CSCI 678: Theoretical Machine Learning Homework 1

Fall 2024, Instructor: Haipeng Luo

This homework is due on **9/22**, **11:59pm**. See course website for more instructions on finishing and submitting your homework as well as the late policy. Total points: 50

- 1. (Rademacher complexity and Dudley entropy integral) Consider inputs $x_1, \ldots, x_n \in \mathbb{R}^d$ and the linear class $\mathcal{F} = \{f_{\theta}(x) = \langle \theta, x \rangle \mid \theta \in \mathbb{R}^d, \|\theta\|_2 \leq b\}.$
 - (a) (5pts) Prove the following:

$$\widehat{\mathcal{R}}^{\text{iid}}(\mathcal{F}; x_{1:n}) \leq \frac{b}{n} \sqrt{\sum_{t=1}^{n} \|x_t\|_2^2}$$

using the definition of Rademacher complexity directly (that is, without invoking its upper bounds in terms of covering numbers or other measures). Hint: you will need to use the inequality $\mathbb{E}[a] \leq \sqrt{\mathbb{E}[a^2]}$ (which is a consequence of Jensen's inequality).

Proof. We proceed as follows:

$$\begin{aligned} \widehat{\mathcal{R}}^{\text{iid}}(\mathcal{F}; x_{1:n}) &= \frac{1}{n} \mathbb{E}_{\epsilon_{1:n}} \left[\sup_{\theta: \|\theta\|_{2} \le b} \sum_{t=1}^{n} \epsilon_{t} \left\langle \theta, x_{t} \right\rangle \right] \\ &= \frac{1}{n} \mathbb{E}_{\epsilon_{1:n}} \left[\sup_{\theta: \|\theta\|_{2} \le b} \left\langle \theta, \sum_{t=1}^{n} \epsilon_{t} x_{t} \right\rangle \right] \\ &= \frac{b}{n} \mathbb{E}_{\epsilon_{1:n}} \left[\left\| \sum_{t=1}^{n} \epsilon_{t} x_{t} \right\|_{2}^{2} \right] \\ &\leq \frac{b}{n} \sqrt{\mathbb{E}_{\epsilon_{1:n}}} \left[\left\| \sum_{t=1}^{n} \epsilon_{t} x_{t} \right\|_{2}^{2} \right] \\ &= \frac{b}{n} \sqrt{\mathbb{E}_{\epsilon_{1:n}}} \left[\sum_{t=1}^{n} \sum_{t'=1}^{n} \epsilon_{t} \epsilon_{t'} \left\langle x_{t}, x_{t'} \right\rangle \right] \\ &= \frac{b}{n} \sqrt{\sum_{t=1}^{n} \|x_{t}\|_{2}^{2}} \end{aligned}$$
(E[a] $\leq \sqrt{\mathbb{E}[a^{2}]}$)

where the last step uses the fact that $\mathbb{E}[\epsilon_t \epsilon_{t'}]$ is 1 for t = t' and 0 for $t \neq t'$.

(b) (3pts) In Lecture 4, we will prove the following log covering number bound for this class: $\ln \mathcal{N}_2(\mathcal{F}|_{x_{1:n}}, \alpha) \leq \frac{b^2 \ln(2d) \sum_{t=1}^n ||x_t||_2^2}{n\alpha^2}.$ Use this bound and the Dudley entropy integral to prove

$$\widehat{\mathcal{R}}^{\text{iid}}(\mathcal{F}; x_{1:n}) \leq \widetilde{\mathcal{O}}\left(\frac{b}{n} \sqrt{\sum_{t=1}^{n} \|x_t\|_2^2}\right),$$

where the $\widetilde{O}(\cdot)$ notation hides all logarithmic factors. (This bound is thus of the same order as the one from the last question.)

Proof. Since the dependence on α is $1/\alpha^2$ in the log covering number bound, we calculate the following integral:

$$\int_{\alpha}^{1} \sqrt{\frac{1}{\delta^{2}}} d\delta = \left(\ln \delta\right) \Big|_{\alpha}^{1} = \ln \left(\frac{1}{\alpha}\right).$$

Plugging this into Dudley entropy integral, we obtain

$$\widehat{\mathcal{R}}^{\text{iid}}(\mathcal{F}; x_{1:n}) \le \min_{0 \le \alpha \le 1} \left(4\alpha + \frac{12b\sqrt{\ln(2d)\sum_{t=1}^{n} \|x_t\|_2^2}}{n} \ln\left(\frac{1}{\alpha}\right) \right)$$

and complete the proof by picking $\alpha = 1/n$.

