
CSCI 678: Theoretical Machine Learning
Homework 1

Fall 2024, Instructor: Haipeng Luo

This homework is due on 9/22, 11:59pm. See course website for more instructions on finishing and
submitting your homework as well as the late policy. Total points: 50

1. (Rademacher complexity and Dudley entropy integral) Consider inputs x1, . . . , xn ∈ Rd and
the linear class F =

{
fθ(x) = ⟨θ, x⟩ | θ ∈ Rd, ∥θ∥2 ≤ b

}
.

(a) (5pts) Prove the following:

R̂iid(F ;x1:n) ≤
b

n

√√√√ n∑
t=1

∥xt∥22

using the definition of Rademacher complexity directly (that is, without invoking its upper
bounds in terms of covering numbers or other measures). Hint: you will need to use the
inequality E [a] ≤

√
E [a2] for any a ≥ 0 (which is a consequence of Jensen’s inequality).



(b) (3pts) In Lecture 4, we will prove the following log covering number bound for this class:
lnN2(F|x1:n

, α) ≤ b2 ln(2d)
∑n

t=1∥xt∥2
2

nα2 . Use this bound and the Dudley entropy integral to
prove

R̂iid(F ;x1:n) ≤ Õ

 b

n

√√√√ n∑
t=1

∥xt∥22

 ,

where the Õ(·) notation hides all logarithmic factors. (This bound is thus of the same order
as the one from the last question.)
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2. (Growth function and VC-dimension)

(a) Let X = Rd and F =
{
fθ,b(x) = sign (⟨x, θ⟩+ b) | θ ∈ Rd, b ∈ R

}
be the set of d-

dimensional linear classifiers. Prove VCdim(F) = d+ 1 by following the two steps below.

i. (4pts) Construct d + 1 points x1, . . . , xd+1 ∈ Rd and argue that for any label-
ing y1, . . . , yd+1 ∈ {−1,+1}, there exists f ∈ F such that f(xt) = yt for all
t = 1, . . . , d+ 1.

ii. (6pts) Prove that for any d + 2 points x1, . . . , xd+2 ∈ Rd, there exists a label-
ing y1, . . . , yd+2 ∈ {−1,+1} such that no f ∈ F satisfies f(xt) = yt for all
t = 1, . . . , d + 2. Hint: consider appending 1 to the end of each of the d + 2 points:
(x1, 1), · · · , (xd+2, 1) ∈ Rd+1, and start with the fact that these d + 2 points must be
linearly dependent (since they live in Rd+1).
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(b) (5pts) Let X = R and F = {fθ(x) = sign(sin(θx)) | θ ∈ R}. Prove that for any n, if
xt = 2−2t, then F shatters the set x1:n, which means VCdim(F) = ∞. (Hint: for any
labeling y1:n, consider θ = π

(
1 +

∑n
i=1(1− yi)2

2i−1
)
.)
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3. (Covering number)

(a) In Proposition 2 of Lecture 3, via a volumetric argument we show that the linear class F ={
fθ(x) = ⟨θ, x⟩ | θ ∈ Bd

p

}
for X = Bd

q and some p ≥ 1 and q ≥ 1 such that 1
p + 1

q = 1

has bounded pointwise covering number: N (F , α) ≤
(
2
α + 1

)d
for any 0 ≤ α ≤ 1. Follow

the two steps below to further show N (F , α) ≥
(

1
2α

)d
.

i. (5pts) Given any pointwise α-cover H ⊂ [−1,+1]X , construct a pointwise 2α-cover
H′ ⊂ F so that |H′| ≤ |H| (note that H′ has to be a subset of F).

ii. (6pts) Prove that if H′ ⊂ F is a pointwise 2α-cover of F , then we must have
|H′| ≥

(
1
2α

)d
, which then implies N (F , α) ≥

(
1
2α

)d
as desired. Hint: use a similar

volumetric argument.
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(b) Let v1, . . . , vd ∈ Bn
2 be d points within the n-dimensional ℓ2-norm unit ball and

S =

{
d∑

i=1

βivi

∣∣∣∣ βi ≥ 0, ∀i, and
d∑

i=1

βi ≤ B

}
be the convex hull of these d points scaled by B > 0.

i. (5pts) Prove N2(S, α) ≤
(

2B√
nα

+ 1
)d

.
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ii. Follow the steps below to prove a different covering number bound N2(S, α) ≤ d
B2

nα2 .

A. (4pts) For any v =
∑d

i=1 βivi ∈ S, let β = (β1, . . . , βd) and define m i.i.d.
random variables u1, . . . , um, each of which is ∥β∥1 vi with probability βi/ ∥β∥1
for i = 1, . . . , d. Prove that the mean of these random variables is v and the
variance of u = 1

m

∑m
j=1 uj is bounded as:

E
[
∥u− v∥22

]
≤

∥β∥21
m

.

B. (7pts) Prove that the following is an α-cover of S with respect to ℓ2-norm:

S ′ =

{
B

M

d∑
i=1

mivi

∣∣∣∣ each mi is a nonnegative integer and
d∑

i=1

mi ≤ M

}

where M = B2

nα2 . (The statement N2(S, α) ≤ d
B2

nα2 then follows immediately.)
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