi \left(1 + \sum_{i=1}^n (1-y_i)2^{2i-1}\right)$.)

3. (Covering number)

- (a) In Proposition 2 of Lecture 3, via a volumetric argument we show that the linear class $\mathcal{F} = \{f_{\theta}(x) = \langle \theta, x \rangle \mid \theta \in B_p^d\}$ for $\mathcal{X} = B_q^d$ and some $p \ge 1$ and $q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$ has bounded pointwise covering number: $\mathcal{N}(\mathcal{F}, \alpha) \le \left(\frac{2}{\alpha} + 1\right)^d$ for any $0 \le \alpha \le 1$. Follow the two steps below to further show $\mathcal{N}(\mathcal{F}, \alpha) \ge \left(\frac{1}{2\alpha}\right)^d$.
 - i. (5pts) Given any pointwise α -cover $\mathcal{H} \subset [-1, +1]^{\mathcal{X}}$, construct a pointwise 2α -cover $\mathcal{H}' \subset \mathcal{F}$ so that $|\mathcal{H}'| \leq |\mathcal{H}|$ (note that \mathcal{H}' has to be a subset of \mathcal{F}).
 - ii. (6pts) Prove that if $\mathcal{H}' \subset \mathcal{F}$ is a pointwise 2α -cover of \mathcal{F} , then we must have $|\mathcal{H}'| \geq \left(\frac{1}{2\alpha}\right)^d$, which then implies $\mathcal{N}(\mathcal{F}, \alpha) \geq \left(\frac{1}{2\alpha}\right)^d$ as desired. Hint: use a similar volumetric argument.

(b) Let $v_1, \ldots, v_d \in B_2^n$ be d points within the n-dimensional ℓ_2 -norm unit ball and

$$\mathcal{S} = \left\{ \sum_{i=1}^{d} \beta_{i} v_{i} \; \middle| \; \beta_{i} \geq 0, \; \forall i, \; \text{and} \; \sum_{i=1}^{d} \beta_{i} \leq B \right\}$$

be the convex hull of these d points scaled by B > 0.

i. (5pts) Prove $\mathcal{N}_2(\mathcal{S}, \alpha) \le \left(\frac{2B}{\sqrt{n}\alpha} + 1\right)^d$.

- ii. Follow the steps below to prove a different covering number bound $\mathcal{N}_2(\mathcal{S}, \alpha) \leq d^{\frac{B^2}{n\alpha^2}}$.
 - A. (4pts) For any $v = \sum_{i=1}^{d} \beta_i v_i \in S$, let $\beta = (\beta_1, \dots, \beta_d)$ and define *m* i.i.d. random variables u_1, \dots, u_m , each of which is $\|\beta\|_1 v_i$ with probability $\beta_i / \|\beta\|_1$ for $i = 1, \dots, d$. Prove that the mean of these random variables is v and the variance of $u = \frac{1}{m} \sum_{j=1}^{m} u_j$ is bounded as:

$$\mathbb{E}\left[\left\|u-v\right\|_{2}^{2}\right] \leq \frac{\left\|\beta\right\|_{1}^{2}}{m}.$$

B. (7pts) Prove that the following is an α -cover of S with respect to ℓ_2 -norm:

$$\mathcal{S}' = \left\{ \frac{B}{M} \sum_{i=1}^{d} m_i v_i \mid \text{each } m_i \text{ is a nonnegative integer and } \sum_{i=1}^{d} m_i \leq M \right\}$$

where $M = \frac{B^2}{n\alpha^2}$. (The statement $\mathcal{N}_2(\mathcal{S}, \alpha) \leq d^{\frac{B^2}{n\alpha^2}}$ then follows immediately.)