_		
		. 1
		. 1
		. 1

2. (Growth function and VC-dimension)

- (a) Let $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{F} = \{f_{\theta,b}(x) = \operatorname{sign}(\langle x, \theta \rangle + b) \mid \theta \in \mathbb{R}^d, b \in \mathbb{R}\}\$ be the set of *d*-dimensional linear classifiers. Prove VCdim $(\mathcal{F}) = d + 1$ by following the two steps below.
 - i. (4pts) Construct d + 1 points $x_1, \ldots, x_{d+1} \in \mathbb{R}^d$ and argue that for any labeling $y_1, \ldots, y_{d+1} \in \{-1, +1\}$, there exists $f \in \mathcal{F}$ such that $f(x_t) = y_t$ for all $t = 1, \ldots, d+1$.

Proof. For $t = 1, \ldots, d$, let $x_t = e_t$ be the basic vector such that the *t*-th coordinate is 1 (and all other coordinates are 0). Also let $x_{d+1} = 0$ be the all-zero vector. Then for any labeling $y_1, \ldots, y_{d+1} \in \{-1, +1\}$, let $\theta = \sum_{t=1}^d (y_t - y_{d+1})e_t$ and $b = y_{d+1}$, we have $f_{\theta,b}(x_t) = \operatorname{sign}(y_t - y_{d+1} + y_{d+1}) = y_t$ for $t = 1, \ldots, d$ and also $f_{\theta,b}(x_{d+1}) = \operatorname{sign}(b) = y_{d+1}$, finishing the proof.

ii. (6pts) Prove that for any d + 2 points $x_1, \ldots, x_{d+2} \in \mathbb{R}^d$, there exists a labeling $y_1, \ldots, y_{d+2} \in \{-1, +1\}$ such that no $f \in \mathcal{F}$ satisfies $f(x_t) = y_t$ for all $t = 1, \ldots, d+2$. Hint: consider appending 1 to the end of each of the d+2 points: $(x_1, 1), \cdots, (x_{d+2}, 1) \in \mathbb{R}^{d+1}$, and start with the fact that these d+2 points must be linearly dependent (since they live in \mathbb{R}^{d+1}).

Proof. Since $(x_1, 1), \dots, (x_{d+2}, 1) \in \mathbb{R}^{d+1}$ are linearly dependent, we can assume without loss of generality that $(x_{d+2}, 1) = \sum_{t=1}^{d+1} c_t(x_t, 1)$ for some coefficients c_1, \dots, c_{d+1} . By looking at the last coordinate, we must have $\sum_{t=1}^{d+1} c_t = 1$.

Now, set $y_t = \operatorname{sign}(c_t)$ for t < d+2 and $y_{d+2} = -1$. Suppose that some $f_{\theta,b} \in \mathcal{F}$ realizes this labeling, then we have

$$0 > \langle \theta, x_{d+2} \rangle + b = \left(\sum_{t=1}^{d+1} c_t \langle \theta, x_t \rangle \right) + b = \sum_{t=1}^{d+1} c_t \left(\langle \theta, x_t \rangle + b \right) \ge 0,$$

which is a contradiction.

(b) (5pts) Let $\mathcal{X} = \mathbb{R}$ and $\mathcal{F} = \{f_{\theta}(x) = \operatorname{sign}(\sin(\theta x)) \mid \theta \in \mathbb{R}\}$. Prove that for any n, if $x_t = 2^{-2t}$, then \mathcal{F} shatters the set $x_{1:n}$, which means $\operatorname{VCdim}(\mathcal{F}) = \infty$. (Hint: for any labeling $y_{1:n}$, consider $\theta = \pi \left(1 + \sum_{i=1}^n (1-y_i)2^{2i-1}\right)$.)

Proof. As the hint suggested, let $\theta = \pi \left(1 + \sum_{i=1}^{n} (1 - y_i) 2^{2i-1}\right)$. We have for any t:

$$\theta x_t = \pi \left(2^{-2t} + \sum_{i=1}^n \frac{1 - y_i}{2} 4^{(i-t)} \right)$$
$$= \pi \left(2^{-2t} + \frac{1 - y_t}{2} + \sum_{i=1}^{t-1} \frac{1 - y_i}{2} 4^{(i-t)} + \sum_{i=t+1}^n \frac{1 - y_i}{2} 4^{(i-t)} \right).$$

Let $\epsilon = 2^{-2t} + \sum_{i=1}^{t-1} \frac{1-y_i}{2} 4^{(i-t)}$. First, note that

$$\sin(\theta x_t) = \sin\left(\pi\left(\epsilon + \frac{1 - y_t}{2}\right)\right)$$

because $\sum_{i=t+1}^{n} \frac{1-y_i}{2} 4^{(i-t)}$ is always an even number. Next, note that $0 < \epsilon < 2^{-2t} + \sum_{j=1}^{\infty} 4^{-j} = 2^{-2t} + 1/3 < 1$. Therefore, when $y_t = -1$, we have

$$\sin(\theta x_t) = \sin\left(\pi\left(\epsilon + 1\right)\right) < 0,$$

and thus $sign(sin(\theta x_t)) = y_t$; on the other hand, when $y_t = 1$, we have

$$\sin(\theta x_t) = \sin\left(\pi\epsilon\right) > 0,$$

and thus $sign(sin(\theta x_t)) = y_t$ also holds. This completes the proof.

