
CSCI 678: Theoretical Machine Learning
Homework 4

Fall 2024, Instructor: Haipeng Luo

This homework is due on 12/01, 11:59pm. See course website for more instructions on finishing
and submitting your homework as well as the late policy. Total points: 50

1. (Stochastic MAB) In Lecture 9, we proved that UCB achieves Regn = O(
∑

a:∆a>0
lnn
∆a

), which
increases as the gaps decrease and make it harder to distinguish the optimal actions from the rest.
However, if an action really has a tiny suboptimality gap, then by definition selecting it does not
lead to large regret and thus there is really no point in distinguishing it from the optimal actions.
Building on this intuition, in this problem you will further prove that UCB indeed also guarantees
O(
√
nK lnn) pseudo regret at the same time, regardless of the values of the gaps.

(a) (5pts) Recall (from Theorem 1 of Lecture 9) that with probability at least 1− 2K
n , we have

mn(a) ≤ 16 lnn
∆2

a
+1 for every action a where mn(a) is the total number of times action a is

pulled. Use this fact to prove the following pseudo regret bound

Regn ≤ 3K +∆n+
∑

a:∆a>∆

16 lnn

∆a
, (1)

where ∆ ∈ [0, 1] is an arbitrary threshold. (This matches the earlier intuition that we do not
care about distinguishing an action with a small gap from the optimal action.)

(b) (2pts) Pick an appropriate value of ∆ and conclude the following bound

Regn = O(
√
nK lnn).

(You can assume n ≥ K.)



2. (Multiclass Perceptron) In this exercise, you need to analyze variants of the Perceptron algo-
rithm for multiclass classification, with either full information or bandit information. Specifi-
cally, consider a sequence of examples x1, . . . , xn ∈ Bd

2 with labels y1, . . . , yn ∈ [K] where K
is the number of possible classes. We assume that the following multiclass margin assumption
holds: there exists a constant γ > 0 and K weight vectors θ1⋆, . . . , θ

K
⋆ ∈ Bd

2 such that for each
t = 1, . . . , n:

⟨θyt
⋆ , xt⟩ ≥

〈
θk⋆ , xt

〉
+ γ, ∀k ̸= yt.

In other words, the predictor argmaxk
〈
θk, xt

〉
makes perfect predictions for this dataset with γ

margin. Now, consider the following learning protocol:

For t = 1, . . . , n:
• receive xt and predict st ∈ [K];

• observe
{
yt in the full-information setting
1 {st ̸= yt} (i.e., if the prediction is correct) in the bandit setting

In either case, we care about the total number of mistakes M =
∑n

t=1 1 {st ̸= yt}.

(a) In the full information setting, one can apply the following multiclass Perceptron algorithm,
a natural generalization of its binary version studied in Lecture 7. Note that when the al-
gorithm predicts correctly, the last update step in fact does nothing (similarly to the binary
version).

Algorithm 1: Multiclass Perceptron

Initialize θ1 = · · · = θK = 0.
For t = 1, . . . , n:

• receive xt and find kt ∈ argmaxk∈[K]

〈
θk, xt

〉
;

• predict st = kt;
• receive yt and update

θyt ← θyt + xt and θkt ← θkt − xt.

Follow the steps below to prove M ≤ 2K
γ2 for this algorithm.

i. (6pts) Similar to the binary case, we need to analyze the evolution of the quantities∑K
k=1

〈
θk, θk⋆

〉
and

∑K
k=1

∥∥θk∥∥2
2
. To this end, denote the value of the weight vectors

θ1, . . . , θK at the beginning of round t by θ1t , . . . , θ
K
t . Under the margin assumption,

prove the following two facts for any t = 1, . . . , n:
K∑

k=1

〈
θkt+1, θ

k
⋆

〉
≥

K∑
k=1

〈
θkt , θ

k
⋆

〉
+ γ1 {st ̸= yt} ,

and
K∑

k=1

∥∥θkt+1

∥∥2
2
≤

K∑
k=1

∥∥θkt ∥∥22 + 21 {st ̸= yt} .

ii. (3pts) Combine the two facts in the last question to conclude M ≤ 2K
γ2 (Hint: you will

need to use the Cauchy-Schwarz inequality.)

