
CSCI 678: Theoretical Machine Learning
Homework 2

Fall 2024, Instructor: Haipeng Luo

This homework is due on 10/13, 11:59pm. See course website for more instructions on finishing
and submitting your homework as well as the late policy. Total points: 50

1. (Pseudo-dimension and fat-shattering dimension) For a function f : [0, 1] → [−1, 1], define
its total variation V (f) as

V (f) = sup
1≤m∈Z+

0=x0<x1<···<xm=1

m∑
j=1

|f(xj)− f(xj−1)|,

which, intuitively, measures how much the function varies on the interval [0, 1]. Now, consider
the function class F = {f : [0, 1] → [−1, 1] | V (f) ≤ B} for some constant B > 0.

(a) (4pts) Prove that the Pseudo-dimension of F is infinity.



(b) Follow the two steps below to prove that the fat-shattering dimension of F at scale α ≤ 1 is

fat(F , α) = 1 +

⌊
B

α

⌋
.

i. (4pts) For n ≤ 1 + B
α , construct a sequence of n pairs (x1, y1), . . . , (xn, yn) ∈

[0, 1] × [−1, 1], such that for any labeling s1, . . . , sn ∈ {−1,+1}, there exists f ∈ F
with st(f(xt)− yt) ≥ α/2 for all t = 1, . . . , n. (This shows fat(F , α) ≥ 1 +

⌊
B
α

⌋
.)

ii. (5pts) For any n > 1+ B
α and any sequence of n pairs (x1, y1), . . . , (xn, yn) ∈ [0, 1]×

[−1, 1] with x1 < x2 < · · · < xn, show that if f : [0, 1] → [−1, 1] is such that
st(f(xt)− yt) ≥ α/2 for all t = 1, . . . , n where

s1 = −1, s2 = +1, s3 = −1, s4 = +1, . . . ,

and g : [0, 1] → [−1, 1] is such that st(g(xt)− yt) ≥ α/2 for all t = 1, . . . , n where

s1 = +1, s2 = −1, s3 = +1, s4 = −1, . . . ,

then we must have V (f) + V (g) > 2B. (Convince yourself that this implies
fat(F , α) ≤ 1 +

⌊
B
α

⌋
.)
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2. (Zero-covering number and shattering) Consider a class of binary predictors F ⊂ {−1,+1}X .
The concept of zero-covering number N0(F|x) given an X -valued tree x of depth n is analo-
gous to |F|x1:n |, the cardinality of the projection of F on a dataset x1:n (in the statistical learn-
ing setting). However, there are some subtle differences between them. In particular, while
|F|x1:n

| = 2n is equivalent to x1:n being shattered by F , N0(F|x) = 2n is not equivalent to x
being shattered by F . In this problem, you will explore why this is case. (Understanding what the
questions below are asking you to do is already a good test to your understanding of the related
concepts.)

(a) (4pts) Prove that if F shatters x, then we indeed have N0(F|x) = 2n. (Recall that
N0(F|x) ≤ 2n is always true, so this is really asking you to show N0(F|x) ≥ 2n.)

(b) (4pts) Next, prove that N0(F|x) = 2n does not necessarily mean that F shatters x.
Hint: consider a tree x with depth n being the VC-dimension of F and the leftmost path
consisting of n points that are shattered by F (in the statistical learning sense).

(c) (4pts) Finally, prove that if N0(F|x) = 2n, then there must exist a tree x′ of depth n that
is shattered by F . Hint: use Theorem 1 of Lecture 6, that is, the online analogue of Sauer’s
lemma. (Note that combining (a) and (c), we have

Ldim(F) = max

{
n : max

x of depth n
N0(F|x) = 2n

}
,

which is analogous to VCdim(F) = max {n : maxx1:n
|F|x1:n

| = 2n}.)
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3. (Littlestone dimension) Consider X = Rd and the class

F =

{
fθ,b(x) =

{
+1, if ⟨θ, x⟩+ b = 0

−1, else

∣∣∣∣ 0 ̸= θ ∈ Rd, b ∈ R
}
.

which is a generalization of the simple class Eq. (5) in Lecture 5 from one dimension to general
dimension. In words, it classifies all the points residing in the hyperplane ⟨θ, x⟩ + b = 0 as +1,
and everything else as −1. Follow the steps below to show Ldim(F) = d.

(a) (3pts) Construct a set of d points x1, . . . , xd ∈ Rd that can be shattered by F (in the
statistical learning sense), which shows d ≤ VCdim(F) ≤ Ldim(F).

(b) (4pts) For d = 2, show that no tree x of depth 3 can be shattered by F . Hint: consider
different cases for the three points on the rightmost path of x: are they collinear (that is, on
the same line)? are some of them identical?

(c) (8pts) Generalize the idea from the last question to show that for any dimension d, no
tree of depth d + 1 can be shattered by F , which shows Ldim(F) ≤ d. Hint: a set of n
points x1, . . . , xn ∈ Rd are affinely dependent if the following n − 1 points are linearly
dependent: x1 − xn, x2 − xn, . . . , xn−1 − xn; convince yourself that two points being
affinely dependent if and only if they are identical, and three points being affinely dependent
if and only if they are collinear.
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4. (Lower bound for online classification) In this exercise you will prove V seq(F , n) ≥
√

d
8n

where d = Ldim(F) ≤ n. For simplicity, we will further assume that n is a multiple of d.
The construction of the environment is as follows. The labels y1, . . . , yn are i.i.d. Rademacher
random variables. To define the example x1, . . . , xn, we divide the entire n rounds evenly into d
epochs, where epoch k contains rounds n(k − 1)/d+ 1, . . . , nk/d. On the same epoch, xt stays
the same. Specifically, let ϵk = sign

(∑
t∈epoch k yt

)
be the majority vote of the true labels in

epoch k, that is,

ϵk =

{
+1, if

∑
t∈epoch k yt ≥ 0,

−1, else,

and x be a tree of depth d that is shattered by F . Then xt = xk(ϵ) for any t that belongs to
epoch k. This concludes the construction of the environment.

(a) (2pts) For any online learner, let s1, . . . , sn ∈ {−1,+1} be its sequential predictions for
x1, . . . , xn in this environment. Calculate the learner’s expected loss E [

∑n
t=1 1 {st ̸= yt}],

where the expectation is with respect to the randomness of both the learner and the
environment.

(b) (4pts) Calculate E [inff∈F
∑n

t=1 1 {f(xt) ̸= yt}], the expected loss of the best classifier in
F , where the randomness is with respect to the randomness of the environment.

(c) (4pts) Conclude the statement V seq(F , n) ≥
√

d
8n . Hint: use the Khinchine inequality that

says the expected magnitude of the sum of m i.i.d. Rademacher random variables is at least√
m/2 for any m ≥ 1.
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