3. (Covering number)

- (a) In Proposition 2 of Lecture 3, via a volumetric argument we show that the linear class $\mathcal{F} = \{f_{\theta}(x) = \langle \theta, x \rangle \mid \theta \in B_p^d\}$ for $\mathcal{X} = B_q^d$ and some $p \ge 1$ and $q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$ has bounded pointwise covering number: $\mathcal{N}(\mathcal{F}, \alpha) \le (\frac{2}{\alpha} + 1)^d$ for any $0 \le \alpha \le 1$. Follow the two steps below to further show $\mathcal{N}(\mathcal{F}, \alpha) \ge (\frac{1}{2\alpha})^d$.
 - i. (5pts) Given any pointwise α -cover $\mathcal{H} \subset [-1, +1]^{\mathcal{X}}$, construct a pointwise 2α -cover $\mathcal{H}' \subset \mathcal{F}$ so that $|\mathcal{H}'| \leq |\mathcal{H}|$ (note that \mathcal{H}' has to be a subset of \mathcal{F}).

Proof. The pointwise α -cover \mathcal{H} naturally groups the functions in \mathcal{F} into different clusters where each cluster has the same representative. Formally, for each $h \in \mathcal{H}$, let $\mathcal{F}_h = \{f \in \mathcal{F} : |h(x) - f(x)| \leq \alpha, \forall x \in \mathcal{X}\}$ and f_h be an arbitrary function from \mathcal{F}_h . Then $\mathcal{H}' = \{f_h \in \mathcal{F} \mid h \in \mathcal{H}\}$ clearly has cardinality no more than that of \mathcal{H} and also is a pointwise 2α -cover since for any $f \in \mathcal{F}$, with $h \in \mathcal{H}$ being the representative of f, we have

$$|f_h(x) - f(x)| \le |f_h(x) - h(x)| + |h(x) - f(x)| \le 2\alpha,$$

for any $x \in \mathcal{X}$ by the construction of f_h .

ii. (6pts) Prove that if $\mathcal{H}' \subset \mathcal{F}$ is a pointwise 2α -cover of \mathcal{F} , then we must have $|\mathcal{H}'| \geq \left(\frac{1}{2\alpha}\right)^d$, which then implies $\mathcal{N}(\mathcal{F}, \alpha) \geq \left(\frac{1}{2\alpha}\right)^d$ as desired. Hint: use a similar volumetric argument.

Proof. Each function in \mathcal{H}' is parameterized by a point in B_p^d . If for each of these points we put a small ball $2\alpha B_p^d$ centered at it, then it must "cover" the entire ball B_p^d , for otherwise there is a function $f \in \mathcal{F}$ that is not covered by \mathcal{H}' . So we have $|\mathcal{H}'|\operatorname{Vol}(2\alpha B_p^d) \geq \operatorname{Vol}(B_p^d)$. Using the fact $\operatorname{Vol}(2\alpha B_p^d) = (2\alpha)^d \operatorname{Vol}(B_p^d)$ and rearranging then finishes the proof.

(b) Let $v_1, \ldots, v_d \in B_2^n$ be d points within the n-dimensional ℓ_2 -norm unit ball and

$$\mathcal{S} = \left\{ \sum_{i=1}^{d} \beta_{i} v_{i} \mid \beta_{i} \geq 0, \forall i, \text{ and } \sum_{i=1}^{d} \beta_{i} \leq B \right\}$$

be the convex hull of these d points scaled by B > 0.

i. (5pts) Prove $\mathcal{N}_2(\mathcal{S}, \alpha) \le \left(\frac{2B}{\sqrt{n\alpha}} + 1\right)^d$.