(b) In the bandit setting, we make the following two changes to Algorithm 1: 1) first, in light
of the exploration versus exploitation trade-off, it is natural to randomize the algorithm and
explore every label with at least some small probability α; 2) second, the update θyt ←
θyt + xt becomes invalid if the prediction is incorrect (since we do not know what yt is), so
we only do this update when we predict correctly, and we scale the update with the inverse
probability of selecting the correct label, just like the idea of importance-weighted estimator
in Exp3. The final algorithm is shown below.
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Algorithm 2: Multiclass Perceptron with Bandit Feedback

Input: exploration parameter α ∈ (0, 1
2K ].

Initialize θ1 = · · · = θK = 0.
For t = 1, . . . , n:

• receive xt and find kt ∈ argmaxk∈[K]

〈
θk, xt

〉
;

• predict st drawn from pt, where pt(k) = (1− αK)1 {k = kt}+ α,∀k;
• receive 1 {st ̸= yt} and update

θyt ← θyt +
xt1 {st = yt}

pt(yt)
and θkt ← θkt − xt.

Follow the steps below to prove that this algorithm makes at most O
(

K
√
n

γ2

)
mistakes in

expectation. We will again use the notation θ1t , . . . , θ
K
t to denote the value of the weight

vectors θ1, . . . , θK at the beginning of round t, and study the evolution of the quantities∑K
k=1

〈
θk, θk⋆

〉
and

∑K
k=1

∥∥θk∥∥2
2

(in expectation this time).

i. (3pts) Under the margin assumption, prove the following for any t = 1, . . . , n:

E

[
K∑

k=1

〈
θkt+1, θ

k
⋆

〉]
≥ E

[
K∑

k=1

〈
θkt , θ

k
⋆

〉]
+ γE [1 {kt ̸= yt}] .

ii. (8pts) Next, prove the following for any t = 1, . . . , n:

E

[
K∑

k=1

∥∥θkt+1

∥∥2
2

]
≤ E

[
K∑

k=1

∥∥θkt ∥∥22
]
+

E [1 {kt ̸= yt}]
α

+ 1.

Hint: consider the two cases kt ̸= yt and kt = yt separately.

iii. (5pts) Combine the results from the last two questions to show γE [N ] ≤√
K
(

E[N ]
α + n

)
where N =

∑n
t=1 1 {kt ̸= yt}. Further solve for E [N ] to

show E [N ] ≤ K
αγ2 +

√
Kn
γ .

iv. (4pts) Finally, use the result from the last step to prove E [M ] ≤ K
αγ2 +

√
Kn
γ + αnK,

and pick an appropriate value of α to conclude E [M ] = O
(

K
√
n

γ + K2

γ2

)
.
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3. (Partial Monitoring) Recall the dynamic pricing problem discussed in Lecture 9 and consider
a simplified case with only 3 possible prices (1, 2, or 3 dollars). The loss matrix and feedback
matrix are thus

ℓ =

(
0 1 2
c 0 1
c c 0

)
and Φ =

(
✓ ✓ ✓
✗ ✓ ✓
✗ ✗ ✓

)
for some storage cost c > 0. The cell decomposition of this problem is illustrated in the following
picture, where we show the simplex ∆(3) by considering only the first two coordinates u1 and
u2. Clearly, all 3 actions are Pareto-optimal, and every two actions are neighbors.

u1

u2

(0, 0) (1, 0)

(0, 1)

ζ

α

β

γ

(a) (3pts) State which colored region in the cell decomposition picture corresponds to cell C1,
C2, and C3 respectively. Briefly explain why.

(b) (4pts) Calculate the coordinates of the four points α, β, γ, and ζ shown on the cell
decomposition picture.

(c) (4pts) Prove that the following two action pairs are both locally observable: 1 and 2, 2 and 3.

(d) (3pts) The results from the last question imply that actions 1 and 3 must be globally
observable. Now, prove that they are not locally observable. (This implies that this is a
globally observable but not locally observable partial monitoring instance.)
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