CSCI 678: Theoretical Machine Learning Homework 3

Fall 2024, Instructor: Haipeng Luo

This homework is due on 11/03, 11:59pm. See course website for more instructions on finishing and submitting your homework as well as the late policy. Total points: 40

1. (**Hedge**) (6pts) For a finite class of binary classifier $\mathcal{F} \subset \{-1, +1\}^{\mathcal{X}}$, under the realizable assumption $\inf_{f \in \mathcal{F}} \sum_{t=1}^{n} \mathbf{1} \{f(x_t) \neq y_t\} = 0$, prove that Hedge with learning rate $\eta = 1/2$ makes at most $4 \ln |\mathcal{F}|$ mistakes in expectation. Hint: use Lemma 1 of Lecture 6. (Note that this is similar to the guarantee of Halving, but achieved via a proper algorithm this time.)

2. (**Perceptron and sequential fat-shattering dimension**) Recall the sequential fat-shattering dimension sfat(\mathcal{F}, α) defined in Lectures 6. Let $\mathcal{X} = B_2^d$ and $\mathcal{F} = \{f_{\theta}(x) = \langle \theta, x \rangle \mid \theta \in B_2^d\}$. In this exercise, you will prove sfat(\mathcal{F}, α) $\leq \frac{16}{\alpha^2}$ (which is independent of d) for any $\alpha > 0$, using an indirect approach that leverages the guarantee of the Perceptron algorithm.

More specifically, suppose that x is a \mathcal{X} -valued tree of depth n that is α -shattered by \mathcal{F} , with witness y, a [-1,+1]-valued tree. Now, imagine running Perceptron in the following problem instance in \mathbb{R}^{d+1} :

Let $\theta' = \mathbf{0} \in \mathbb{R}^{d+1}$. For $t = 1, \dots, n$:

- Environment reveals example $x_t'=\frac{1}{\sqrt{2}}({m x}_t(y_{1:t-1}'),{m y}_t(y_{1:t-1}'))\in B_2^{d+1}.$
- Perceptron algorithm predicts $s_t = \mathrm{sign}(\langle x_t', \theta' \rangle)$.
- Environment reveals $y'_t = -s_t$, forcing Perceptron to make an update $\theta' \leftarrow \theta' + y'_t x'_t$.

Note that the environment is valid even though it seemingly decides the label y'_t after seeing the algorithm's prediction s_t , since Perceptron is a deterministic algorithm (and thus $x'_{1:n}$ and $y'_{1:n}$ are in fact all fixed ahead of time).

- (a) (4pts) Prove that the data constructed above satisfy the γ -margin assumption (Assumption 1 of Lecture 7) with p=q=2. In other words, find a specific value of $\gamma>0$ and show that there exists $\theta'_\star\in B_2^{d+1}$ such that $y'_t\langle\theta'_\star,x'_t\rangle\geq\gamma$ holds for all $t=1,\ldots,n$.
- (b) (3pts) Use the guarantee of Perceptron (that is, Theorem 3 of Lecture 7) to conclude $sfat(\mathcal{F},\alpha) \leq \frac{16}{\alpha^2}$.

3. (Winnow) When the γ -margin assumption holds with p=q=2, we have seen that Perceptron makes at most $\frac{1}{\gamma^2}$ mistakes for an online binary classification problem. In this exercise, you will prove a similar result when the γ -margin assumption holds with p=1 and $q=\infty$, using a different algorithm called *Winnow*. To show this, we first consider the following generalization of Perceptron, defined in terms of some *link function* $g: \mathbb{R}^d \to \mathbb{R}^d$.

Algorithm 1: A generalization of Perceptron

Let $\theta = \mathbf{0}$. For $t = 1, \dots, n$:

- Receive x_t and predict $s_t = \text{sign}(\langle x_t, g(\theta) \rangle)$.
- Receive $y_t \in \{-1, +1\}$. If $y_t \neq s_t$, update $\theta \leftarrow \theta + y_t x_t$.

It is clear that when instantiated with g being the identity mapping $g(\theta) = \theta$, Algorithm 1 is exactly the Perceptron algorithm. Below, we will see that the Winnow algorithm is also an instance of Algorithm 1 but with a different link function. Throughout, we assume $x_t \in B^d_{\infty}$, that is, $||x_t||_{\infty} \leq 1$, for all t.

- (a) Consider running Algorithm 1 with link function $g(\theta) = \exp(\eta \theta)$ and some parameter $\eta > 0$ (where the exponentiation is applied coordinate-wise to the vector $\eta \theta$). Let's call this the simplified Winnow algorithm.
 - i. (4pts) Find a sequence of loss vectors $\ell_1,\ldots,\ell_n\in[-1,+1]^d$ such that the prediction of simplified Winnow $s_t=\mathrm{sign}(\langle x_t,g(\theta)\rangle)$ can be equivalently written as $s_t=\mathrm{sign}(\langle x_t,p_t\rangle)$, where $p_t\in\Delta(d)$ is a distribution such that

$$p_t(i) \propto \exp\left(-\eta \sum_{\tau < t} \ell_{\tau}(i)\right), \quad \text{for all } i = 1, \dots, d.$$

ii. (8pts) Based on the reformulation of the last question, apply Lemma 1 of Lecture 6 to show that as long as $\eta \leq 1$, we have for any $\theta^* \in \Delta(d)$:

$$\sum_{t=1}^{n} \mathbf{1} \left\{ y_t \neq s_t \right\} y_t \left\langle \theta^*, x_t \right\rangle \leq \frac{\ln d}{\eta} + \eta M,$$

where $M = \sum_{t=1}^{n} \mathbf{1} \{y_t \neq s_t\}$ is the total number of mistakes made by the simplified Winnow algorithm.

iii. (3pts) Consider the following assumption that is slightly stronger than the original γ -margin assumption with p=1 and $q=\infty$:

there exists
$$\theta^* \in \Delta(d)$$
 such that $y_t \langle \theta^*, x_t \rangle \ge \gamma$ for all t . (1)

Prove that under this assumption, the total number of mistakes M made by the simplified Winnow algorithm is at most $\frac{4 \ln d}{\gamma^2}$ when $\eta = \frac{\gamma}{2} \leq 1$.

(b) Now consider the original γ -margin assumption, that is:

there exists
$$\theta^* \in B_1^d$$
 such that $y_t \langle \theta^*, x_t \rangle \ge \gamma$ for all t . (2)

To deal with this more general case, we will run Algorithm 1 using a different link function $g(\theta) = \exp(\eta \theta) - \exp(-\eta \theta)$ (again, the exponentiation is coordinate-wise). This is the (actual) Winnow algorithm.

- i. (4pts) Prove that the Winnow algorithm is the same as running the simplified Winnow algorithm over examples $x'_t = (x_t, -x_t) \in B^{2d}_\infty$ and $y'_t = y_t$ for $t = 1, \ldots, n$.
- ii. (6pts) Under the margin assumption Equation (2), further prove that the examples $(x'_{1:n}, y'_{1:n})$ defined above satisfy Equation (1) for some margin γ' , that is, there exists $\theta' \in \Delta(2d)$ such that $y'_t \langle \theta', x'_t \rangle \geq \gamma'$ for all t.

iii. (2pts) Finally, under the margin assumption Equation (2), use the result from Question (a)iii to provide a bound on the total number of mistakes made by the Winnow algorithm when $\eta=\frac{\gamma}{2}$.