Proof. Note that in Proposition 2 of Lecture 3, we have constructed a set $C \subset B_1^d$ of size at most $\left(\frac{2}{\alpha'}+1\right)^d$ such that for any $\theta \in B_1^d$, we can find $c \in C$ with $\|\theta - c\|_1 \leq \alpha'$. Now, set $\alpha' = \frac{\sqrt{n\alpha}}{B}$ and let

$$\mathcal{S}' = \left\{ \sum_{i=1}^d Bc_i v_i \mid (c_1, \dots, c_d) \in \mathcal{C} \right\}.$$

The size of S' is clearly at most $\left(\frac{2B}{\sqrt{n\alpha}}+1\right)^d$, and it remains to prove that it is an α -cover of S in terms of ℓ_2 -norm. Indeed, for any $\sum_{i=1}^d \beta_i v_i \in S$, let c be the closest point in C to $\frac{1}{B}(\beta_1, \ldots, \beta_d) \in B_1^d$, then we have

$$\begin{split} \left\| \sum_{i=1}^{d} Bc_{i}v_{i} - \sum_{i=1}^{d} \beta_{i}v_{i} \right\|_{2} &= \left\| \sum_{i=1}^{d} (Bc_{i} - \beta_{i})v_{i} \right\|_{2} \\ &\leq \sum_{i=1}^{d} |Bc_{i} - \beta_{i}| \left\| v_{i} \right\|_{2} \qquad \text{(triangle inequality)} \\ &\leq B\sum_{i=1}^{d} \left| c_{i} - \frac{1}{B}\beta_{i} \right| \qquad (\|v_{i}\|_{2} \le 1) \\ &\leq B\alpha' = \sqrt{n}\alpha, \end{split}$$

which completes the proof.

- ii. Follow the steps below to prove a different covering number bound $\mathcal{N}_2(\mathcal{S}, \alpha) \le d^{\frac{B^2}{n\alpha^2}}$.
 - A. (4pts) For any $v = \sum_{i=1}^{d} \beta_i v_i \in S$, let $\beta = (\beta_1, \dots, \beta_d)$ and define *m* i.i.d. random variables u_1, \dots, u_m , each of which is $\|\beta\|_1 v_i$ with probability $\beta_i / \|\beta\|_1$ for $i = 1, \dots, d$. Prove that the mean of these random variables is v and the variance of $u = \frac{1}{m} \sum_{j=1}^{m} u_j$ is bounded as:

$$\mathbb{E}\left[\left\|u-v\right\|_{2}^{2}\right] \leq \frac{\left\|\beta\right\|_{1}^{2}}{m}$$

Proof. By definition, the mean is simply $\sum_{i=1}^{d} \frac{\beta_i}{\|\beta\|_1} \cdot \|\beta\|_1 v_i = \sum_{i=1}^{d} \beta_i v_i = v$. For the second statement, proceed as follows:

$$\mathbb{E}\left[\|u - v\|_{2}^{2} \right] = \frac{1}{m} \mathbb{E}\left[\|u_{1} - v\|_{2}^{2} \right] \qquad (u_{1}, \dots, u_{m} \text{ are i.i.d.})$$

$$\leq \frac{1}{m} \mathbb{E}\left[\|u_{1}\|_{2}^{2} \right]$$

$$= \frac{1}{m} \sum_{i=1}^{d} \frac{\beta_{i}}{\|\beta\|_{1}} \cdot \|\beta\|_{1}^{2} \|v_{i}\|_{2}^{2} \leq \frac{\|\beta\|_{1}^{2}}{m}, \qquad (\|v_{i}\|_{2} \leq 1)$$

which finishes the proof.

B. (7pts) Prove that the following is an α -cover of S with respect to ℓ_2 -norm:

$$\mathcal{S}' = \left\{ \frac{B}{M} \sum_{i=1}^{d} m_i v_i \ \middle| \text{ each } m_i \text{ is a nonnegative integer and } \sum_{i=1}^{d} m_i \leq M \right\}$$

where $M = \frac{B^2}{n\alpha^2}$. (The statement $\mathcal{N}_2(\mathcal{S}, \alpha) \le d^{\frac{B^2}{n\alpha^2}}$ then follows immediately.)

Proof. For any $v = \sum_{i=1}^{d} \beta_i v_i \in S$, the conclusion in the last question implies that there exists one realization of $u = \frac{1}{m} \sum_{j=1}^{m} u_j$ such that $||u - v||_2 \leq \frac{||\beta||_1}{\sqrt{m}}$, which is at most $\sqrt{n\alpha}$ if we set $m = \frac{B||\beta||_1}{n\alpha^2}$. Now, note that u can be rewritten as

$$u = \frac{1}{m} \sum_{j=1}^{m} u_j = \frac{\|\beta\|_1}{m} \sum_{i=1}^{d} m_i v_i$$

for some nonnegative integers m_1, \ldots, m_d with $\sum_{i=1}^d m_i = m \leq M$. Finally, using the definition of m and M shows

$$u = \frac{\|\beta\|_1}{m} \sum_{i=1}^d m_i v_i = \frac{n\alpha^2}{B} \sum_{i=1}^d m_i v_i = \frac{B}{M} \sum_{i=1}^d m_i v_i$$

and thus $u \in S'$, finishing the proof.